
Tree-Based Solution Methods for
Multiagent POMDPs with Delayed Communication

Frans A. Oliehoek
MIT CSAIL / Maastricht University

P.O. Box 616
6200 MD Maastricht, The Netherlands

Matthijs T.J. Spaan
Delft University of Technology

Mekelweg 4
2628 CD Delft, The Netherlands

Abstract

Multiagent Partially Observable Markov Decision Processes
(MPOMDPs) provide a powerful framework for optimal de-
cision making under the assumption of instantaneous com-
munication. We focus on a delayed communication setting
(MPOMDP-DC), in which broadcasted information is de-
layed by at most one time step. This model allows agents
to act on their most recent (private) observation. Such an as-
sumption is a strict generalization over having agents wait un-
til the global information is available and is more appropriate
for applications in which response time is critical. In this set-
ting, however, value function backups are significantly more
costly, and naive application of incremental pruning, the core
of many state-of-the-art optimal POMDP techniques, is in-
tractable. In this paper, we overcome this problem by demon-
strating that computation of the MPOMDP-DC backup can be
structured as a tree and by introducing two noveltree-based
pruning techniques that exploit this structure in an effective
way. We experimentally show that these methods have the po-
tential to outperform naive incremental pruning by orders of
magnitude, allowing for the solution of larger problems.

1 Introduction
This paper focuses on computing policies for multiagent
systems (MASs) that operate in stochastic environments and
that share their individual observations with a one-step de-
lay. This problem has been extensively studied in the de-
centralized control literature and dynamic programming al-
gorithms date back to the seventies (Varaiya and Walrand
1978; Grizzle, Marcus, and Hsu 1981; Hsu and Marcus
1982). However, computational difficulties have limited the
model’s applicability. In particular, the backup operatorun-
der delayed communication has an additional source of com-
plexity when compared to settings with instantaneous com-
munication. In this paper, we take an important step in over-
coming these challenges by showing how this additional
complexity can be mitigated effectively.

The task faced by a team of agents is complicated by
partial or uncertain information about the world, as well
as by stochastic actions and noisy sensors. Especially set-
tings in which agents have to act based solely on their
local information have received a large amount of atten-
tion in the last decade (Pynadath and Tambe 2002; Seuken

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Zilberstein 2008; Oliehoek, Spaan, and Vlassis 2008;
Amato, Dibangoye, and Zilberstein 2009; Spaan, Oliehoek,
and Amato 2011). The Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) framework can be
used to formulate such problems (Bernstein, Zilberstein, and
Immerman 2000), but decentralization comes at a high com-
putational cost: solving a Dec-POMDP is NEXP-complete.

Communication can be used to mitigate the problem of
decentralized information: by sharing their local observa-
tions, agents can reason about the optimal joint action given
the global information state, calledjoint belief. That is, when
instantaneous communication is available, it allows to re-
duce the problem to a special type of POMDP (Pynadath and
Tambe 2002), called aMultiagent POMDP (MPOMDP),
which has a lower computational complexity than a Dec-
POMDP (PSPACE-complete) and will generally lead to a
joint policy of a higher quality (Oliehoek, Spaan, and Vlas-
sis 2008).

However, assuming instantaneous communication is of-
ten unrealistic. In many settings communication channels
are noisy and synchronization of the information states takes
considerable time. Since the agents cannot select their ac-
tions without the joint belief, this can cause unacceptablede-
lays in action selection. One solution is to assume that syn-
chronization will be completed withink time steps, selecting
actions based on the last known joint belief. Effectively, this
reduces the problem to a centralized POMDP with delayed
observations (Bander and White 1999). However, such for-
mulations are unsuitable for tasks that require a high respon-
siveness to certain local observations.

A prime example is decentralized protection control in
electricity distribution networks by so-called Intelligent
Electronic Devices (IED). As power grids move towards in-
tegrating more distributed generation capability (e.g., pro-
vided by solar panels or fuel cells), more intricate protection
schemes have to be developed as power flow is no longer
unidirectional (Hadjsaid, Canard, and Dumas 1999). In re-
sponse, modern IEDs not only decide based on locally avail-
able sensor readings, but can receive information from other
IEDs through a communication network with deterministic
delays (Xyngi and Popov 2010). When extreme faults such
as circuit or cable failures occur, however, no time can be
wasted waiting for information from other IEDs to arrive.

We therefore consider an alternative execution model for

one-step delayed communication, in which the agents base
their action on their private observation, in addition to the
global information of the last stage.1 This results in the
MPOMDP with delayed communication (MPOMDP-DC), a
strict generalization of the delayed observation MPOMDP.
The MPOMDP-DC solution also plays an important role
when considering stochastic delays or delays of more time
steps (Spaan, Oliehoek, and Vlassis 2008).

For an MPOMDP-DC one can compute a value function
that is piecewise-linear and convex (PWLC) (Hsu and Mar-
cus 1982). This means that it can be represented by a set
of vectors, and therefore many POMDP solution methods
can be extended to the MPOMDP-DC setting (Oliehoek,
Spaan, and Vlassis 2007). However,incremental pruning
(IP) (Cassandra, Littman, and Zhang 1997), that performs
a key operation more efficiently in the case of regular
(M)POMDPs, is not directly able to achieve the same im-
provements for MPOMDP-DCs; a naive application of this
technique (NAIVE IP) needs to loop over a number of decen-
tralized control laws that is exponential both in the number
of agents and in the number of observations.

In this paper, we target this additional complexity by
proposing two novel methods that operate over a tree struc-
ture. These methods prune exactly the same vectors as
NAIVE IP, but they iterate over the set of candidate vec-
tors in a different way: NAIVE IP loops over all decentral-
ized control lawsβ, while TBP methods exploit the sim-
ilar parts in differentβ. The first method, called TBP-M
for tree-based pruning with memoization, avoidsduplicate
work by caching the result of computations at internal nodes
and thus accelerates computation at the expense of memory.
The second algorithm, branch and bound (TBP-BB), tries to
avoidunnecessarycomputation by making use of upper and
lower bounds to prune parts of the tree, providing a different
space/time tradeoff.

The empirical evaluation of the proposed methods on a
number of test problems shows a clear improvement over
NAIVE IP. TBP-M provides speedups of up to 3 orders of
magnitude. TBP-BB does not consistently outperform the
baseline, but is still able to provide large speedups on a num-
ber of test problems, while using little memory.

2 Background
In this section we formally introduce the MPOMDP model.
Definition 1. A multiagent partially observable Markov de-
cision processM = 〈n,S,A,P,R,O,O,h,b0〉 consists of the
following: a finite set ofn agents;S, a finite set of states;
A = ×iAi, the set{a1, . . . ,aJ} of J joint actions (Ai is the
set of actions available to agenti); P , the transition func-
tion specifies,P a(s′|s) the probability of transferring froms
to s′ givena; R, the reward function, specifiesRa(s) the re-
ward accumulated when takinga from s; O = ×iOi, the
set{o1 . . . oK} of K joint observations;O, the observation
function, specifiesOa(o|s) the probability ofo after takinga
and ending up ins; h, the planning horizon;b0, the initial
state distribution.

1The information available to the agents in this case is also re-
ferred to as aone-step delayed sharing pattern.

Every time step onea = 〈a1,...,an〉 is taken and
an o = 〈o1,...,on〉 is observed. The special case with
1 agent is called a (regular) POMDP. At every staget,
each agenti: 1) observes its individualoi, 2) broad-
casts its own observationoi, 3) receives observations
o−i = 〈o1, . . . ,oi−1,oi+1, . . . ,on〉 from the other agents,
4) uses the joint observationot = 〈oi,o−i〉 and previ-
ous joint actionat−1 to update the new joint beliefbt =
BU(bt−1,at−1,ot), 5) looks up the joint action for this stage
in the joint policyat ← π(bt), 6) and executes its compo-
nentati. The belief update functionBU implements Bayes
rule (Kaelbling, Littman, and Cassandra 1998). We denote
the set of all joint beliefs byB, and we will refer to a joint
belief simply as ‘belief’.

The joint policyπ =
(

δ0,δ1, . . . ,δh−1
)

is a sequence of
joint decision rules mapping beliefs to joint actions. The
goal of the multiagent planning problem for an MPOMDP
is to find an optimal joint policyπ∗ that maximizes the to-
tal expected reward. In this paper we will consider planning
over a finite horizonh.

Theh− t steps-to-goaction-valueof b is

Qt(b,a) = Ra
B(b) +

∑

o

P a(o|b)max
a′

Qt+1(b′,a′), (1)

whereRa
B(b) =

∑

s R
a(s)b(s) and b′ = BU(b,a,o). An

optimal joint decision rule for staget, δt∗, selects the max-
imizing a for eachb and thereby defines thevalue function:
V t(b) = maxa Q

t(b,a) = Qt(b,δt∗(b)).

Definition 2. An MPOMDP with delayed communication
(MPOMDP-DC) is an MPOMDP where communication is
received with a one-step delay.

Execution in an MPOMDP-DC is as follows. At deci-
sion point t, each agenti: 1) has received theprevious-
stage observationsot−1

−i and actionsat−1
−i of the other

agents, 2) observes its individualoti, 3) computesbt−1 =
BU(bt−2,at−2,ot−1), using thepreviousjoint observation
ot−1 = 〈ot−1

i ,ot−1
−i 〉 and joint actionat−2 (remembered

from staget − 2 when it receivedat−2
−i), 4) looks up the

individual action for this stage in the individual policyati ←
πi(b

t−1,at−1,oti), 5) broadcasts its own observationsoti and
actionati, and 6) executesati.

It is clear that there are quite a few differences with an
MPOMDP. Most notably, in an MPOMDP-DC a joint deci-
sion rule specifies an individual decision rule for each agent
δt = 〈δt1, . . . ,δ

t
n〉, where eachδti : B

t−1 ×A×Oi → Ai is
a mapping from a

〈

bt−1,at−1,oti
〉

-tuple to an individual ac-
tion ati. As such, it may come as a surprise that we can still
define the optimal value of an MPOMDP-DC as a function
of beliefs:

Qt(b,a) = Ra
B(b) + max

β∈B

∑

o

P a(o|b)Qt+1(b′,β(o)), (2)

where B is the set of decentralized control lawsβ =
〈β1, . . . ,βn〉 which the agents use to map their individual
observations to actions:β(o) = 〈β1(o1), . . . ,βn(on)〉. Es-
sentially, we have decomposed a joint decision ruleδt into
a collection ofβ, one for each〈b,a〉-pair. The maximiza-
tion that (2) performs for each such〈b,a〉-pair corresponds

to solving a collaborative Bayesian game (Oliehoek et al.
2010) or, equivalently, a Team Decision Problem and is NP-
complete (Tsitsiklis and Athans 1985). We also note that the
set of possibleβ is a strict super set of the set of joint ac-
tions. That is, control laws that ignore the private observa-
tion and just map from the previous joint belief (and joint
action) to a joint action are included. As such, this approach
gives a strict improvement over assuming delayed joint ob-
servations (Bander and White 1999).

For both settings, the optimal joint policy can be derived
from the value functions defined above. The difficulty, how-
ever, is that these value functions are defined over the contin-
uous space of beliefs. When no initialb0 is known ahead of
time, most methods for solving a (multiagent) POMDP use
the fact that (1) is piecewise-linear and convex (PWLC) over
the belief space. That is, the value at staget can be expressed
as a maximum inner product with a set of vectors:

Qt(b,a) = max
va∈Vt

a

b · va = max
va∈Vt

a

∑

s

b(s)va(s). (3)

We will also writeVt =
⋃

a∈A V
t
a for the complete set of

vectors. Each of these vectorsva represents a conditional
plan (i.e., policy) starting at staget with joint actiona and
has the following form:vta = Ra +

∑

o g
i
ao, with giao the

back-projection ofvi, thei-th vector inVt+1:

giao =
∑

s′

Oa(o|s′)P a(s′|s)vi(s′). (4)

The set of suchgamma vectorsis denoted byGao. The al-
gorithm by Monahan (1982) simply generates all possible
vectors by, for each joint actiona, for each possible obser-
vation selecting each possible next-stage vector:

Vt
a= {R

a} ⊕ Gao1 ⊕ · · · ⊕ GaoK , (5)

where the cross-sumA⊕B = {a+ b | a ∈ A,b ∈ B}.
A problem in this approach is that the number of vectors

generated by it grows exponentially; at every backup, the
algorithm generates

∣

∣Vt+1
∣

∣ = J |Vt|
K vectors. However,

many of these vectors aredominated,which mean that they
do not maximize any point in the belief space. The opera-
tion Prune removes all dominated vectors by solving a set
of linear programs (Cassandra, Littman, and Zhang 1997;
Feng and Zilberstein 2004). That way, theparsimoniousrep-
resentation ofVt can be computed via pruning:

Vt
a = Prune ({Ra} ⊕ Gao1 ⊕ · · · ⊕ GaoK). (6)

The technique calledincremental pruning(IP) (Cassan-
dra, Littman, and Zhang 1997) speeds up the computation
of the value function tremendously by realizing that (6) can
be re-written to interleave pruning and cross-sums in the fol-
lowing way:

Prune ((. . .Prune (Gao1 ⊕ Gao2) . . .)⊕ GaoK).

3 Computing DC Value Functions
As for an MPOMDP, we can represent the value function
under delayed communication using vectors (Hsu and Mar-
cus 1982; Oliehoek, Spaan, and Vlassis 2007). However, in

the MPOMDP-DC case, not all combinations of next-stage
vectors are possible; the actions they specify should be con-
sistent with an admissible decentralized control lawβ. That
is, we define vectorsgaoa′ ∈ Gaoa′ analogously to (4), but
now we restrictvi to be chosen fromVt+1

a′ . From these we
construct

Vt
a = {Ra} ⊕ Gao1β(o1) ⊕ · · · ⊕ GaoKβ(oK). (7)

Note that it is no longer possible to collect all the vectors in
one setVt, since we will always need to discriminate which
joint action a vector specifies.

In the following, we will also represent aβ as a vector
of joint actions〈a(1) . . . a(K)〉, wherea(k) denotes the joint
action selected for thek-th joint observation.

Proposition 1. The (not pruned) setVt
a,DC of vectors under

delayed communication is a strict subset of the setVt
a,P of

MPOMDP vectors:∀a Vt
a,DC ⊂ V

t
a,P .

Proof. To see this, realize thatGao =
⋃

a′ Gaoa′ and that
therefore (5) can be rewritten as

Vt
a,P = ∪a(R

a ⊕ [∪a′Gao1a′]⊕ · · · ⊕ [∪a′GaoKa′])

= ∪a ∪〈a(1),...a(K)〉∈AK

(Ra ⊕ Gao1a(1)
⊕ · · · ⊕ Gaoka(k)

).

The observation follows from the fact that the set of admis-
sibleβ ∈ B is a subset ofAK : eachβ can be represented as
a vector of joint actions〈a(1) . . . a(K)〉, but not every such
vector is a validβ.

This means that the number of vectors grows less fast
when performing exhaustive generation. However, an effec-
tive method for doing the backup, such as incremental prun-
ing for POMDPs, has not been developed.

An obvious approach to incremental pruning in
MPOMDP-DCs is given by the following equations,
which we will refer to as NAIVE IP:

Vt
a=Prune (

⋃

β∈B

Vt
aβ), (8)

Vt
aβ =Prune

(

{Ra} ⊕ Gtao1β(o1) ⊕ · · · ⊕ G
t
aoKβ(oK)

)

,(9)

Gtaoa′ =Prune (Gaoa′), (10)

where (9) uses incremental pruning.
The sets of vectorsVt

a are used as follows. At a staget,
an agent knowsbt−1 andat−1. It uses this information to
determine the vectorv ∈ Vt−1

at−1 that maximizesv · bt−1. It
retrieves the maximizingβ for v, and executesβi(o

t
i).

There are two problems with the computation outlined
above. First, it iterates over all possibleβ ∈ B, which is ex-
ponential both in the number of agents and in the number of
observations. In practice, this way of performing the backup
requires nearly a factor|B| more time than a POMDP
backup. Second, it performs a lot of duplicate work. E.g.,
there are manyβ that specifyβ(o1) = ak, β(o2) = al, but
for each of themPrune (Gao1ak ⊕ Gao2al) is recomputed.

4 Tree-Based Pruning
In order to overcome the drawbacks of the naive approach
outline above, we propose a different approach. Rather than
creating setsVt

aβ for eachβ ∈ B, we directly construct

Vt
a = Prune (

⋃

β∈B

(

{Ra}⊕

Gao1β(o1) ⊕ · · · ⊕ GaoKβ(oK)

)

). (11)

As mentioned, we can interpretβ as a vector of joint ac-
tions. This allows us to decompose the union overβ into
dependent unions over joint actions, as follows:

V
t
a =

⋃

〈

a(1)...a(k)

〉

∈B

(

{R
a
} ⊕ Gao1a(1)

⊕ · · · ⊕ G
aoka(k)

)

={R
a
} ⊕

⋃

a(1)∈A

⋃

〈

a(2)...a(k)

〉

∈B|a(1)

(

Gao1a(1)
⊕ · · · ⊕ G

aoka(k)

)

={R
a
} ⊕

⋃

a(1)∈A

[

Gao1a(1)
⊕

⋃

a(2)∈A|a(1)

⋃

〈

a(3)...a(k)

〉

∈B|a(1)a(2)

(

Gao2a(2)
⊕ Gao3a(3)

⊕ · · · ⊕ G
aoka(k)

)

]

={. . . etc.. . .} (12)

Here B|a(1)a(2)
denotes the set ofβ consistent with

a(1), a(2), andA|a(1)...a(k−1)
denotes the set of joint actions

(for thek-th joint observation) that result in a validβ. The re-
sult of completing equation (12) defines a computation tree
illustrated in Fig. 1 in the context of a fictitious 2-action (x
andy) 2-observation (1 and2) MPOMDP-DC. The root of
the tree,Vt

a, is the result of the computation. There are two
types of internal, or operator, nodes: cross-sum and union.
All the leaf nodes are sets of vectors. An operator noden
takes as input the sets from its children, computesVn, the
set of vectors resulting from application of its operator, and
propagates this result up to its parent. When a union node
is thej-th union node on a path from root to leaf, we say it
has depthj. A depth-j union node performs the union over
a(j) and thus has children corresponding to different assign-
ments of a joint action tooj (indicated by the gray bands).
It is important to realize that the options available fora(j)
depend on the action choices(a(1), . . . ,a(j−1)) made higher
up in the tree; given those earlier choices, somea(j) may
lead to conflicting individual actions for the same individual
observation. Therefore, while there are 4 children for∪a(1)

,
union nodes deeper down the tree have only 2 or even just 1.

Now, to compute (11) we proposetree-based (incremen-
tal) pruning (TBP): it expands the computation tree and,
when the results are being propagated to the top of the tree,
prunes dominated vectors at each internal node. However,
Fig. 1 shows another important issue: there are identical sub-
trees in this computation tree, as indicated by the dashed
green ovals, which means that we would be doing unneces-
sary work. We address this problem by memoization, i.e.,
caching of intermediate results, and refer to the resulting
method as TBP-M. Note that the sub-tree under a node is
completely characterized by a specification of which joint
action assignments are still possible for the unspecified joint
observations. For instance, we can characterize the nodes

⊕

⊕

⊕⊕

⊕

⊕⊕

⊕⊕

⊕

⊕

⊕⊕

∪

∪∪

∪∪ ∪

∪∪∪∪ ∪∪

Vt
a

{Ra}

o1 = 〈1,1〉

o2 = 〈1,2〉

o3 = 〈2,1〉

o4 = 〈2,2〉

x,x

x,x

x,x

x,x

x,x

x,x

x,y

x,y

x,y

x,y

y,x

y,x

y,x

y,x

y,x

y,x

y,y

y,y

y,y

y,y

G
ao1xx

G
ao1yx

G
ao2xx

G
ao2xy

G
ao2yx

G
ao2yy

G
ao3xxG

ao3xx
G
ao3xx

G
ao3yxG

ao3yx
G
ao3yx

G
ao4xx

G
ao4xy

G
ao4xy

G
ao4yx

G
ao4yy

G
ao4yy

Figure 1: The computation tree ofVt
a.

inside the ovals as〈−,− , 〈∗,x〉 , 〈∗,y〉〉, where ‘−’ means
that the joint action for that joint observation is specified,
〈∗,x〉 denotes the set{〈x,x〉 , 〈y,x〉} (‘*’ acts as a wildcard)
and similar for〈∗,y〉. We call such a characterization the ID
string and it can be used as the key into a lookup table. This
way we only have to perform the computation just once for
each ID string.

5 Branch & Bound
Tree-based pruning using branch and bound (TBP-BB) is
a second method to overcome the problems of naive incre-
mental pruning. Branch and bound (BB) is a well-known
method to prune parts ofsearch trees. The idea is that while
TBP-M avoids duplicate work, TBP-BB may be able to
avoid doing unnecessary work. Also, TBP-M needs to cache
results which may lead to memory problems. TBP-BB does
not perform caching, creating an attractive alternative to
trade off space and time complexity.

In particular, standard BB computes anf -value for each
visited noden in the tree viaf(n) = g(n) + h(n), where
g(n) is the actual reward achieved up to the node, andh(n)
is an admissible heuristic estimate. Since our computation
tree has vector-valued leaves, BB can not be applied directly.
Still, we can generalize the idea of BB to be applicable to our
setting, which requires specifyingf, g andh asPWLC func-
tions and comparing them tol, the lower bound function:
the PWLC function over belief space induced by the setL
of already found non-dominated vectorsvta.

This idea is illustrated in Fig. 2. While the computation
tree works bottom-up, we can also interpret it top-down: by
associating the null-vector~0 with the root node, we can now
pass the result of~0 ⊕ {Ra} = {Ra} down the tree. The
union node now acts as a simple ‘splitter’ duplicating its in-
put set down to all children. This way we can define with
each node the cross-sum of sets encountered from the root

· · ·

· · ·

· · ·

⊕⊕

⊕

⊕

⊕⊕

⊕⊕

∪

∪

∪

∪∪

~0

{Ra}

x,x

x,x

x,x

x,y

x,y

x,y

y,x

y,x

y,y

G

G G

G G

G G

l

g

h

V

b(s)

Figure 2: A part of the search tree from Fig. 1 illustrating the
heuristics for a search node.

to that node. This cross-sum itself is a setG and thus de-
fines a PWLC function over the belief space, namelyg. In
a similar way, the PWLC heuristic functionh is represented
by a set of vectorsH. The function should give a guaranteed
overestimation ofVn (as formalized below) and we propose
to use the POMDP vectors. That is, for a node at depthj (for
which the firstj joint observations’ gamma vector sets are
used in the cross-sum to computeG), we specify:

Hj = Prune (Gaoj+1 ⊕ · · · ⊕ GaoK). (13)

This can be pre-computed using incremental pruning.
With a slight abuse of notation, we will writefn andFn

for thef -function at noden and the set of vectors represent-
ing it. We will say thatfn andFn areadmissibleif they are
an optimisic estimate of the actual complete (alpha) vectors
produced by this node. That is if

∀b ∃v∈Fn
∀v′∈(Gn⊕Vn) b · v ≥ b · v′. (14)

Or, if we useh⋆
n to denote the function induced byVn, the

actual set of vectors computed byn, we can more simply
state this requirement as∀b fn(b) ≥ gn(b) + h⋆

n(b).

Theorem 1. Letn be a search node at depthj, thenFn =
Gn⊕Hj , whereHj is defined as the POMDP heuristic(13),
is admissible.

Proof. By Fn = Gn ⊕ Hj we have that the induced func-
tion fn(b) = gn(b)+hj(b). Therefore we only need to show
that ∀b hj(b) ≥ h⋆

n(b). This clearly is the case because
hj is induced by a cross-sum of POMDP back projections
(13), while the latter is induced by cross-sums of DC back
projections (∪β∈B′(Gaoj+1β(oj+1) ⊕ · · · ⊕ GaoKβ(oK)) for
a subsetB′ of β) and the former are supersets of the latter
(Gaoi ⊃ Gaoia′ , ∀a′) as indicated in the proof of Prop. 1.

Giveng, h we want to see if we need to further expand the
current node. Clearly,f = g+h is represented by the upper
surface implied by the setF = Prune (G⊕H). Therefore,

Problem |S| |A| |O| |B|
Dec-Tiger 2 9 4 81
OneDoor 65 16 4 256
GridSmall 16 25 4 625
MG2x2 16 25 16 390625
D-T Creaks 2 9 36 531441
Box Push. 100 16 25 1048576

Table 1: Overview of several characteristics of the problem
domains. All problems have 2 agents.

to see if the current node could generate one or more vectors
that are not dominated by the setL of full vectors found so
far, we need to check if there is av ∈ F , such that∃b v · b >
w ·b, ∀w ∈ L. That is, we simply need to check for eachv ∈
F if it is dominated by the set of vectorsL representingl.
This can be done using the standard LP for checking for
dominance (Cassandra, Littman, and Zhang 1997; Feng and
Zilberstein 2004). At the bottom of the tree, we add any non-
dominated vectors toL.

6 Experiments
In order to assess the efficacy of the proposed methods,
we performed an empirical evaluation. This evaluation is
not geared at examining the assumptions of the MPOMDP-
DC model; as mentioned it is a strict generalization of the
centralized model assuming one-step delayed joint obser-
vations and an evaluation of incorrectly assuming instan-
taneous communication is presented by Spaan, Oliehoek,
and Vlassis (2008). We tested our methods on a set of
six problems: Dec-Tiger, OneDoor, GridSmall, Cooperative
Box Pushing, Dec-Tiger with Creaks2 (Gmytrasiewicz and
Doshi 2005), and MeetingGrid2x23. The main characteris-
tics of these problems can be found in Table 1.4 Of particu-
lar interest is the right-most column showing the number of
β (denoted by|B|) for each problem, which is a key indica-
tor of its complexity. As all methods compute optimal value
functions, we only compare computation times.

Table 2 shows timing results for all six problems, for a set
of planning horizons (depending on the problem). We can
see that for all domains TBP-M outperforms NAIVE IP, of-
ten by an order of magnitude and up to 3 orders of magni-
tude. TBP-BB performs somewhat worse, but as noted be-
fore, requires much less memory.

We also compared against TBP-NOM: a strawman ver-
sion of TBP-M that does not perform any memoization and
re-computes duplicate parts of the tree. It allows us to see
the effect of tree-based pruning, without the extra speedups
provided by memoization: except for a very small problem
(Dec-Tiger(5)), memoization significantly speeds up com-
putations. The results also show that TBP-NOM still is faster
than NAIVE IP on almost all problems. However, as prob-
lem domains grow larger in terms of|B|, TBP-M is able to

2To turn the problem into a Dec-POMDP, we sum both agents’
reward functions.

3Courtesy of Jilles Dibangoye.
4Problems without citation are available fromhttp://www.

isr.ist.utl.pt/ ˜ mtjspaan/decpomdp/ .

Problem(h) TBP-M TBP-BB NAIVE IP TBP-NOM
Dec-Tiger(5) 0.13 0.09 0.23 0.09

Dec-Tiger(10) 0.31 0.43 0.73 0.33

Dec-Tiger(15) 0.98 1.44 2.54 1.19

OneDoor(3) 53.64 1546.73 304.72 56.53

GridSmall(2) 3.93 125.45 64.03 3.80

MG2x2(2) 171.07 2689.35 382093.00 516.03

MG2x2(3) 640.70 11370.40 1499.43

MG2x2(4) 1115.06 24125.30 2813.10

D-T Creaks(2) 63.14 93.16 109.27 121.99

D-T Creaks(3) 149.06 172.79 1595.17 471.57

D-T Creaks(4) 203.44 292.67 4030.47 1150.69

D-T Creaks(5) 286.53 619.25 8277.32 2046.73

Box Push.(2) 132.13 6663.04 1832.98 1961.38

Table 2: Timing results (ins), comparing TBP-M and
TBP-BB to NAIVE IP and TBP-NOM. The missing entries
for NAIVE IP on MG2x2(3)/(4) are due to time limits.

cache larger subtrees, leading to larger computational sav-
ings. Indeed, when comparing TBP-M vs. TBP-NOM in
Table 2, we can see that the gap between them grows as
|B| increases (c.f. Table 1). Regarding the performance of
TBP-BB, in domains in which TBP-BB can hardly prune
any branches such as OneDoor and Box Push., its perfor-
mance is much worse than TBP-NOM, due to the overhead
of maintaining bounds. However, a tighter heuristic could
change this picture dramatically. Additionally, computing
the heuristicHj is relatively costly in some domains: for
GridSmall(2) it takes83.95s, and1280.23s for OneDoor(3).

Finally, note that computing the heuristic (13) using in-
cremental pruning just corresponds to computing (2) and
therefore to doing a POMDP backup. However, we can
see that TBP-M solves the mentioned problem instances in
3.93s resp.53.64s. That is, the DC backup is faster than the
POMDP backup in these instances. While this is not a trend
for all domains, this does suggest that the DC backup no
longer inherently suffers from an additional complexity.

7 Discussion & Related Work
Here we discuss our approach, providing pointers to related
work and possible directions of future work where possible.

The suitability of the MPOMDP-DC model depends on
the ratio of expected duration to synchronize the joint belief
state and the duration of a joint action. In many situations
synchronization is expected to take multiple stages. How-
ever, even for such cases our techniques are useful: the one-
step delayed solution can be used as a part of a solution with
longer delays (Spaan, Oliehoek, and Vlassis 2008).

While IP entails a choice for the regular (vector-based)
backup, an interesting other direction is the exploration of
point-based backups. While we do not expect that this will
directly lead to further improvements to the exact backup,
point-based methods have led to state-of-the-art results for
approximate POMDP methods (Pineau, Gordon, and Thrun
2003; Spaan and Vlassis 2005; Kurniawati, Hsu, and Lee
2008). While approximate point-based value iteration for
MPOMDP-DC has been proposed (Oliehoek, Spaan, and
Vlassis 2007), many questions remain open. For instance,

in order to get any kind of quality guarantees for such
methods, future research should investigate how to effi-
ciently compute upper bounds for the DC setting. More-
over, it is still unclear how to efficiently perform the point-
based backup itself, although there have been recent ad-
vances (Oliehoek et al. 2010). We expect that it will be pos-
sible to draw on work performed on point-based backups for
the Dec-POMDP (Amato, Dibangoye, and Zilberstein 2009;
Dibangoye, Mouaddib, and Chai-draa 2009; Kumar and Zil-
berstein 2010).

In fact, this connection with Dec-POMDPs also works
the other way around. An important direction of future
work is to investigate whether it is possible to transfer TBP
to Dec-POMDPs. The optimal solution of the MPOMDP-
DC is useful to upper bound the expected value of MASs
without communication (Grizzle, Marcus, and Hsu 1981;
Ooi and Wornell 1996) and thus as a heuristic in solv-
ing Dec-POMDPs (Oliehoek, Spaan, and Vlassis 2008;
Spaan, Oliehoek, and Amato 2011). However, there may
be more direct ways in which our methods can advance
Dec-POMDP algorithms. For instance, the most influential
approximate solution method, MBDP (Seuken and Zilber-
stein 2007), samples joint beliefs to admit point-based one-
step backups. Our methods allow us to perform the one-step
backup over the entire joint belief space and thus can find the
complete set of useful sub-tree policies obviating the needto
pre-specify a ‘max-trees’ parameter. We also plan to inves-
tigate whether our techniques may be useful for exact DP
methods (Hansen, Bernstein, and Zilberstein 2004).

Furthermore, our methods can also be used to find the
Pareto-optimal set of decentralized control laws in multi-
objective team decision problems. This is an extension of
the team decision problem (Tsitsiklis and Athans 1985)
or identical payoff Bayesian game (Oliehoek et al. 2010),
where the payoff function generates a vector of payoffs
u(o,a) ∈ R

k. That means that eachβ defines a value vec-
tor vβ ∈ R

k. Given a weightw of the objectives, the fi-
nal value is given by the inner productvβ · w. When solv-
ing the multiobjective problem, we are interested in the
set L ⊆ B of β that are maximizing at some point in
the space of parametersw. That is, we want to compute
L = Prune ({vβ |β ∈ B}). This directly corresponds to
the problem we solved in this paper. Here we we would
have setsGol =

{

u(ol,a1), . . . ,u(ol,aJ)
}

for all joint types.
Since a (non-identical payoff) Bayesian game is exactly the
same from mathematical point of view (only now there is
one objective associated with each agent), our methods can
be used to find Pareto-optimal joint strategies for them.

8 Conclusions

In this article we considered multiagent planning under
uncertainty formalized as a multiagent POMDP with de-
layed communication (MPOMDP-DC). A key feature of this
model is that it allows a fast response to certain local obser-
vations, relevant in time-critical applications such as intel-
ligent power grid control. We showed that the set of legal
vectors (corresponding to admissible joint policies) is a sub-
set of the set of vectors for the MPOMDP. Still, because of

the way this restriction is specified (as a union over decen-
tralized control lawsβ), a naive application of incremental
pruning (IP) suffers from a significant additional complexity
when compared to the MPOMDP case.

In order to address this problem we presented an analysis
that shows that the DC backup operator can be represented
as a computation tree and we proposed two methods to ex-
ploit this tree structure. The first, TBP-M, is based on the
original bottom-up semantics of the computation tree, and
gains efficiency via memoization. The second, TBP-BB,
broadens regular branch-and-bound methods by reinterpret-
ing the computation tree in a top-down fashion and by gener-
alizing the concepts off, g andh-values to PWLC functions.

We performed an empirical evaluation on a number of
benchmark problems that indicates that TBP-M can realize
speedups of 3 orders of magnitude over the NAIVE IP base-
line. TBP-BB is not competitive with TBP-M on all but
one domain (it can not prune enough nodes using its heuris-
tic) but still shows the potential to significantly improve over
NAIVE IP in three out of six problems. These results show
that we have successfully mitigated the additional complex-
ity that the DC backup exhibits over the MPOMDP, allow-
ing for the solution of larger problems. Finally, we discussed
how our results are applicable to Dec-POMDPs and multi-
objective team decision problems.

Acknowledgments
Research supported by AFOSR MURI project #FA9550-09-
1-0538 and NWO CATCH project #640.005.003. M.S. is
funded by the FP7 Marie Curie Actions Individual Fellow-
ship #275217 (FP7-PEOPLE-2010-IEF).

References
Amato, C.; Dibangoye, J. S.; and Zilberstein, S. 2009. Incremental
policy generation for finite-horizon DEC-POMDPs. InICAPS, 2–
9.

Bander, J., and White, III, C. 1999. Markov decision processes
with noise-corrupted and delayed state observations.Journal of
the Operational Research Society50:660–668.

Bernstein, D. S.; Zilberstein, S.; and Immerman, N. 2000. The
complexity of decentralized control of Markov decision processes.
In UAI, 32–37.

Cassandra, A.; Littman, M. L.; and Zhang, N. L. 1997. Incremen-
tal pruning: A simple, fast, exact method for partially observable
Markov decision processes. InUAI, 54–61. Morgan Kaufmann.

Dibangoye, J. S.; Mouaddib, A.-I.; and Chai-draa, B. 2009. Point-
based incremental pruning heuristic for solving finite-horizon
DEC-POMDPs. InAAMAS, 569–576.

Feng, Z., and Zilberstein, S. 2004. Region-based incremental prun-
ing for POMDPs. InUAI, 146–153.

Gmytrasiewicz, P. J., and Doshi, P. 2005. A framework for sequen-
tial planning in multi-agent settings.JAIR24:49–79.

Grizzle, J. W.; Marcus, S. I.; and Hsu, K. 1981. Decentralized
control of a multiaccess broadcast network. InIEEE Conference
on Decision and Control, 390–391.

Hadjsaid, N.; Canard, J.-F.; and Dumas, F. 1999. Dispersed genera-
tion impact on distribution networks.IEEE Computer Applications
in Power12(2):22–28.

Hansen, E. A.; Bernstein, D. S.; and Zilberstein, S. 2004. Dynamic
programming for partially observable stochastic games. InAAAI,
709–715.

Hsu, K., and Marcus, S. 1982. Decentralized control of finite
state Markov processes.IEEE Transactions on Automatic Control
27(2):426–431.

Kaelbling, L. P.; Littman, M. L.; and Cassandra, A. R. 1998. Plan-
ning and acting in partially observable stochastic domains.Artifi-
cial Intelligence101(1-2):99–134.

Kumar, A., and Zilberstein, S. 2010. Point-based backup for de-
centralized POMDPs: Complexity and new algorithms. InAAMAS,
1315–1322.

Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP: Efficient
point-based POMDP planning by approximating optimally reach-
able belief spaces. InProc. Robotics: Science & Systems.

Monahan, G. E. 1982. A survey of partially observable Markov
decision processes: theory, models and algorithms.Management
Science28(1).

Oliehoek, F. A.; Spaan, M. T. J.; Dibangoye, J.; and Amato, C.
2010. Heuristic search for identical payoff Bayesian games. In
AAMAS, 1115–1122.

Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2007. Dec-
POMDPs with delayed communication. InMSDM (AAMAS Work-
shop).

Oliehoek, F. A.; Spaan, M. T. J.; and Vlassis, N. 2008. Optimal and
approximate Q-value functions for decentralized POMDPs.JAIR
32:289–353.

Ooi, J. M., and Wornell, G. W. 1996. Decentralized control of a
multiple access broadcast channel: Performance bounds. InProc.
of the 35th Conference on Decision and Control, 293–298.

Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based value
iteration: An anytime algorithm for POMDPs. InIJCAI, 1025–
1032.

Pynadath, D. V., and Tambe, M. 2002. The communicative mul-
tiagent team decision problem: Analyzing teamwork theories and
models.JAIR16:389–423.

Seuken, S., and Zilberstein, S. 2007. Memory-bounded dynamic
programming for DEC-POMDPs. InIJCAI, 2009–2015.

Seuken, S., and Zilberstein, S. 2008. Formal models and algorithms
for decentralized decision making under uncertainty.Autonomous
Agents and Multi-Agent Systems17(2):190–250.

Spaan, M. T. J., and Vlassis, N. 2005. Perseus: Randomized point-
based value iteration for POMDPs.JAIR24:195–220.

Spaan, M. T. J.; Oliehoek, F. A.; and Amato, C. 2011. Scaling up
optimal heuristic search in Dec-POMDPs via incremental expan-
sion. InIJCAI, 2027–2032.

Spaan, M. T. J.; Oliehoek, F. A.; and Vlassis, N. 2008. Multiagent
planning under uncertainty with stochastic communication delays.
In ICAPS, 338–345.

Tsitsiklis, J., and Athans, M. 1985. On the complexity of decentral-
ized decision making and detection problems.IEEE Transactions
on Automatic Control30(5):440–446.

Varaiya, P., and Walrand, J. 1978. On delayed sharing patterns.
IEEE Transactions on Automatic Control23(3):443–445.

Xyngi, I., and Popov, M. 2010. Smart protection in Dutch medium
voltage distributed generation systems. InInnovative Smart Grid
Technologies Conference Europe (ISGT Europe), 2010 IEEE PES.

