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Recap

 Overview scientific computing
 exact science: mathematical models

(precise understanding!)
 (high-level) programming: Mathematica, Matlab
 topics

 Introduction Mathematica
 population models via difference equations

(also 'recurrence equations' hence 'RSolve')
pn+1=f ( pn)



  

This Lecture

 A introduction to Matlab

 Principle Component Analysis

 Floating Point Numbers



  

Matlab

 'Matrix' laboratory
 primarily: numerical computing

 learn by doing!
 different numbers: 

 no π  or 'how many digits you like'
 but: floating point numbers

 Octave



  

Principal Component Analysis



  

Dimension Reduction

 High dimensional data
 apple: weight, length, circumference, color, taste, etc.

 Hard to understand / visualize!

 Dimension reduction:
 reduce the number of variables
 i.e., reduce the number of dimensions from D to d

(x1, x2, ... , xD)→(z1, z2, ... , zd)

(x1, x2, ... , xD)



  

Dimension Reduction

 In the lab: measurements about Brachiopods



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

N=n+1



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector 

is called the i-th principal component (of the data set) 

(z i
(0) , zi

(1) , ... , z i
(n))



  

PCA – Goals

 Given a data set X of N data point of D variables
→ convert to data set Z of N data points of d variables

 PCA performs a linear transformation:
→ variables z

i
 are linear combinations of x

1
,...,x

D

(x1
(0) , x2

(0) , ... , xD
(0))→(z1

(0) , z2
(0) , ... , zd

(0))

(x1
(1) , x2

(1) , ... , xD
(1))→(z1

(1) , z2
(1) , ... , zd

(1))

...
(x1

(n) , x2
(n) , ... , xD

(n))→(z1
(n) , z2

(n) , ... , zd
(n))

The vector 

is called the i-th principal component (of the data set) 

(z i
(0) , zi

(1) , ... , z i
(n))



  

PCA Goals – 2

 Of course many possible transformations possible...
 Reducing the number of variables: loss of information
 PCA makes this loss minimal

 PCA is very useful
 Exploratory analysis of the data
 Visualization of high-D data
 Data preprocessing
 Data compression



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

Very important idea

The most information is 
contained by the variable 
with the largest spread.

● i.e., highest variance

(Information Theory)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

so if we have to chose 
between x

1
 and x

2

→ remember x
2 

Transform of k-th point:

where

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=x2

(k )

Very important idea

The most information is 
contained by the variable 
with the largest spread.

● i.e., highest variance

(Information Theory)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

(what variable contains the most information?)

x
1

x
2

so if we have to chose 
between x

1
 and x

2

→ remember x
2 

Transform of k-th point:

where

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=x2

(k )

Example:

z1
(k )=1.5



  

PCA – Intuition

 Reconstruction based on x
2

→ only need to remember mean of x
1

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

This is a projection 
on the x1 axis.



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

● More difficult...
...projection on  both axes 
does not give nice results.

● Idea of PCA: find a new 
direction to project on!



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

● More difficult...
...projection on  both axes 
does not give nice results.

● Idea of PCA: find a new 
direction to project on!



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2

u is the direction of 
highest variance

u



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u
Note, the general formula for scalar 

projection is

However, when u is a unit vector,  
we can use the simplified formula

(u , x(k ))/(u ,u)



  

PCA – Intuition

 How would you summarize this data using 1 dimension?

x
1

x
2Transform of k-th point:

where z
1
 is the 

orthogonal scalar projection on u:

(x1
(k) , x2

(k ))→(z1
(k))

z1
(k )=u1 x1

(k)+u2 x2
(k)=(u , x(k))

u

E.g.:

is the first principal component 
of this data point

z1=0.7(−0.7)+0.7(−.5)=−0.84

-0.7

-0.5



  

PCA – Intuition

 PCA so far...

 find the direction u
of highest variance

 project data on u → z
1

the first principle component (PC)

 Next...

 find more directions of high variance
→ u is u(1), the direction of the first PC
→ find u(2), u(3),..., u(D) 
     (the directions of the other PCs)

x
1

x
2

u



  

More Principle Components

 Given this data, what is u(1) ?
(i.e., the direction of the first PC)

x
1

x
2



  

More Principle Components

 u(1) explains the most variance
 What is u(2)?  

(the direction of 
the 2nd  PC) ?

x
1

x
2



  

More Principle Components

 u(2) is the direction with most 'remaining' variance
 orthogonal to u(1) !

 Data is 2D, so can find 
only two directions

 Each point x(k) can be 
converted to z(k)   

(x1
(k) , x2

(k ))⇔(z1
(k) , z2

(k))

z i
(k )=(u(i) , x(k ))

x
1

x
2



  

Floating Point Numbers



  

How are number represented?

 Matlab represents numbers using a floating point 
representation

(−1)⋅(0.b1b2 ...b53)⋅2
e

sign
mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1 
~= 0

 (unique representation)

Exponent
-1021< e < 1024



  

How are number represented?

 Matlab represents numbers using a floating point 
representation

 Smallest 
 normalized
 non-norm.

 Largest

(−1)⋅(0.b1b2 ...b53)⋅2
e

sign
Exponent
-1021< e < 1024

(0.100 ...00)⋅2−1021
=2.2251e-308

(0.000 ...01)⋅2−1021
=4.9407e-324

(0.111...11)⋅21024
=1.7977e+308

mantissa
●53 bits - 253=9.0072e+15
●normalized: b

1 
~= 0

 (unique representation)



  

Spacing between numbers

 Spacing for the largest numbers

 Spacing for smallest numbers 4.9407e-324

 “eps(n)” gives spacing around n
 eps(realmax), eps(0)

diff =(0.000...001)⋅21024
=1⋅2(1024−53)

=1.9958e+292

(0.000...001)⋅21024

(0.000...010)⋅21024



  

Round Off Errors

 set of floating point numbers F
 when real number x is replaced by number fl(x) in F

→ round off error 

 Absolute error can be large: 0.5 *eps(realmax)

 However: relative error is bounded
 where 

∣x−fl(x)∣
∣x∣

⩽
1
2
ϵ

ϵ=eps (1)=2.2204e-16


