Scientific Computing Maastricht Science Program

Week 2

Frans Oliehoek <frans.oliehoek@maastrichtuniversity.nl>

Recap

- Overview scientific computing
 - exact science: mathematical models (precise understanding!)
 - (high-level) programming: Mathematica, Matlab
 - topics
- Introduction Mathematica
 - population models via difference equations $p_{n+1}=f(p_n)$ (also 'recurrence equations' hence '**R**Solve')

This Lecture

- A introduction to Matlab
- Principle Component Analysis
- Floating Point Numbers

Matlab

- 'Matrix' laboratory
- primarily: numerical computing
- learn by doing!
- different numbers:
 - no π or 'how many digits you like'
 - but: floating point numbers

Octave

Principal Component Analysis

Dimension Reduction

- High dimensional data $(x_1, x_2, ..., x_D)$
 - apple: weight, length, circumference, color, taste, etc.
- Hard to understand / visualize!

- Dimension reduction:
 - reduce the number of variables $(x_1, x_2, \dots, x_D) \rightarrow (z_1, z_2, \dots, z_d)$
 - i.e., reduce the number of dimensions from D to d

Dimension Reduction

In the lab: measurements about Brachiopods

	Α	В	С	D	E	F	G	Н		J	
1	0	1	2	60	1	16.55	13.6	8.05	16.2	0	
2	0	1	2	60	1	12.95	11.7	5	11.6	0	
3	1	0	0	0	0	30.3	30.8	23.2	26.1	1	
4	1	0	0	Ó	0	31.5	35.35	24.9	21.35	0	
5	0	2	0	G	0	31.6	29.4	21.25	31.5	0	
6	0	2	0	0	0	18.35	18.95	12.75	16.25	0	
7	1	1	1	8	0	31	35.45	20.2	26.4	0	
8	1	1	1	8	0	29.85	31.95	21.8	25.7	0	
9	1	1	0	0	0	26.9	23.8	15	24.65	0	
10	1	1	0	0	0	30.2	26.75	17.8	26.4	0	
11	1	0	2	14	0	17.15	16.6	10.55	15.3	0	
12	1	0	2	16	1	15.9	12.9	10.2	13.45	0	
13											
14											

PCA – Goals

N=n+1

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$(x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \rightarrow (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \rightarrow (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)})$$

$$(x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)})$$

PCA – Goals

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$\begin{aligned} & (x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \to (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ & (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \to (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \\ & \cdots \\ & (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)}) \end{aligned}$$

The vector $(z_i^{(0)}, z_i^{(1)}, ..., z_i^{(n)})$

is called the *i*-th **principal component** (of the data set)

PCA – Goals

Given a data set X of N data point of D variables
 → convert to data set Z of N data points of d variables

$$\begin{aligned} & (x_1^{(0)}, x_2^{(0)}, \dots, x_D^{(0)}) \to (z_1^{(0)}, z_2^{(0)}, \dots, z_d^{(0)}) \\ & (x_1^{(1)}, x_2^{(1)}, \dots, x_D^{(1)}) \to (z_1^{(1)}, z_2^{(1)}, \dots, z_d^{(1)}) \\ & \cdots \\ & (x_1^{(n)}, x_2^{(n)}, \dots, x_D^{(n)}) \to (z_1^{(n)}, z_2^{(n)}, \dots, z_d^{(n)}) \end{aligned}$$

The vector $(z_i^{(0)}, z_i^{(1)}, ..., z_i^{(n)})$

is called the *i*-th **principal component** (of the data set)

PCA performs a linear transformation:
 → variables z_i are linear combinations of x₁,...,x_n

PCA Goals – 2

- Of course many possible transformations possible...
 - Reducing the number of variables: loss of information
 - PCA makes this loss minimal
- PCA is very useful
 - Exploratory analysis of the data
 - Visualization of high-D data
 - Data preprocessing
 - Data compression

- How would you summarize this data using 1 dimension?

(what variable contains the most information?)

How would you summarize this data using 1 dimension?

(what variable contains the most information?)

- How would you summarize this data using 1 dimension?

(what variable contains the most information?)

(what variable contains the most information?)

Reconstruction based on x₂ → only need to remember mean of x₁

- PCA so far...
 - find the direction u of highest variance
 - project data on $u \rightarrow z_1$ the **first** principle component (PC)

- Next...
 - find more directions of high variance
 - \rightarrow *u* is *u*⁽¹⁾, the direction of the first PC
 - \rightarrow find $u^{(2)}, u^{(3)}, \dots, u^{(D)}$
 - (the directions of the other PCs)

More Principle Components

Given this data, what is u⁽¹⁾?
 (i.e., the direction of the first PC)

More Principle Components

- *u*⁽¹⁾ explains the most variance
- What is u^{(2)?}
 (the direction of the 2nd PC) ?

More Principle Components

- u⁽²⁾ is the direction with most 'remaining' variance
 - orthogonal to $u^{(1)}$!
- Data is 2D, so can find only two directions
- Each point x^(k) can be converted to z^(k)

 $(x_1^{(k)}, x_2^{(k)}) \Leftrightarrow (z_1^{(k)}, z_2^{(k)})$

 $z_i^{(k)} = (u^{(i)}, x^{(k)})$

Floating Point Numbers

How are number represented?

Matlab represents numbers using a floating point representation

How are number represented?

Matlab represents numbers using a floating point representation

Spacing between numbers

• Spacing for the largest numbers $(0.000...001) \cdot 2^{1024}$ $(0.000...010) \cdot 2^{1024}$ $diff = (0.000...001) \cdot 2^{1024} = 1 \cdot 2^{(1024-53)} = 1.9958e+292$

- Spacing for smallest numbers 4.9407e-324
- "eps(n)" gives spacing around n
 - eps(realmax), eps(0)

Round Off Errors

- set of floating point numbers F
- when real number x is replaced by number fl(x) in F
 → round off error
- Absolute error can be large: 0.5 *eps(realmax)
- However: *relative error* is bounded
 where \eps(1)=2.2204e-16

