
PRA1004 Scientific Computing 2013

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Lab Assignments Week 4

Overview Lab 4

In this week’s lab, we will cover the following topics:

• Some more useful Matlab functions.

• Inner products and matrix products.

• Numerical (and symbolical) methods for differentiation and integration.

The topics are grouped in 5 sections. The time I expect a section to take is also indicated. I would
appreciate it if you can let me know if my estimate is way off.

Finally, this week there will be no hand-in assignment.

1 Some more useful Matlab functions: min, max, etc (30mins)

Here we will introduce a number of functions, such as min, max, etc. that you will end up using very
frequently when working with Matlab.

We start with min and max. Try to execute the following command:

• X = [7, 8, 6, 9]

• min(X)

• A = [11,5;4,51;12,7]

• min(A)

Clearly, the first command returns the minimum (also try max), for a matrix, however, you see that the
behavior is a bit different.

• what does it do exactly?

• how can you get the single maximum element from a matrix?

In many cases, it is also useful to be able to find the index of the minimal/maximal element, this can be
done using

• [m,index] = min(X)

• [m,index] = max(X)

• A = [11,5;4,51;12,7]

• [m,index]=min(A)

Another function that you will definitely need to know about in order to find the row and column indices
of some elements is find. In particular, find will return to you the indices of all the elements of a vector
or matrix that are non-zero. This is very useful in combination with ‘boolean operators’ such as < (less
than), == (equals), and >= (greater or equal than). For instance try:

1



• inches = [0:5:50]

cm = inches * 2.54

table = [inches’, cm’]find(table(:,2)<50)
(to understand what is going on, also look what table(:,2)<50 gives you!)

By default, the indices returned by find are linear indices. That is, the indices you get when first
counting all the elements of the first column, then continuing counting in the second column etc. To
understand what this means, try:

• table<20
lin indices = find(table<20)

Linear indices can be very convenient, since you can use them to easily extract the corresponding elements
from your matrix:

• table(lin indices)

In many cases, however, you want to know the row and column indices of the entries. that can be done
by asking for two output arguments:

• [row, col] = find(table<20)

Now try to combine some of these commands:

• Generate a random 70x70 matrix, find the maximum element as well as its row and column index.

Some other useful functions that you should know about are sum and cumsum (and similarly prod and
cumprod)

• X = [1:4]

• sum(X)

• cumsum(X)

and mean (and also median)

• A = reshape(1:6, 2, 3)

• R = rand(10,5)

• m = mean(R)

Another convenient function is round, which rounds numbers to the nearest integer. E.g.:

• X = [7.2, 8.5, 6.1, 9.9]

• round(X)

Try using round:

• Compute a 3,4 matrix with random integers between 0, 42. Use round.

Practice more:

• Ch.3 ex. 2,4,5, 8–10

2



calories fat(g) Calcium(mg) Vitamin C(mg)

banana 200 0.7 11.3 19.6
slice of bread 68.9 1.1 26.8 0
cup of milk 149 8.4 246 2.2

apple 65 0.2 7.5 5.7

Table 1: Nutrition in food items.

2 Inner Products (30 mins)

The ‘inner product’, also called ‘dot product’ is a particular way of multiplying the elements of two
vectors, and then adding them up. In particular, if we have two vector 〈1, 2, 3〉 and 〈4, 5, 6〉, their inner
product is:

1 · 4 + 2 · 5 + 3 · 6 = 32

Expressed in formulas, the inner product of two vectors a = 〈a1, a2, . . . , an〉, b = 〈b1, b2, . . . , bn〉 is

dot(a, b) =

n∑
i=1

aibi.

This simply means multiply the corresponding elements of the vectors, and then add everything up.
While inner products seem strange at first, they are in fact very convenient. For instance, we can

use them to easily compute the amount of calories in our lunch. The number of calories in certain lunch
foods are shown in Table 1.

• Store the number of calories for the various items in a row vector called calories. Use the same
ordering as in the table.

• Create another row vector, lunch, that specifies the amount of each item that you think is appro-
priate for a big lunch. E.g., 1 banana, 4 slices of bread, 1 cup of milk and 2 apples.

• Now we can easily compute the number of calories using lunch cals = dot(calories, lunch).

Similar computations can be used for many things. For instance, to perform similar operations on the
other nutrition columns, but also to compute the weight of a collection of items (e.g., to compute the
mass of a spacecraft – Example 6.1 in the book Etter [2011]).

• Do Ch. 6, ex. 1,2.

As said, similar computation can be used for the other listed nutrients. In fact, by using vector-matrix
multiplication, we can compute all of them at the same time. If we have a k×n matrix A, and a n× 1
(i.e., column) vector b, their product is written as

Ab =


a11 a12 . . . a1n

a21
. . .

...
...

. . .
...

ak1 akn

 ∗


b1
b2
...
...
bn

 =


c1
c2
...
ck

 (1)

the result, a column vector c, has as its entries different inner products. Let us write rAi for the i-th row
of matrix A. Then

ci = dot(rAi , b),

that is, the i-th entry of c is the inner product between the i-th row of A and b. This means that we can
compute several inner products at the same time, as we will now demonstrate.

3



• Create a matrix, say nuts, containing the all the (data) columns from Table 1.

• Create a variable, say nuts T, that contains the transpose of nuts.

• Transform lunch to a column vector.

• Compute the total amount of nutritions in lunch using: lunch nuts = nuts T*lunch.

The result should be a (column) vector of which the first entry are the number of calories in the lunch,
the second entry denotes the amount of fat, etc.

• Notice what is going on: the first entry is the inner product between lunch, and what part of
matrix lunch T?

The inner product of two vectors is frequently denoted as a special case of matrix. E.g., when a, b are
column vectors, we have that

dot(a, b) = [a1, a2, . . . , an] ∗


b1
b2
...
bn

 = aT ∗ b (2)

(where T denotes the the transpose). This is also simply written as aT b. Note that this is just a special
case of equation (2).

• Define a row vector a and column vector b and multiply them: a*b. Does it match the inner
product?

• What happens when you reverse the arguments? (I.e., when you type b*a)? In order to fully
understand what is going on, you will need to understand matrix-matrix products. . .

3 Matrix Products (1h)

This section introduces the general matrix product. Let A be a m × k matrix, and B a k × n matrix.
That is, the number of columns of A is the number of rows of B is k. The result of matrix multiplication
is a m× n matrix C:

AB =


a11 a12 . . . a1k

a21
. . .

...
...

. . .
...

am1 amk



b11 b12 . . . b1n

b21
. . .

...
...

. . .
...

bk1 bkn

 =


c11 c12 . . . c1n

c21
. . .

...
...

. . .
...

cm1 cmn

 (3)

where cij = dot(rowA
i , col

B
j ).

As you can tell, matrix multiplication requires quite a few multiplications (m · k ·n of them, although
more efficient methods do exist). Fortunately, we don’t have to do them by hand; they are easy to do in
Matlab. For instance try the following example:

• A=reshape(1:6, 2,3)

B=A’*10

C=A*B

• Make sure to verify the result to see that it makes sense.

While matrix multiplication may seem like a very abstract and strange operation at first, it is actually
used very frequently in all areas of science. To illustrate this, we will consider an example dealing with
populations of trees, adopted from [Allman and Rhodes, 2003].

In this example, there are two types of trees type 1 (a) and type 2 (b). T1 trees live longer than T2
trees: every year 1% of the T1 trees dies, while 5% of the T2 trees die. To make up for that, the T2 trees

4



grow faster. This also means that they are more likely to occupy a vacant spot left by a dead tree: 75%
of the spots that become available go to T2 trees. Therefore, the number of trees in a next year can be
expressed as

vacant spotst = 0.01 · at + 0.05 · bt,

at+1 = 0.99 · at + 0.25 · vacant spotst, (4)

bt+1 = 0.95 · bt + 0.75 · vacant spotst. (5)

• Simplify the above expressions to the following form:

at+1 = c11 · at + c12 · bt (6)

bt+1 = c21 · at + c22 · bt (7)

(so find what are the numbers c11–c22. To do this, first substitute in vacant spotst in equations
(4) and (5)).

Now note that the numbers c11–c22 can be put in a matrix, such that we can describe the next year’s
population xt+1 = [at+1, bt+1]T using a matrix-vector product:

xt+1 =

[
at+1

bt+1

]
=

[
c11 c12
c21 c22

] [
at
bt

]
= Cxt (8)

• Define the matrix C in Matlab.

• Define the vector of initial populations: x0=[10;990].

• Simulate the evolution for a number of years using (8). (Note, you can ‘simulate’ what happens by
repeatedly typing: C * ans, where ans contains the value of the previous prediction.)

• For what year will we get the predicted result if we do C · C · C · x0?

While we can investigate the growth for a few iterations in this way, it is difficult to predict what will
happen over 100s of years. To be able to still do this, we will exploit the ‘associative’ property of matrix
multiplication: A(BC) = (AB)C.

• Verify associativity by checking whether C(C*x0) is the same as (C*C)*x0.

In Matlab we can use the power symbol (ˆ) to take the power of a matrix:

• Compute C · C in Matlab by raising the matrix to the power 2.

• Also compute C · C · C · C · C. Verify your result.

Given these results, you can easily compute the population after, say, 150 years by first raising C to the
power 150 and then multiplying by x0.

• Compute the populations at 1, 5, 25, 100, 200, and 1000 years.

• Plot the graphs.

4 Numerical Differentiation (1.5h)

Here we investigate methods for numerical differentiation in Matlab. First we consider on a more abstract
level some different approaches to numerical differentiation, and cover how this is done in Matlab. Next,
we will use these to determine the acceleration of a rocket, making use of just altitude data.

5



4.1 Forward, Backward, and Centered Finite Difference

As you know, there are three simple approaches to numerical differentiation: using the formula for
Forward, Backward, and Centered Finite Difference:

forward: f ′(x) ≈ f(x+ h)− f(x)

h

backward: f ′(x) ≈ f(x)− f(x− h)

h

centered: f ′(x) ≈ f(x+ h)− f(x− h)

2h

Here we will explore these methods. In particular, Matlab offers the function diff to compute
differences between adjacent vector entries. E.g., try

• diff([1:5].^2)

Essentially this function provided the basis for all the above approximations of the derivative: the only
thing that it does not take care of is normalizing for the step length. We will demonstrate this for the
function f(x) = x3 + 2x2.

• Specify Xrange=[-2:0.025:0.5] and plot the function f over this range.

Now we will try and approximate the derivative of f .

• Open numdiff.m.

The file consists of 3 main parts: the first computes the differences using diff, the second plots the
estimated derivatives, and the third plots the estimated derivative together with the original function.
Various parts in the script are not completed (marked by ‘TODO’), you will need to complete these parts
to make the script work.

Let’s start by looking at the first part:

• Notice how the forward and backward differences are given by the same formula! (But also notice
what is the difference!)

• Compute cent diffs. Hint: the centered difference is the average of the forward and backwards
difference.

• Note that, in order to convert to actual estimations of the derivative, we first need to divide by the
step size (dX).

Now you should be able to plot the estimates of the derivatives.

• Additionally plot the true derivative of f . Use a thicker line to discriminate from the estimated
values.

• Which of the estimates is the better one?

Finally, we want to plot the estimated derivatives together with the original function. For this, we use
the function quiver, which can be used to plot vector fields. It takes four arguments: the locations of the
arrows (X and Y) and the sizes of them (again X and Y).

• Look at the generated plot: the forward estimation seems to coincide with the function. Why is
this?

• Fix the plot such that it better reflects the reality by plotting the function f with a higher resolution
(as in the beginning of this assignment.)

6



4.2 Acceleration of a Rocket

In this assignment, you will apply your knowledge about computing derivatives numerically on data of a
rocket flight. (Adopted from Etter [2011], ch. 8. ex. 12–14)

• load the rocket data: rocketData.m, and investigate it.

The first column contains the time (in seconds since launch), while the second column contains the
altitude.

• What is ∆t the difference between time points?

To goal is to create a script that plots the altitude, velocity and acceleration of the rocket in three ‘sub
plots’ by using the subplot function.

• Have a look at the documentation of subplot. Also, you can use the following script (in the lab kit
as rocket.m) as a template:

load rocket;

Data deltaT = TODO;

figure(1)

clf;

%plot the altitude

subplot(3,1,1);

Ts = TODO

rocketAlt = TODO

plot(Ts, rocketAlt);

%plot the velocity

subplot(3,1,2);

TODO

%plot the acceleration

subplot(3,1,3);

TODO

5 Numerical Integration (1h)

The height of a population of people can be modeled as a bell-curve called Gaussian, or normal distri-
bution. See, Figure 1 for an illustration. In particular it expresses the ‘probability density’ of height h.
The formula is

p(h) =
1

σ
√

2π
e−

1
2 (h−µσ )

2

(9)

where

• h is the height for which we want to know the probability density.

• µ is the mean height (use 180).

• σ is the standard deviation (use 10).

Now, given this model, we can find the probability P that a randomly drawn person has height
h ∈ (190, 210) (or some other range) by taking the integral:

P =

ˆ 210

190

p(h)dh.

7



160 180 200 220 240

0.01

0.02

0.03

0.04

Figure 1: Used model of probability distribution of heights.

In this assignment, we will compute this probability numerically by using the quad functions in
Matlab. In order to do this, we will need to define a user-defined function HeightProb(h) that will
return p(h) for each value of h.

• To do this, open up a new .m file and call it HeightProb.m. In it type:

function p = HeightProb(h)

%Helper function that returns the probability density at height h

mu = 180;

sigma = 10;

p = TODO;

return;

– Note that it is important that the file name (HeightProb.m) and the function name (HeightProb)
match!

– Also note that it is important to realize that the input argument h should be allowed to be
a vector (the function quad that we will use below will give vectors as arguments to this
function). Therefore, make sure that you use element-wise operators to transform h into the
corresponding densities p.

• Finish the implementation by replacing ’TODO’ by the definition of (9).

• Verify your implementation by recreating the plot of Figure 1. To apply your own formula to some
vector of heights, heights, you can use the command
probs=arrayfun(@HeightProb, heights)

next you can plot the heights versus the probs.

Now that we have defined the function, we can easily perform numerical integration using

• quad(’HeightProb’, 190, 210)

• What is the probability? Does is seem to be a reasonable estimate?

You should now that even when an integral seems very difficult, Mathematica is often able to find a
solution for it. That is, when faced with an integral, Mathematica is probably the first thing you want
to try out. Let us try to do this for this problem

8



• Check in Mathematica what the ‘closed-form’ solution is.
Some pointers:

– in Mathematica, all build in functions start with capital letters.

– functions use square brackets.

– use p[h ] = (1/(sigma*Sqrt[2*Pi]))*Exp[...] to define the function p(h).

– use Integrate[p[h], h] to find the indefinite integral.

• Also find in Mathematica the numerical approximation.

1. use Integrate[p[h], {h,190,210}] to find the definite integral.

2. use N[...] to find a numerical evaluation.

References

Elizabeth S. Allman and John A. Rhodes. Mathematical Models in Biology: An Introduction. Cambridge
University Press, 2003.

Delores .M. Etter. Introduction to Matlab. Pearson Education, second edition, 2011. ISBN 978-0-13-
217065-9.

9


	Some more useful Matlab functions: min, max, etc (30mins)
	Inner Products (30 mins)
	Matrix Products (1h)
	Numerical Differentiation (1.5h)
	Forward, Backward, and Centered Finite Difference 
	Acceleration of a Rocket 

	Numerical Integration (1h)

