

Scientific Computing
Maastricht Science Program

Week 5

Frans Oliehoek
<frans.oliehoek@maastrichtuniversity.nl>

Conditions: If

 Sometimes you want to do things only is some cases.
 Called 'branching' and is a very important capability.

% longest_side.m
% ---------
% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

% assume y is longest side:
longest_side = length_y;

if length_x > length_y
 longest_side = length_x;
end

disp(longest_side);

If...else...

 The previous way of writing is not the most intuitive...
 the default assumption is awkward
 use “else”

% longest_side_else.m
% ---------
% this script determines the longest
% side of a rectangle. It expects 2
% variables 'length_x' and 'length_y'
% to be defined.

if length_x > length_y
 longest_side = length_x;
else
 longest_side = length_y;
end
disp(longest_side);

If...elseif...else...

 More generally, we test multiple conditions

if CONDITION1
 …
elseif CONDITION2
 …
elseif CONDITION3
 …
else
 …
end

Conditions

 So exactly what are the CONDITIONs?
 expressions that evaluate to `true' or 'false'
 'false' defined as '0'
 'true' is any non-zero value

 This code can be used to test any truth value
expression.

truthvalue = 0
if truthvalue
 disp('true')
else
 disp('false')
end

Conditions - 2

 Can make more complex expressions by 'operators'

Relational operators:
● A < B,
● A > B
● A <= B
● A >= B
● A == B
● A ~= B

Logical operators:
● ~A
● A | B,
● A & B

'short-circuit'
● A || B
● A && B

octave> ~1
ans = 0
octave> 1 & 0
ans = 0
octave> -1 | 0
ans = 1
octave> 0 | 0
ans = 0

Do it again: loops

 Another important capability: repeating instructions.
 i.e., performing 'loops'.

 Matlab has 2 types of loops:
 'for' when you know how often you need to loop

in advance.
 'while' when you don't, but only have a stopping

criteria.

For loop

 For loops: used when you know how often you need to
loop.

%count to 10
for i = [1:10]

disp(i)
end

%count down:
start = 10
for i = [start:1]

disp(i)
end

For loop

 For loops: used when you know how often you need to
loop.

 (almost) everything in matlab is an array or matrix!

%count to 10
for i = [1:10]

disp(i)
end

%count down:
start = 10
for i = [start:1]

disp(i)
end

octave:12> [1:10]
ans =

 1 2 3 4 5 6 7 8 9 10

While loop

 Sometimes it is hard to know how often we loop

→ use 'while'

% strange count down
n = 14209

i = 1;
while(n > 1)
 disp(i)
 if n % 2 == 0
 n = n / 2
 else
 n = n + 1
 end
 i = i + 1;
end

While loop

 Sometimes it is hard to know how often we loop

→ use 'while'

% strange count down
n = 14209

i = 1;
while(n > 1)
 disp(i)
 if n % 2 == 0
 n = n / 2
 else
 n = n + 1
 end
 i = i + 1;
end

n = 14209
 1

n = 14210
 2

n = 7105
 3

n = 7106
 4

n = 3553
 5

n = 3554
 6

n = 1777
 7

n = 1778
 8

n = 889
 9

n = 890
 10

n = 445
 11

n = 446
 12

n = 223
 13

n = 224
 14

n = 112
 15

n = 56
 16

n = 28
 17

n = 14
 18

n = 7
 19

n = 8
 20

n = 4
 21

n = 2
 22

n = 1

Reusing code

 A very important concept: code reuse
 All these scripts are nice, but...

 writing scripts for complex tasks is a lot of work.
 often there is functionality we want to reuse!

 This is where 'functions' come in...
 a piece of code that performs a specific task
 has input and output.

Using Matlab/Octace Functions

 Matlab has many built in functions.
 We already saw a few: 'mod', 'sqrt'

 Calling a function: FUNCTIONNAME(…, …, ...)
 'mod(3,2)'
 'pi()' or just 'pi'
 [m, index] = max([4, 2, 6, 3])

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'FunctionName.m'

function output = FunctionName(input1, input2)

…
…
output = …

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'FunctionName.m'

function output = FunctionName(input1, input2)

…
…
output = …

Make sure to assign the
output variable!

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'LongestSide.m'
 Capitalization of 'LongestSide' is a convention

 (no rule)

function longest = LongestSide(length_x, length_y)

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'LongestSide.m'
 Capitalization of 'LongestSide' is a convention

 (no rule)

function longest = LongestSide(length_x, length_y)

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

Writing your own Functions

 You can write your own function very simply

 Need to name the file 'LongestSide.m'
 Capitalization of 'LongestSide' is a convention

 (no rule)

function longest = LongestSide(length_x, length_y)

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

octave:33> LongestSide(3, 5)
ans = 5

Writing your own Functions

 Document your functions!

 For yourself and others.

function longest = LongestSide(length_x, length_y)
%function longest = LongestSide(length_x, length_y)
%
% this is a special comment block: it is shown when
% calling 'help LongestSide'

if length_x > length_y
 longest = length_x;
else
 longest = length_y;
end

Recap Programming

 Congrats: Now you know the most important
constructs of programming!

 Let's summarize:
 → Advanced calculator
 Variables: names for intermediate parts of computation.
 Arithmetic operators
 Scripts
 Branching: if … else …, conditions
 Loops: for, while
 Functions

 ← programming.

A First Bit of Scientific Programming

 Now that you know the most important constructs of
programming...

...we can implement many of the things you saw!

 This lab: a scientific programming problem:

Solving non-linear equations

What are (non-)linear equations?

 linear equations?

What are (non-)linear equations?

 linear equations

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

y

x

Straight line
(for 2 variables)

What are (non-)linear equations?

 linear equations

 non-linear equations?

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

What are (non-)linear equations?

 linear equations

 non-linear equations:

All equations that are not linear!

x−3y=4+z

3 x+7 y=4

(x−3y)/ z=2

'General Form'

a0+a1 x1+a2 x2+...=0

x2
=4

xy=2

y=√x

Finding the 'roots'

 Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

 What is ln 6 ?

Finding the 'roots'

 Many problems can be reformulated as finding the
'roots' or 'zeros' of a function.

 What is ln 6 ? y

x

-5
-6

ln 6

e x
=6

ex
−6=0

Numerical Algorithms

 To solve this problem we will now discuss our first
numerical method, or numerical algorithm.

 Roughly:
 algorithm = cook-book recipe
 an algorithm can be implemented

(converted to code in a programming language).

The Bisection Method

 Suppose we want to find the roots of this function?

y

x

The Bisection Method

 Search the interval [a,b] for the crossing point!

y

x

a b

The Bisection Method

 Halve the interval

 Then select the interval where the crossing occurs

y

x

a b

The Bisection Method

 Repeat, until the interval is small enough

y

x

ba

The Bisection Method

 Repeat, until the interval is small enough

y

x

a b

The Bisection Method

 Repeat, until the interval is small enough

y

x

ba

The Bisection Method

 Repeat, until the interval is small enough

y

x

a b

The Bisection Method

 Conditions to apply the Bisection Method:
 f is continuous
 interval [a,b]

 f(a) is positive and f(b) is negative or vice versa

→ contains an a zero
('theorem of zeros of continuous functions')

 check with f(a)f(b) < 0

 To find a good initial interval: e.g., plot the function

The Bisection Method

 Pros
 Simple conceptually
 Only need information of sign of the function

 Works in many settings

 Cons
 Even needs many iterations on a linear function!

Newton's Method

 Newton's method is a different approach
 overcomes some problems (but has its own)

y

x

Newton's Method

 Start with an arbitrary point.

y

xx(0)

Newton's Method

 Compute next point via the derivative f'

y

xx(0)

x(1)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

x(3)

Newton's Method

 etc.

y

xx(0)

x(1)

x(2)

x(3)

x(4)

Newton's Method

 until difference with previous point small enough.

y

xx(0)

x(1)

x(2)

x(3)

x(4)x(5)

Newton's Method

 Algorithm:
 Start with an arbitrary point
 Compute the next point
 repeat while

x(0)

x(k+1)
=x(k)

−
f (x(k))

f ' (x(k)
)

∣x(k+1)−x(k)∣<ϵ

Newton's Method

 Pros
 From some point on, it is fast!

 converges 'quadratically'
 error of next error is square of previous one.

 Cons
 Need more information: function derivative
 Needs to be initialized sufficiently close to 0
 Problem when f ' (x(k))=0

