Decentralized POMDPs:

A Framework for Multiagent Planning under Uncertainty

Frans A. Oliehoek Maastricht University

Outline

- Multiagent Systems & Uncertainty
- The Dec-POMDP model
- Policies and their values

<break>

- Planning for Dec-POMDPs
 - backward: DP
 - forward: heuristic search

Multiagent Systems (MASs)

Why MASs?

- 1 intelligent agents \rightarrow soon there will be many...
- Physically distributed systems: centralized solutions expensive and brittle.
- Can potentially provide [Vlassis, 2007, Sycara, 1998]
 - Speedup and efficiency
 - Robustness and reliability ('graceful degradation')
 - Scalability and flexibility (adding additional agents)

Uncertainty

Outcome Uncertainty

Partial Observability

Multiagent Systems: uncertainty about others

Decentralized POMDPs

Single-Agent Decision Making

- Background: MDPs & POMDPs
- An MDP $\langle S, A, P_T, R, h \rangle$
 - S set of states
 - A set of actions
 - P_{τ} transition function
 - *R* reward function
 - *h* horizon (finite)
- A POMDP $\langle S, A, P_T, O, P_O, R, h \rangle$
 - O set of observations
 - P_o observation function

P(s'|s,a)R(s,a)

Example: Predator-Prey Domain

- Predator-Prey domain
 - 1 agent: predator
 - prey: part of environment
 - on a torus

- Formalization:
 - states
 - actions
 - transitions
 - rewards

Example: Predator-Prey Domain

- Predator-Prey domain
 - 1 agent: predator
 - prey: part of environment
 - on a torus

- Formalization:
 - states (-3)
 - actions
 - transitions
 - rewards

(-3,4)

- N,W,S,E
 - failing to move, prey moves
 - reward for capturing

Example: Predator-Prey Domain

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = 'nothing '

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

- Now: partial observability
 - E.g., limited range of sight
- MDP + observations
 - explicit observations
 - observation probabilities
 - noisy observations (detection probability)

o = (-1, 1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Now: partial observability

Partially Observable MDP (POMDP)

NIDP + observations
 explicit observations
 observation probabilities

detection probability

o=(-1,1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Now: partial observability

Partially Observable MDP (POMDP)

reduction → continuous state MDP
 (in which the belief is the state)

bservation probabilities

noisy observations detection probability o = (-1, 1)

Can not observe the state \rightarrow Need to maintain a belief over states b(s) \rightarrow Policy maps beliefs to actions $\pi(b)=a$

Ν

Now: partial observability

- Partially Observable MDP (POMDP)
- reduction → continuous state MDP
 (in which the belief is the state)
- Value iteration:
 - make use of α -vectors (\leftrightarrow complete policies)
 - perform pruning

Ν

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

- Now: multiple agents
 - fully observable

- Formalization:
 - states
 - actions
 - joint actions
 - transitions
 - rewards

((3,-4), (1,1), (-2,0)) [{N,W,S,E}

{(N,N,N), (N,N,W),...,(E,E,E)}

probability of failing to move, prey moves reward for capturing jointly

Now: multiple agents

Multiagent MDP [Boutilier 1996] • Differences with MDP • *n* agents • joint actions $a = \langle a_1, a_2, ..., a_n \rangle$ • transitions and rewards depend on joint actions • Solution: • Treat as normal MDP with 1 'puppeteer agent' • Optimal policy $\pi(s) = a$

• Every agent executes its part

rewards reward for capturing jointly

Fo

es

Now: multiple agents

Now: multiple agents

Decentralized POMDPs

- Now both...
 - partial observability
 - multiple agents

- Now both...
 - partial observability
 - multiple agents
- Decentralized POMDPs (Dec-POMDPs) [Bernstein et al. 2002]

- both
 - joint actions and
 - joint observations

Again we can make a reduction...

any idea?

- Again we can make a reduction...
 Dec-POMDPs → MPOMDP
 (multiagent POMDP)
- 'puppeteer agent'
 - receives joint observations
 - takes joint actions
- requires broadcasting observations!
 - instantaneous, cost-free, noise-free communication → optimal [Pynadath and Tambe 2002]
 - Without such communication: no easy reduction.

The Dec-POMDP Model

Acting Based On Local Observations

- MPOMDP: Act on global information
- Can be impractical:
 - communication not possible
 - significant cost (e.g battery power)
 - not instantaneous or noise free
 - scales poorly with number of agents!

- Alternative: act based only on local observations
 - Other side of the spectrum: no communication at all
 - (Also other intermediate approaches: delayed communication, stochastic delays)

Formal Model

- A Dec-POMDP
 - $\langle S, A, P_T, O, P_O, R, h \rangle$
 - n agents
 - S set of states
 - A set of joint actions
 - P_{τ} transition function
 - O set of **joint** observations
 - P_o observation function
 - R reward function
 - *h* horizon (finite)

$$a = \langle a_{1,} a_{2,} \dots, a_{n} \rangle$$
$$P(s'|s,a)$$

$$o = \langle o_1, o_2, \dots, o_n \rangle$$
$$P(o|a, s')$$
$$R(s, a)$$

2 generals problem

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Transitions

- Both Observe \rightarrow no state change
- At least 1 Attack \rightarrow reset (50% probability s₁, s₅)

Observations

- Probability of correct observation: 0.85
- E.g., P(<L, L> | s_L) = 0.85 * 0.85 = 0.7225
- (reset is not observed!)

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

Rewards

- 1 general attacks: he loses the battle
 - R(*, < A, O >) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - R(s, <A,A>) = -20
 - R(s_s,<A,A>) = +5

2 generals problem

 $S - \{ s_L, s_S \}$ $A_i - \{ (O)bserve, (A)ttack \}$ $O_i - \{ (L)arge, (S)mall \}$

suppose h=3, what do you think is optimal in this problem?

Rewards

- 1 general attacks: he loses the battle
 - R(*, < A, O >) = -10
- Both generals Observe: small cost
 R(*,<0,O>) = -1
- Both Attack: depends on state
 - R(s, <A,A>) = -20
 - R(s_R,<A,A>) = +5

Related Frameworks

- Partially observable stochastic games [Hansen et al. 2004]
 - Non-identical payoff
- Interactive POMDPs [Gmytrasiewicz & Doshi 2005, JAIR]
 - Subjective view of MAS
- Imperfect information extensive form games
 - Represented by game tree
 - E.g., poker [Sandholm 2010, Al Magazine]

Rest of lecture: **planning** for Dec-POMDPs...

Off-line / On-line phases

off-line planning, on-line execution is decentralized

(Smart generals make a plan in advance!)

Decentralized POMDPs

Policies and their Values

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - in MDP/POMDP: more compact representations...
- Now, this is difficult: no such representation known!
 → So we will be stuck with histories

Policy Domain

- What do policies look like?
 - In general histories \rightarrow actions
 - in MDP/POMDP: more compact representations...
- Now, this is difficult: no such representation known!

 \rightarrow So we will be stuck with histories

$$(a_i^{0,}o_i^{1,}a_i^{1},\ldots,a_i^{t-1},o_i^{t})$$

But: can restrict to deterministic policies \rightarrow only need OHs:

$$\vec{o}_i = (o_i^{1, \dots, o_i^t})$$

No Compact Representation?

- Joint Belief, b(s) (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem:

?
No Compact Representation?

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution

Goal of Planning

- Find the **optimal** joint policy $\pi^* = \langle \pi_1, \pi_2 \rangle$
 - where individual policies map OHs to actions $\pi_i: \vec{O}_i \rightarrow A_i$
- What is the optimal one?
 - Define value as the expected sum of rewards:

$$V(\pi) = \boldsymbol{E}\left[\sum_{t=0}^{h-1} R(s,a) \mid \pi, b^0\right]$$

 optimal joint policy is one with maximal value (can be more that achieve this)

Goal of Planning

Goal of Planning

Coordination vs. Exploitation of Local Information

Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations → 'open loop plan'
 - E.g., "ATTACK on 2nd time step"
 - + maximally predictable
 - low quality
- Ignore coordination \rightarrow 'MPOMDP plan'
 - E.g., 'individual belief' $b_i(s)$ and execute the MPOMDP policy
 - + uses local information
 - likely to result in mis-coordination

• Optimal policy π^* should balance between these!

Value of a Joint Policy

- Given a particular joint policy π=q^{τ=h}
 → Just a (complex) Markov Chain
- Value:

$$V(\vec{\theta}, q^{\tau=k}) = R(\vec{\theta}, a) + \sum_{o} P(o|\vec{\theta}, a) V(\vec{\theta}', q^{\tau=k-1})$$

Optimal Value Functions – 1

- Optimal value functions are difficult!
- Consider selecting the best joint sub-tree policy q⁷

- We can compute value...
 - ...but cannot select the maximizing q^{τ} independently!

Optimal Value Functions – 2

- Cannot select the maximizing q^r independently...
 - \rightarrow Need to reason over assignment for all AOHs of a stage *t* simultaneously!

• Value stage t
$$\sum_{\theta} P(\theta | b^{0, \varphi}) V(\theta, q^{\tau = h - t}) = \sum_{\langle \theta_{1}, \theta_{2} \rangle} P(\langle \theta_{1}, \theta_{2} \rangle | b^{0, \varphi}) V(\langle \theta_{1}, \theta_{2} \rangle, \langle q_{1}, q_{2} \rangle)$$

• Find mappings $\Gamma_{1,}\Gamma_{2}$ (from AOHs \rightarrow sub-tree policies) that maximize $\sum_{\langle \theta_{1}, \theta_{2} \rangle} P(\langle \theta_{1,} \theta_{2} \rangle | b^{0,} \varphi) V(\langle \theta_{1,} \theta_{2} \rangle, \langle \Gamma_{1}(\theta_{1}), \Gamma_{2}(\theta_{2}) \rangle)$

dependence on history

dependence on future

Decentralized POMDPs

Planning Methods

Brute Force Search

- We can compute the value of a joint policy $V(\pi)$
- So the stupidest algorithm is:
 - compute $V(\pi)$, for all π
 - select a π with maximum value
- Number of joint policies is huge! (doubly exponential in horizon h)
- Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

• We can compute the value of a joint policy $V(\pi)$

No easy way out...

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required.

(doubly exponential in nonzon n)

Clearly intractable...

h	num. joint policies
1	4
2	64
3	16384
4	1.0737e+09
5	4.6117e+18
6	8.5071e+37
7	2.8948e+76
8	3.3520e+153

Brute Force Search

• We can compute the value of a joint policy $V(\pi)$

No easy way	out
-------------	-----

The problem is **NEXP-complete** [Bernstein et al. 2002]

most likely (assuming EXP != NEXP) doubly exponential time required.

(doubly exponential in horizon n)

hnum. joint policies1426431638441.0737e+0954.6117e+1868.5071e+3772.8948e+76

Clearly Still, there are better algorithms that work better for at least some problems...

• Useful to gain understanding about problem.

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}
 - construct all 2-stages-to-go policies Q^{r=2}, etc.

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

Dynamic Programming – 1 Generate all policies in a special way: from 1 stage-to-go policies Q^{r=1} a new $q^{\tau+\tau}$ **Exhaustive backup operation** t a_i S *t* = Q_i^{τ} tMar 18, 2011

- Generate all policies in a special way:
 - from 1 stage-to-go policies Q^{r=1}

(obviously) this scales very poorly...

(obviously) this scales very poorly...

(obviously) this scales very poorly...

$Q_1^{\tau=3}$

ፊኤ ፊኤ

$Q_2^{\tau=3}$

(obviously) this scales very poorly...

$Q_1^{ au=3}$	$Q_2^{ au=3}$		
&& & & & & & & & & & & & & & & & & & &	&& && && && && && && && && && && && &&		
6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	68868686868 6 6 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1	num. indiv. policies	
	8888 1	2	
	666 668 668 2	8	
This does not get us anywher	e! န <u>န္နန္နန္ 3</u>	128	
	- 335-338 <mark>388 38</mark> 4	32768	
DUL	6 6 6 6 7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2.1475e+09	
	6 6 8 8 8 8 8 8 8	9.2234e+18	
ቆቆ	ቆቆ ቆ ቆቆ ቆቆ ቆቆ <mark>7</mark>	1.7014e+38	
ቆ፟፟፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟	ቆ፝፞፞፞ & & & & & & & & & & & & & & & & & &	5.7896e+76	
ቆ፟፟፟፟፟፟፟፟፟፟፟ አ፟፟፟፟፟፟፟፟፟፟ አ፟፟፝ አ፟፟፝ አ፟፟፝	ቆ፟፟፟፟፟፟፟፟፟፟ ቆ፟፟፟፟፟፟፟፟፟፟	ል ቆቆ ቆቆ	

 $Q_i^{\tau=1} = A_i$

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

```
Initialize Q1(1), Q2(1)
for tau=2 to h
   Q1(tau) = ExhaustiveBackup(Q1(tau-1))
   Q2(tau) = ExhaustiveBackup(Q2(tau-1))
   Prune(Q1,Q2,tau)
end
```

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

```
Initialize Q1(1), Q2(1)
for tau=2 to h
Q1(tau) = ExhaustiveBackup(Q1(tau-1))
Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2,tau)
end
Note: cannot prune independently!
• usefulness of a q_1 depends on Q_2
• and vice versa
\rightarrow Iterated elimination of policies
```

 $Q_i^{\tau=1} = A_i$

 $Q_i^{\tau=1} = A_i$

- Perhaps not all those Q_i^{τ} are useful!
 - Perform **pruning** of 'dominated policies'!
- Algorithm [Hansen et al. 2004]

Initialization

Exhaustive Backups gives

Pruning agent 1...

Hypothetical Pruning (not the result of actual pruning)

Pruning agent 2...

Pruning agent 1...

Exhaustive backups:

 $Q_1^{\tau=3}$

ፈዬ

We avoid generation of many policies!

 $Q_{2}^{\tau=3}$

*** ፈዬ

Exhaustive backups:

 $Q_{1}^{\tau=3}$

ፊት ፊት

 $Q_{2}^{\tau=3}$

ፈት ይ

Pruning agent 1...

 $Q_{1}^{\tau=3}$ $Q_{2}^{\tau=3}$ £\$\$ £\$\$£\$\$ £\$\$ £\$\$ **&**& & & *** \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$\$ **&**& & & && & & & & **ፈි**ኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፈିኤ ፚ፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟፟
Pruning agent 2...

Bottom-up vs. Top-down

- DP constructs bottom-up
- Alternatively try and construct top down
 - → leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]

Heuristic Search – Intro

- Core idea is the same as DP:
 - incrementally construct all (joint) policies
 - try to avoid work
- Differences
 - different starting point and increments
 - use heuristics (rather than pruning) to avoid work

- Incrementally construct all (joint) policies
 - 'forward in time'

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time'

1 partial joint policy

- Incrementally construct all (joint) policies
 - 'forward in time' 1 complete joint policy (full-length) S S Α S S S S (0) 0 Α Α Α 0 A A

Creating ALL joint policies → tree structure!

Root node: unspecified joint policy

Creating ALL joint policies → tree structure!

need to assign action to 8 OHs now: 2^8 = 256 children (for each node at level 2!)

t=2

- too big to create completely...
- Idea: use heuristics
 - avoid going down non-promising branches!

• Apply $A^* \rightarrow$ **Multiagent A*** [Szer et al. 2005]

Mar 18, 2013

F-Value of a node n

- F(n) is a optimistic estimate
- I.e., F(n) >= V(n') for any descendant n' of n
- F(n) = G(n) + H(n)

reward up to n (for first *t* stages) Optimistic estimate of reward below n (reward for stages t,t+1,...,h-1)

- For each node, compute F-value
- Select next node based on F-value
- More info: [Russel&Norvig 2003]

too big to create

Idea:

Apply

avd

nor

Main intuitior

- Use heuristics F(n) = G(n) + H(n)
- G(n) actual reward of reaching n

• a node at depth t specifies ϕ^t (i.e., actions for first t stages)

 \rightarrow can compute V(ϕ^t) over stages 0...t-1

- H(n) should overestimate!
 - pretend that it is an MDP, or POMDP: \hat{Q}_{MDP} , \hat{Q}_{POMDP}
 - compute

$$H(n) = H(\varphi^{t}) = \sum_{s} P(s|\varphi^{t}, b^{0}) \hat{Q}(s)$$

Further Developments

- DP
 - Improvements to exhaustive backup [Amato et al. 2009]
 - Compression of values (LPC) [Boularias & Chaib-draa 2008]
 - (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]
 - Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

- No backtracking: just most promising path [Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]
- Clustering of histories: reduce number of child nodes
 [Oliehoek et al. 2009]
- Incremental expansion: avoid expanding all child nodes [Spaan et al. 2011]
- MILP [Aras and Dutech 2010]

State of The Art

To get an impression...

- Optimal solutions
 - Improvements of MAA* lead to significant increases
 - but problem dependent

h	MILP	LPC	GMAA-ICE*
4	72	534.9	0.04
6		-	46.43*

dec-tiger – runtime (s)

h	MILP	LPC	GMAA-ICE*
5	25	_	<0.01
500	_	_	0.94*

broadcast channel runtime (s) * excluding heuristic

- Approximate (no quality guarantees)
 - MBDP: linear in horizon [Seuken & zilberstein 2007a]
 - Rollout sampling extension: up to 20 agents [Wu et al. 2010b]
 - Transfer planning: use smaller problems to solve large (structured) problems (up to 1000) agents [Oliehoek 2010]

Further Topics

- Infinite-horizon planning
- Communication:
 - implicit/explicit
 - delays
 - costs
- Structured Models
 - e.g., factored Dec-POMDPs
- Reinforcement learning

References can be found in

Frans A. Oliehoek. **Decentralized POMDPs**. In Wiering, Marco and van Otterlo, Martijn, editors, *Reinforcement Learning: State of the Art*, Adaptation, Learning, and Optimization, pp. 471–503, Springer Berlin Heidelberg, Berlin, Germany, 2012.

Some Further Topics

- Further topics
 - Communication
 - Infinite Horizon
 - Reinforcement Learning

Communication

- instantaneous, cost-free, and noise-free:
 - Dec-MDP \rightarrow multiagent MDP (MMDP)
 - Dec-POMDP \rightarrow multiagent POMDP (MPOMDP)
- but in practice:
 - probability of failure
 - delays
 - costs
- Also: implicit communication! (via observations and actions)

Implicit Communication

Encode communications by actions and observations

 Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

 Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

Implicit Communication

Encode communications by actions and observations

- Embed the optimal meaning of messages by finding the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
- E.g. communication bit
 - doubles the #actions and observations!
 - Clearly, useful... but intractable for general settings (perhaps for analysis of very small communication systems)

Decentralized POMDPs

Explicit Communication

- perform a particular information update (e.g., sync) as in the MPOMDP:
 - each agent broadcasts its information, and
 - each agent uses that to perform joint belief update
- Other approaches:
 - Communication cost [Becker et al. 2005]
 - Delayed communication [Hsu et al. 1982, Spaan et al. 2008, Oliehoek & Spaan 2012]
 - Communicate every k stages [Goldman & Zilberstein 2008]
Infinite-horizon Dec-POMDPs

- Infinite-horizon case: undecidable.
- Can compute ε-approximate solution
- Use finite-state controllers to represent policies.
 - 'back up' operations on controllers, [Bernstein et al. 2009]
 - BPI [Bernstein et al, 2005].
 - NLP [Amato et al, 2010].

Reinforcement Learning

- All this assumed the model is given, if not the case: not a great deal of work
 - Plenty of MARL [Busoniu et al, 2008] but not for the general Dec-POMDP setting...
- Exceptions:
 - decentralized gradient ascent [Peshkin et al, 2000]
 - single-agent methods (e.g., Q-learning) [Claus and Boutilier 1998, Crites and Barto 1998]
 - Centralized sample-based planning [Wu et al 2010b]
- problems:
 - when/how the agents observe the rewards? (episodes?)
 - how to learn about coupled dynamics from only individual observations? (cannot even compute a belief *with* the model!)
 - Iearning in a POMDP is hard!

Decentralized POMDPs

Extra Slides...

No Compact Representation?

There are a number of types of beliefs considered

- Joint Belief, *b(s)* (as in MPOMDP) [Pynadath and Tambe 2002]
 - compute b(s) using joint actions and observations
 - Problem: agents do not know those during execution
- Multiagent belief, $b_i(s,q_{-i})$ [Hansen et al. 2004]
 - Belief over future policies of other agents, $q_{_{-i}}$
 - Need to be able to predict the other agents!
 - for belief update P(s'|s,a_i,a_i), P(o|a_i,a_i,s'), and prediction of R(s,a_i,a_i)
 - form of those other policies?
 - most general: $\pi_i: \vec{o}_i \rightarrow a_i$
 - if they use beliefs? \rightarrow infinite recursion of beliefs!

Coordination vs. Exploitation of Local Information

Inherent trade-off

coordination vs. exploitation of local information

- Ignore own observations → 'open loop plan'
 - E.g., "ATTACK on 2nd time step"
 - + maximally predictable
 - low quality
- Ignore coordination

$$b_i(s) = \sum_{q_{-i}} b(s, q_{-i})$$

- E.g., 'individual belief' $b_i(s)$ and execute the MPOMDP policy
 - + uses local information
 - likely to result in mis-coordination

• Optimal policy π^* should balance between these!

Value of a Joint Policy

- Given a particular joint policy $\pi = q^{\tau=h}$
 - \rightarrow Just a (complex) Markov Chain
 - Augmented state $\langle s, q^{\tau=k} \rangle$

$$V(s, q^{\tau=k}) = R(s, a) + \sum_{s'} \sum_{o} P(s', o|s, a) V(s', q^{\tau=k-1})$$

Optimal Value Functions – 1

 Optimal value functions are difficult!

- consider selecting the best joint sub-tree policy q^r
- We can compute value $V(\theta, q^{\tau=k}) = \sum_{s} P(s|\theta, b^{0}) V(s, q^{\tau=k})$

but cannot select the maximizing q^T independently!