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= Multiagent Systems & Uncertainty
= The Dec-POMDP model
= Policies and their values
<break>
= Planning for Dec-POMDPs

= pbackward: DP
= forward: heuristic search
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Multiagent Systems (MASSs)

Why MASs?
= 1 intelligent agents — soon there will be many...

= Physically distributed systems:
centralized solutions expensive and brittle.

= Can potentially provide [viassis, 2007,Sycara, 1998]

= Speedup and efficiency
= Robustness and reliability (‘graceful degradation’)
= Scalability and flexibility (adding additional agents)
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= Qutcome Uncertainty

= Partial Observability

= Multiagent Systems: uncertainty about others
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Single-Agent Decision Making

= Background: MDPs & POMDPs

- An MDP <S’A)PT)R)h>

= S —set of states

A — set of actions
P_— transition function P(s'|s,a)

R — reward function R(s,a)

h — horizon (finite)

= APOMDP <S,A,PT303P03R)h>
= O - set of observations

= P_ — observation function P(o|a »S )
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Example: Predator-Prey Domain

= Predator-Prey domain i predator
= 1 agent: predator \\ /
= prey: part of environment \A [
= on a torus

= Formalization:

= states

= actions

= transitions
= rewards
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Example: Predator-Prey Domain

= Predator-Prey domain P predator
= 1 agent: predator \\ /
= prey: part of environment [
= on a torus /I
[
/
= Formalization: ®
= states (-3,4)
= actions N.W,S.E

= transitions
= rewards

Mar 18, 2013

failing to move, prey moves
reward for capturing

Decentralized POMDPs

7/115



Example: Predator-Prey Domain

= Predator-Prey domain predator

| | ]

Markov decision process (MDP) Ii-...'.

| e Al | | ]

» Markovian state s... (which is observed!) B
. . INEENE

* policy M maps states — actions 111 1] ]
| e

 Value function Q(s,a)
» Compute via value iteration / policy iteration IIEENN

Q(s,a)=R(s,a)+y . P(s'|s,a)max, Q(s',a")
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Partial Observability

= Now: partial observability

= E.g., limited range of sight

= MDP + observations

= explicit observations

= observation probabilities O

= noisy observations
(detection probability)

o="nothing'
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Partial Observability

= Now: partial observability

= E.g., limited range of sight

= MDP + observations

= explicit observations ry

= observation probabilities O

= noisy observations
(detection probability)
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Partial Observability

= Now: partial observability

= E.g., limited range of sight

= MDP + observations

= explicit observations A

= observation probabilities O

= noisy observations
(detection probability)

Can not observe the state
— Need to maintain a belief over states b(s)

— Policy maps beliefs to actions nt(b)=a
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Partial Observability

= Now: partial observability
Partially Observable MDP (POMDP)

Can not observe the state
— Need to maintain a belief over states b(s)
— Policy maps beliefs to actions rt(b)=a
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Partial Observability

= Now: partial observability
Partially Observable MDP (POMDP)

* reduction — continuous state MDP
(in which the belief is the state)

Can not observe the state
— Need to maintain a belief over states b(s)
— Policy maps beliefs to actions rt(b)=a
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Partial Observability

= Now: partial observability
Partially Observable MDP (POMDP)

* reduction — continuous state MDP
m (in which the belief is the state)

* VValue iteration:
 make use of a-vectors («— complete policies)
 perform pruning

V(b)
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Multiple Agents

= Now: multiple agents

= fully observable

= Formalization:

= states

= actions

= joint actions
= transitions

= rewards
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Multiple Agents

= Now: multiple agents

= fully observable ®
@ A
= Formalization: ®
- States ((3!_4)a (1 !1)1 (_250))
= actions {N,W,S,E}
= joint actions {(N,N,N), (N,N,W),....(E,E,E)}
= transitions probability of failing to move, prey moves
= rewards reward for capturing jointly
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= Now: multiple agents

Multiagent MDP [Boutilier 1996]

» Differences with MDP

e n agents
* joint actions a=<a1, a, ... ,an>
- e transitions and rewards depend on joint actions

e Solution:
* Treat as normal MDP with 1 'puppeteer agent'
* Optimal policy Tc(s):a
e Every agent executes its part

rewards reward for capturing jointly
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Multiple Agents

= Now: multiple agents

* Differences with MDP
e n agents
e joint actions gf—
e transitions ard rewards depend on joint actions

» Solution:
* Treat as normal MDP with 1 'puppeteer agent'
e Optimal policy T[(s):a
* Every agent executes its part

rewards reward for capturing jointly
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Multiple Agents

= Now: multiple agents

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)

* Differences with MDP
e n agents
e joint actions gf—
e transitions ard rewards depend on joint actions

» Solution:
* Treat as normal MDP with 1 'puppeteer agent'
e Optimal policy T[(s):a
* Every agent executes its part

rewards reward for capturing jointly
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Multiple Agents &

Partial Observabilit

= Now both...
= partial observability

= multiple agents O
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Multiple Agents &

Partial Observabilit

= Now both...
= partial observability | { °
= multiple agents e A

= Decentralized POMDPs
(Dec-POMDPS) [Bernstein et al. 2002]

= both

= joint actions and
= joint observations
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Multiple Agents &

Partial Observabilit

= Again we can make a reduction...

any idea? O
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Multiple Agents &

Partial Observabilit

= Again we can make a reduction...

Dec-POMDPs — MPOMDP , { s
(multiagent POMDP) B lA

= 'puppeteer agent'’ r 1
= receives joint observations O
= takes joint actions |

= requires broadcasting observations!

= instantaneous, cost-free, noise-free communication — optimal
[Pynadath and Tambe 2002]

= Without such communication: no easy reduction.
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The Dec-POMDP Model
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Acting Based On Local

Observations
= MPOMDP: Act on global information

= Can be impractical: / E g

= communication not possible
= significant cost (e.g battery power

= not instantaneous or noise free
= scales poorly with number of agents!

= Alternative: act based only on local observations
= Other side of the spectrum: no communication at all

= (Also other intermediate approaches: delayed communication,
stochastic delays)
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Mar 18, 2013

Formal Model

= A Dec-POMDP
* (S,A,P;,0,P,,R,h)

n agents

S — set of states

A — set of joint actions

P_ — transition function

O - set of joint observations

P, — observation function

R — reward function

h — horizon (finite)

Decentralized POMDPs

T(s,al,a2,s"
R(s,al,a2)




Running Example

= 2 generals problem

large army
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Running Example

= 2 generals problem

S—{s,s.}
A —{ (O)bserve, (A)ttack }
O.—{ (L)arge, (S)mall }

Transitions
* Both Observe — no state change
- At least 1 Attack — reset (50% probability s , s, )

Observations
* Probability of correct observation: 0.85
- E.g.,P(<L,L>|s )=0.85"0.85=0.7225

e (reset is not observed!)
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Running Example

= 2 generals problem

S—{s,s.}
A —{ (O)bserve, (A)ttack }
O.—{ (L)arge, (S)mall }

Rewards

* 1 general attacks: he loses the battle
* R(*,<A,0>) =-10

» Both generals Observe: small cost
* R(*,<0,0>) = -1

« Both Attack: depends on state
» R(s.,<A,A>) = -20
« R(s,,<AA>) = +5
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Running Example

= 2 generals problem
S—{s,s.}

suppose h=3,

A —{ (O)bserve, (A)ttack } what do you think is optimal in
O,—{(L)arge, (S)mall } this problem?

Rewards

* 1 general attacks: he loses the battle
* R(*,<A,0>) =-10

» Both generals Observe: small cost
* R(*,<0,0>) = -1

* Both Attack: depends on state
» R(s.,<A,A>) = -20
e R(s,,<A,A>) = +5
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Related Frameworks

= Partially observable stochastic games [Hansen et al. 2004]
= Non-identical payoff

= |nteractive POMDPS [Gmytrasiewicz & Doshi 2005, JAIR]
= Subjective view of MAS

= |mperfect information extensive form games
= Represented by game tree

= E.g., poker [sandholm 2010, Al Magazine]

Rest of lecture:

planning for Dec-POMDPs...
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Off-line / On-line phases

= off-line planning, on-line execution is decentralized

Planning Phase Execution Phase

T(s,al,a2,s")
R(s,al,a2)

=

T[:<T[1,T[2>

= (Smart generals make a plan in advance!)
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Policies and their Values
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Policy Domain

= \What do policies look like?
= |n general histories — actions
= in MDP/POMDP: more compact representations...
= Now, this is difficult: no such representation known!
— S0 we will be stuck with histories
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Policy Domain

= \What do policies look like?

= |n general histories — actions

= in MDP/POMDP: more compact representations...

= Now, this is difficult: no such representation known!

Mar 18, 2013

— So we will be stuck with histories

Decentralized POMDPs

Most general, AOHs:

(a>oral,...,a" ", 0

1

But: can restrict to
deterministic policies

— only need OHs:

L..,0")

35/115



No Compact Representation?

= Joint Belief, b(s) (asin MPOMDP) [Pynadath and Tambe 2002]

= compute b(s) using joint actions and observations
= Problem: ?
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No Compact Representation?

= Joint Belief, b(s) (asin MPOMDP) [Pynadath and Tambe 2002]
= compute b(s) using joint actions and observations
= Problem: agents do not know those during execution
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Goal of Planning

= Find the optimal joint policy =" =(r, x,)
= where individual policies map OHs to actions 7,:0,— A,

= What is the optimal one?
= Define value as the expected sum of rewards:

h—1

> R(s,a) | n,b°

t=0

V(n)=E

= optimal joint policy is one with maximal value
(can be more that achieve this)
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Goal of Planning

&l Optimal policy for 2 generals, h=3

value=-2.86743

) --> observe

o_small) --> observe
o_large) --> observe
o_small,o_small) --> attack
o_small,o_large) --> attack
o_large,o _small) --> attack
o_large,o_large) --> observe

) --> observe

o_small) --> observe
o_large) --> observe
o_small,o_small) --> attack
o_small,o_large) --> attack
o_large,o _small) --> attack
o_large,o _large) --> observe
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Goal of Planning

&l Optimal policy for 2 generals, h=3

value=-2.86743 conceptually:

) --> observe what should policy optimize to
o_small) --> observe allow for good coordination (thus
o_large) --> observe high value)
o_small,o_small) --> attack
o_small,o_large) --> attack
o_large,o _small) --> attack
o_large,o_large) --> observe

?

) --> observe

o_small) --> observe
o_large) --> observe
o_small,o_small) --> attack
o_small,o_large) --> attack
o_large,o _small) --> attack
o_large,o _large) --> observe
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Coordination vs. Exploitation of

Local Information

= |nherent trade-off
coordination vs. exploitation of local information

= |gnore own observations — 'open loop plan’

= E.g., “ATTACK on 2nd time step”

+ maximally predictable
- low quality

= |gnore coordination - 'MPOMDP plan’

= E.g., 'individual belief' b, (s) and execute the MPOMDP policy

+ uses local information
- likely to result in mis-coordination

= Optimal policy =" should balance between these!
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Value of a Joint Policy

= Sub-tree
policies:

= Given a particular joint policy n=q""
— Just a (complex) Markov Chain
= Value:

Mar 18, 2013 Decentralized POMDPs 42/115



Optimal Value Functions — 1

= Optimal value functions
are difficult!

= Consider selecting the best
joint sub-tree policy g’

= We can compute value...
...but cannoft select the maximizing q" independently!
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Optimal Value Functions — 2

= Cannot select the maximizing g’ independently...

— Need to reason over assignment for all AOHs of a
stage f simultaneously!

= Value staget > P(6[b"¢)V(6,q")
=Z<6L62>P(<91,92>|b0’(p)V(<91’92>,<q1’q2>)

= Find mappings I, T, (from AOHs — sub-tree policies)
that maximize 3 ' P((6,6,)[b"¢)V((6,6,),(T,(6,),T,(6,)))

A e

dependence on dependence on
history future
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Planning Methods
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Brute Force Search

We can compute the value of a joint policy V()

= S0 the stupidest algorithm is:
= compute V/(m), for all L
2 64
= select a m with maximum value 3 16384
4 1.0737e+09
o o 5 4.6117e+18
= Number of joint policies is huge! 6  85071c+37
(doubly exponential in horizon h) - 2 89486476
m 8 3.3520e+153

Clearly intractable...
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Brute Force Search

= \We can compute the value of a joint policy V(m)

No easy way out...

The problem is
NEXP-complete [Bernstein et al. 2002]

most likely (assuming EXP != NEXP)
doubly exponential time required.

= Clearly intractable...

Mar 18, 2013 Decentralized POMDPs

num. joint policies

4
64

16384
1.0737e+09
4.6117e+18
8.5071e+37
2.8948e+76
3.3520e+153

c0O N o O b W DN P
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Brute Force Search

= \We can compute the value of a joint policy V(m)

NIRRT

4
The problem is

64
NEXP-complete [Bernstein et al. 2002] 16384

1
2
3
0737e+09
most likely (assuming EXP != NEXP) ‘5‘ 1.0737e+
6
7

g . 4.6117e+18
doubly exponential time required.

8.5071e+37

Still, there are better algorithms that work better for
at least some problems...

Useful to gain understanding about problem.
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Dynamic Programming — 1

= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'
= construct all 2-stages-to-go policies Q™2 etc.
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= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'

Exhaustive backup operation
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= Generate all policies in a special way:

= from 1 stage-to-go policies Q™'
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= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'
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= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'
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Dynamic Programming — 1

= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'

Exhaustive backup operation

o .\“ s
KA ofiko)
® J g
° / A)
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Dynamic Programming — 1

= Generate all policies in a special way:
= from 1 stage-to-go policies Q™'

Exhaustive backup operation

S s “!

I To generate all Q™'
 All actions
 All assignments of " to observations




Dynamic Programming — 2

= (obviously) this scales very poorly...

=\ =\
Q; Q,

® 0O ® 0O
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Dynamic Programming — 2

= (obviously) this scales very poorly...

=2 =2
Q, Q;

OVEROVION:
© Ol ©
OO OA
OVER OOV
© > )
" O™ ©O©"
OVEROVIOV:
© OO
OO OA
OVEROVION:
© OO
" O™ ©@©"

oV
©
el_
oV
©
@I_
oV
©
el_
oV
©
@I_
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Dynamic Programming — 2

= (obviously) this scales very poorly...

Qi
HOHOBBHLDOHH DL
HBOHOBDBLLDHL DL
HBAHOLABHLLDHLLD L
P Y Y TV Y W W
HOHOHBLHLDOHLH L
£0.55 5 B 0 53 B B £ B3 B
P Y Y T VW T W W
B85 5 B 2 55 B B £ 5 B
HOHOBHLDOHH 0L
P Y Y T VW T W Vi
HOODHH OO H

Decentralized POMDPs

Q"
AOHOBABLLDHLH LD
ALHOBALLDHL LD
ALOBALLDHLLD L
DO H OO DL 005
AL LLDHL LD
355 5 B 2 55 B B £ D B
HBOODBH OO L0
25855 85 B B2 55 B B £ D D
BOHOBBHLDLHH OO
P Y Y Y i VW P W Vi
HOODHH OO
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Dynamic Programming — 2

= (obviously) this scales very poorly...

Q"
£3 85 £ 85 5 L3 5 £ D5 £ L5 2
DBHBHBHDOLLDLLHDHH

but...

[ . Y .. S . S .. Y . W .. W .. W .. W .. W . W . W .
) (] (J o [J (] [J (] [J (] [J (] [J (J [J (] () (] () (J () (] [J (]

Lo &3 43 L3 L5 L5 L5 £ £ L5 L3 45,
£n &5 45 &3 45 L5 L5 L5

Q"
L5 85 0 5 5 £ B £ D5 £ 55 B2

&"f&‘f&ﬁ-

» o.- ° 2
5% &S 3{3 3 128

£h48 4 32768

8485  2.1475e+09
a8 6  9.2234e+18
AH&% 7  1.7014e+38

af&a{?bdf&{a 8  5.7896e+76
&8 & L3 Lo L2 L3 L L
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Dynamic Programming — 3

= Perhaps not all those Q; are useful!
= Perform pruning of 'dominated policies'!

Q:Zl:Ai

= Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)
for tau=2 to h
Ql(tau) = ExhaustiveBackup(Ql(tau-1))

Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2, tau)
end
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Dynamic Programming — 3

= Perhaps not all those Q; are useful!
= Perform pruning of 'dominated policies'!

Q=4

1

= Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)

for tau=2 to h
Ql(tau) = ExhaustiveBackup(Ql(tau-1))
Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2, tau)

end

Note: cannot prune independently!

- usefulness of a q,depends on Q,

e and vice versa
— Iterated elimination of policies
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Dynamic Programming — 3

= Perhaps not all those Q; are useful!
= Perform pruning of 'dominated policies'!

Q=4

1

= Algorithm [Hansen et al. 2004]

Initialize Q1(1), Q2(1)

for tau=2 to h
Ql(tau) = ExhaustiveBackup(Ql(tau-1))
Q2(tau) = ExhaustiveBackup(Q2(tau-1))
Prune(Q1,Q2, tau)

end

Note: cannot prune independently!

- usefulness of a q,depends on Q,

| pruning itself: « and vice versa
via LP [Hansen et al. 2000] — Iterated elimination of policies

Mar 18, 2013 Decentralized POMDPs

62/115



Dynamic Programming — 4

= |nitialization

=1

Q" Q,

® 0O ® 0O
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= Exhaustive Backups gives
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Dynamic Programming - 4

. Hypothetical Pruning
= Pruning agent 1... (not the result of actual pruning)

=¥) =2
Q Q;
(A)

O%
@I_

OV OV,
© >)
el_ el_
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Dynamic Programming - 4

= Pruning agent 2...

Q; " Q"
S @ L S 0 L
®» (© ®» (©

OV OV
© >)
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O
el_

OVER OV,
© >)
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Dynamic Programming - 4

= Pruning agent 1...

=2 =2
Q, Q;

G
>)
<> (7

©
©
©
OV OV
© >)
" O

S L S L S L

® ® @ @ ® @
SL SL
© @© © @©
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Dynamic Programming - 4

= Etc...
Qi Q"
SL SL SL SL
OO A  (© OO A  ©
SL SL
© @© © ©
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Dynamic Programming - 4

= Eftc...
Q1
In this case: symmetric
— but need not be in general!
S O L S O L S O L S O L
D w0 6 @ D w0 » @
S O L S O L
Q9 @ 9 @
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Dynamic Programming - 4

Qi

£ 85 85 5 £ £5 B £ £ L5 5 2
L0508 B £ 55 B £ £ D B X
080 85 5 £ 55 55 £ £ D5 B
£ 85 85 5 £ £5 85 £ £ 55 F0 2
£ 85 85 L5 £ £5 85 £ £ D0 Lo
£ 50 D5 5 i 3 B B £ 5 B £
£ 5 5 B i 5 55 B £ o5 B2
£ 80 85 5 £ £3 85 B B 5 B 2
£ 85 5 L5 £ 5 B 5 £ o5 L5 2
£ 80 D5 5 0 3 B B £ 2 B 2
HOODHH OO H

Decentralized POMDPs

Q,

&3 LB B £ LRLD LB £ £ L2 £ L2
&3 £ LB £ LB LD £ L3 £ L2 £ L2
&3 L% LB LB £ £h £ L3 £ £ £ £
&3 £ L3 Eh £ L5 £ L3 £ £ £ £
8 85 &5 45 £ £5 £ 43 £ L3 L5 £3
&3 £% &3 L3 £b L5 £ 43 £ L3 L2 L3
&3 £% £ L3 £ L5 £ L3 £ L3 L2 L3
&3 L5 &% 43 L5 £ 43 L5 £b £3 L5 £b
A5 45 85 25 £b &3 L3 L5 £b £b 43 L3
&3 &% 45 L5 £b £3 43 L5
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Dynamic Programming — 4

= Exhaustive backups:

=3 =3
Q, Q;

Lo &3 43 L3 L5 L5 £ Lb L5 &5 43 &5 L5 L5 L5 Lb
Ap AR AR AR AR LR R B L LB A2 LD | 2 AR BB LA AB LB LR Lh Lh b
PIPIVIWININ I I iU PP W Wi Wi Wi P PV W Wi W ¥ ¥4

Lo &5 45 43 £5 L5 £ L5 Lo &3 43 &3 £5 L5 L5 £b
&b &5 45 &3 L5 L5 L5 L5 &5 &5 45 £3 L5 L5 £ L5
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Dynamic Programming - 4

= Pruning agent 1...

=3 =3
Q, Q;

&5 &% '3 S $ W ¢ L5 &5 43 &5 L5 L5 L5 Lb
£ndd &% £hdhdh  AAbdy | SRR LLLLLLLSLLL
£nddh  £ndhdh AL LLLL | LA S LSS LLD

£ndd  £nLhLhLh Ly Lo &3 43 &3 £5 L5 L5 £b
£ndd  AndB Ly &5 &5 45 £3 L5 L5 £ L5
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Dynamic Programming - 4

= Pruning agent 2...

=3
Q,

&5 &% '3 S $ W ¢
P393 N S N 3 0 3 § SR § 9§ W ¢
F3 WS N W 3 S § 9 3 W 9 3 W ¢

£ndd  £nLhLhLh Ly
£ndd  AndB Ly
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£%
&5 &% &3
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Dynamic Programming — 4

= Efc...

=3 =3
Q, Q,

&5 &3 &5 &% &3
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Dynamic Programming — 4

= Efc...
At the very end:

&5 &3 &5 &% &3
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Dynamic Programming — 4

= Etc...
At the very end:
 evaluate all the remaining combinations of
policies
* select the best one
V(g =2 b"(s)V(s,q")
& &
&%  £» &

&8 & & B &
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Bottom-up vs. Top-down

= DP constructs bottom-up

= Alternatively try and construct top down
— leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]
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Heuristic Search - Intro

= Core idea is the same as DP:
= incrementally construct all (joint) policies
= {ry to avoid work

= Differences
= different starting point and increments
= use heuristics (rather than pruning) to avoid work
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Heuristic Search — 1

= |Incrementally construct all (joint) policies
= 'forward in time'

1 joint policy
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Heuristic Search - 1

= |Incrementally construct all (joint) policies

= ‘forward in time 1 partial joint policy

2 2
PPN '~ ot
S L S L
? 8 ? ?
S L S /TN L S L S L
2 2 2 2 o 2 2 2
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Heuristic Search — 1

= |Incrementally construct all (joint) policies

= ‘forward in time 1 partial joint policy
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Heuristic Search — 1

= |Incrementally construct all (joint) policies

= ‘forward in time 1 partial joint policy
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Heuristic Search — 1

= |Incrementally construct all (joint) policies

= ‘forward in time' 1 complete joint policy
(full-length)
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

Root node:
unspecified joint policy
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

.....

Creating a child node:
assignment actions at t=0

.....
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

Node expansion:
create all children
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

Expand next node... ‘ e

How many children? >
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

Many more children!

need to assign action to

(=
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Heuristic Search — 2

= Creating ALL joint policies — tree structure!

\ Last stage: even more!

need to assign action to
il 8 OHs now: 248 = 256 children
(for each node at level 2!)

-ED
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Heuristic Search - 3

= too big to create completely...

= |dea: use heuristics LD A D ENLD Ch
_ — / \/ \/ N
= avoid going down /oooooooooo ooooo\
non-promiSing branCheS! EEEESEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEER

= Apply A* — Multiagent A* [szer et al. 2005]
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* For each node, compute F-value

» Select next node based on F-value
* More info: [Russel&Norvig 2003]
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* For each node, compute F-value

» Select next node based on F-value
* More info: [Russel&Norvig 2003]
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hAD
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N

Select highest
valued node
& expand...

* For each node, compute F-value

» Select next node based on F-value
* More info: [Russel&Norvig 2003]
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* For each node, compute F-value

» Select next node based on F-value
* More info: [Russel&Norvig 2003]
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* F(n) is a optimistic estimate
 l.e., F(n) >=V(n') for any descendant n' of n

= ave + F(n) = G(n) + H(n)

no / \
= Appl
pp y Optimistic estimate of reward
reward up ton below n

(for first t stages)  (reward for stages tt+1,....h-1)

* For each node, compute F-value

» Select next node based on F-value
* More info: [Russel&Norvig 2003]
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Heuristic Search — 4

= Use heuristics F(n) = G(n) + H(n)

/OOOOOOOOOO .
| |

= (G(n) — actual reward of reaching n
= a node at depth t specifies (|)t (i.e., actions for first t stages)
— can compute V(¢') over stages O...t-1

= H(n) — should overestimate!
= pretend that it is an MDP, or POMDP: Q.00 O rosor
= compute

H(n)=H(¢)=2, P(sl¢’,5°)O(s)
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Further Developments

- DP
= |Improvements to exhaustive backup [Amato et al. 2009]
= Compression of values (LPC) [Boularias & Chaib-draa 2008]
= (Point-based) Memory bounded DP [seuken & Zilberstein 2007a]

= |Improvements to PB backup [Seuken & Zilberstein 2007b, Carlin and
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

= Heuristic Search

= No backtracking: just most promising path
[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

= Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

= |[ncremental expansion: avoid expanding all child nodes
[Spaan et al. 2011]

- M | LP [Aras and Dutech 2010]
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State of The Art
To get an impression... .

. . 5349  0.04
Optimal solutions 6 _ 4643
= [mprovements of MAA* lead to dec-tiger — runtime (s)
slonifieant inreases O T R
= put problem dependent <0.01
500 — - 0.94*

broadcast channel runtime (s)
* excluding heuristic

= Approximate (no quality guarantees)

= MBDP: linear in horizon [Seuken & zilberstein 2007a]
= Rollout sampling extension: up to 20 agents [wWu et al. 2010b]

= Transfer planning: use smaller problems to solve large
(structured) problems (up to 1000) agents [Oliehoek 2010]
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Further Topics

= Infinite-horizon planning
= Communication:
= implicit/explicit
= delays
= costs
= Structured Models
= e.g., factored Dec-POMDPs
= Reinforcement learning
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Some Further Topics
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= Further topics

= Communication
= |Infinite Horizon
= Reinforcement Learning
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Communication

= jnstantaneous, cost-free, and noise-free:
= Dec-MDP — multiagent MDP (MMDP)
= Dec-POMDP — multiagent POMDP (MPOMDP)

= but in practice:
= probability of failure
= delays
= costs

= Also: implicit communication!
(via observations and actions)
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Implicit Communication

= Encode communications by actions and observations

= Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

= Encode communications by actions and observations

= Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

= Encode communications by actions and observations

= Embed the optimal meaning of messages by finding
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

= E.g. communication bit

= doubles the #actions and observations!

= Clearly, useful... but intractable for general settings
(perhaps for analysis of very small communication systems)
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Explicit Communication

= perform a particular information update (e.g., sync) as
in the MPOMDP:

= each agent broadcasts its information, and
= each agent uses that to perform joint belief update

= Other approaches:
= Communication cost [Becker et al. 2005]

= Delayed communication [Hsu et al. 1982, Spaan et al. 2008,
Oliehoek & Spaan 2012]

= Communicate every k stages [Goldman & Zilberstein 2008]
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Infinite-horizon Dec-POMDPs

= |nfinite-horizon case: undecidable.

= Can compute e-approximate solution

= Use finite-state controllers to represent policies.
= 'back up' operations on controllers, [Bernstein et al. 2009]
= BPI [Bernstein et al, 2005].
= NLP [Amato et al, 2010].
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Reinforcement Learning

= All this assumed the model is given,
If not the case: not a great deal of work

= Plenty of MARL [Busoniu et al, 2008] but not for the general Dec-POMDP
setting...

= Exceptions:
= decentralized gradient ascent [Peshkin et al, 2000]

= single-agent methods (e.g., Q-learning) [Claus and Boutilier 1998,
Crites and Barto 1998]

= Centralized sample-based planning [Wu et al 2010b]
= problems:

= when/how the agents observe the rewards? (episodes?)

= how to learn about coupled dynamics from only individual observations?
(cannot even compute a belief with the model!)

= |learning in a POMDP is hard!
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Extra Slides...
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No Compact Representation?

There are a number of types of beliefs considered

= Joint Belief, b(s) (asin MPOMDP) [Pynadath and Tambe 2002]
= compute b(s) using joint actions and observations
= Problem: agents do not know those during execution

« Multiagent belief, b, (s,q ) [Hansen et al. 2004]

= Belief over future policies of other agents, q
= Need to be able to predict the other agents!

- for belief update P(s'|s,a,a,), P(o|a,a_,s'), and prediction of R(s,a,a )
= form of those other policies?

= most general: w;:0,—a,

= if they use beliefs? — infinite recursion of beliefs!
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Coordination vs. Exploitation of

Local Information

= |nherent trade-off

coordination vs. exploitation of local information

= |gnore own observations — 'open loop plan’

= E.g., “ATTACK on 2nd time step”
+ maximally predictable

- low quality
| inati bi(s)=2., bls.q-)
= |gnore coordination P 0.

= E.g., 'individual belief' b, (s) and execute the MPOMDP policy

+ uses local information
- likely to result in mis-coordination

= Optimal policy =" should balance between these!
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Value of a Joint Policy

= Sub-tree
policies:

= Given a particular joint policy n=q""
— Just a (complex) Markov Chain
= Augmented state (s,q" ")

V(s,qtzk):R(s,a)Jrzs, ZO P(s',0ls,a)V(s',q~ ")
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Optimal Value Functions — 1

= Optimal value functions
are difficult!

= consider selecting the best
joint sub-tree policy g’

= We can compute value

V(0,q"")=2. P(s6,b")V(s,q"")

= pbut cannot select the maximizing q" independently!

Mar 18, 2013 Decentralized POMDPs 115/115



