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Outline

 Multiagent Systems & Uncertainty
 The Dec-POMDP model
 Policies and their values

<break>

 Planning for Dec-POMDPs
 backward: DP
 forward: heuristic search
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Multiagent Systems (MASs)

Why MASs?
 1 intelligent agents →  soon there will be many...
 Physically distributed systems: 

centralized solutions expensive and brittle.
 Can potentially provide [Vlassis, 2007,Sycara, 1998]

 Speedup and efficiency
 Robustness and reliability (‘graceful degradation’)
 Scalability and flexibility (adding additional agents)
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Uncertainty

 Outcome Uncertainty

 Partial Observability

 Multiagent Systems: uncertainty about others
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Single-Agent Decision Making
 Background: MDPs & POMDPs

 An MDP 
 S  – set of states

 A  – set of actions

 P
T
 – transition function

 R  – reward function

 h   – horizon (finite)

 A POMDP
 O  – set of observations

 P
O
 – observation function

〈S , A , PT , R ,h〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)

〈S , A , PT ,O , PO , R ,h〉
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Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: predator
 prey: part of environment
 on a torus

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing

??

prey
predator
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Example: Predator-Prey Domain

 Predator-Prey domain
 1 agent: predator
 prey: part of environment
 on a torus

 Formalization:
 states (-3,4)
 actions N,W,S,E
 transitions failing to move, prey moves
 rewards reward for capturing

prey
predator

Markov decision process (MDP)

● Markovian state s... (which is observed!)

● policy π maps states → actions

● Value function Q(s,a)
● Compute via value iteration / policy iteration

Markov decision process (MDP)

● Markovian state s... (which is observed!)

● policy π maps states → actions

● Value function Q(s,a)
● Compute via value iteration / policy iteration

Q(s ,a)=R (s , a)+γ∑
s '

P(s '∣s , a)maxa ' Q(s ' , a ')
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=' nothing '
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations 
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 observation probabilities

 noisy observations
(detection probability)
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π(b)=a

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions 

Can not observe the state
→ Need to maintain a belief over states b(s)
→ Policy maps beliefs to actions π(b)=a
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Partial Observability

 Now: partial observability
 E.g., limited range of sight

 MDP + observations 
 explicit observations
 observation probabilities

 noisy observations
(detection probability)

o=(−1,1)

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iteration: 
● make use of α-vectors (↔  complete policies)
● perform pruning

Partially Observable MDP (POMDP)

● reduction → continuous state MDP
(in which the belief is the state)

● Value iteration: 
● make use of α-vectors (↔  complete policies)
● perform pruning

V
(b

)
← belief → s

1
s

2
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Multiple Agents

 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probabilty of failing to move, prey moves
 rewards reward for capturing jointly

??
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● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a
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Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: …?
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 Now: multiple agents
 fully observable

 Formalization:
 states ((3,-4), (1,1), (-2,0))
 actions {N,W,S,E}
 joint actions {(N,N,N), (N,N,W),...,(E,E,E)}
 transitions probability of failing to move, prey moves
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Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

Multiagent MDP [Boutilier 1996]

● Differences with MDP
● n agents
● joint actions
● transitions and rewards depend on joint actions

● Solution:
● Treat as normal MDP with 1 'puppeteer agent'
● Optimal policy
● Every agent executes its part

a=〈a1,a2, ... ,an〉

π(s)=a

Catch: number of joint actions is exponential!
(but other than that, conceptually simple.)
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Multiple Agents &
Partial Observability

 Now both...
 partial observability
 multiple agents
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Multiple Agents &
Partial Observability

 Now both...
 partial observability
 multiple agents

 Decentralized POMDPs
(Dec-POMDPs) [Bernstein et al. 2002]

 both 
 joint actions and 
 joint observations
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

any idea?
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Multiple Agents &
Partial Observability

 Again we can make a reduction...

Dec-POMDPs → MPOMDP

(multiagent POMDP)

 'puppeteer agent'
 receives joint observations

 takes joint actions

 requires broadcasting observations!
 instantaneous, cost-free, noise-free communication → optimal

[Pynadath and Tambe 2002]

 Without such communication: no easy reduction.
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The Dec-POMDP Model
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Acting Based On Local 
Observations

 MPOMDP: Act on global information 
 Can be impractical:

 communication not possible
 significant cost (e.g battery power)

 not instantaneous or noise free
 scales poorly with number of agents!

 Alternative: act based only on local observations
 Other side of the spectrum: no communication at all
 (Also other intermediate approaches: delayed communication, 

stochastic delays)
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Formal Model                      

 A Dec-POMDP 


 n  agents
 S  – set of states
 A  – set of joint actions

 P
T
 – transition function

 O  – set of joint observations

 P
O
 – observation function

 R  – reward function
 h   – horizon (finite)

〈S , A , PT ,O , PO , R ,h〉

a=〈a1,a2, ... ,an〉

o=〈o1,o2, ... , on〉

P(s '∣s , a)

P(o∣a , s ')

R (s , a)
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Running Example

 2 generals problem

 small army large army
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Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Transitions
● Both Observe →  no state change
● At least 1 Attack →  reset (50% probability  s

L
, s

S 
)

Observations
● Probability of correct observation: 0.85
● E.g., P(<L, L> | s

L
 ) = 0.85 * 0.85 = 0.7225

● (reset is not observed!)
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L
, s
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A
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Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
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S
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Running Example

 2 generals problem

 small army large armyS – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
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● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

S – { s
L
, s

S
 }

A
i
 – { (O)bserve, (A)ttack }

O
i
 – { (L)arge, (S)mall }

Rewards
● 1 general attacks: he loses the battle

● R(*,<A,O>) = -10
● Both generals Observe: small cost

● R(*,<O,O>) = -1
● Both Attack: depends on state

● R(s
L
,<A,A>) = -20

● R(s
R
,<A,A>) = +5

suppose h=3,
what do you think is optimal in 

this problem?
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Related Frameworks

 Partially observable stochastic games [Hansen et al. 2004]

 Non-identical payoff

 Interactive POMDPs  [Gmytrasiewicz & Doshi 2005, JAIR]

 Subjective view of MAS

 Imperfect information extensive form games
 Represented by game tree
 E.g., poker [Sandholm 2010, AI Magazine]

Rest of lecture: 
planning for Dec-POMDPs...

Rest of lecture: 
planning for Dec-POMDPs...
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Off-line / On-line phases

 off-line planning, on-line execution is decentralized

 (Smart generals make a plan in advance!)

Planning Phase Execution Phase

π=〈π1,π2〉
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Policies and their Values
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Policy Domain

 What do policies look like?
 In general histories → actions
 in MDP/POMDP: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
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Policy Domain

 What do policies look like?
 In general histories → actions
 in MDP/POMDP: more compact representations...

 Now, this is difficult: no such representation known!

→ So we will be stuck with histories
Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

Most general, AOHs:

But: can restrict to
deterministic policies
→ only need OHs:

(ai
0,oi

1,ai
1 , ... , ai

t−1 , oi
t)

o⃗i=(oi
1, ... ,oi

t )
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No Compact Representation?

 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: ??
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No Compact Representation?

 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0

h−1

R(s ,a) ∣ π ,b0]
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 Define value as the expected sum of rewards:
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Goal of Planning

 Find the optimal joint policy 
 where individual policies map OHs to actions

 What is the optimal one? 
 Define value as the expected sum of rewards:

 optimal joint policy is one with maximal value
(can be more that achieve this)

π∗=〈π1,π2〉

πi :O⃗i → A i

V (π)=E [∑
t=0
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R(s ,a) ∣ π ,b0]
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() --> observe
(o_small) --> observe
(o_large) --> observe
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(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
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Optimal policy for 2 generals, h=3

value=-2.86743

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

() --> observe
(o_small) --> observe
(o_large) --> observe
(o_small,o_small) --> attack
(o_small,o_large) --> attack
(o_large,o_small) --> attack
(o_large,o_large) --> observe

conceptually: 

what should policy optimize to 
allow for good coordination (thus 

high value)

?
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Coordination vs. Exploitation of 
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
-  low quality

 Ignore coordination →  'MPOMDP plan'
 E.g., 'individual belief' b

i 
(s) and execute the MPOMDP policy

+ uses local information
-  likely to result in mis-coordination

 Optimal policy      should balance between these!π∗
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Value of a Joint Policy

 Sub-tree 
policies:

 Given a particular joint policy  

→ Just a (complex) Markov Chain
 Value:

V (θ⃗ , qτ=k
)=R (θ⃗ , a)+∑o

P(o∣⃗θ , a)V (θ⃗ ' , qτ=k−1
)

π=q τ=h
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Optimal Value Functions – 1

 Optimal value functions 
are difficult!

 Consider selecting the best 
joint sub-tree policy qτ

 We can compute value...
...but cannot select the maximizing qτ  independently!
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Optimal Value Functions – 2

 Cannot select the maximizing qτ  independently...

→ Need to reason over assignment for all AOHs of a    
     stage t simultaneously!

 Value stage t

 Find mappings                (from AOHs → sub-tree policies)

that maximize

Γ1,Γ2

∑
〈θ1,θ2 〉

P(〈θ1,θ2〉∣b
0,φ)V (〈θ1,θ2〉 , 〈Γ1(θ1) ,Γ2(θ2)〉)

dependence on 
history

dependence on 
future

∑
θ
P (θ∣b0,

φ)V (θ , qτ=h−t
)

=∑
〈θ1,θ2〉

P (〈θ1,θ2〉∣b
0,φ)V (〈θ1,θ2〉 ,〈q1,q2〉)
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Planning Methods
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Brute Force Search 

 We can compute the value of a joint policy V(π)

 So the stupidest algorithm is:
 compute V(π), for all π
 select a π with maximum value

 Number of joint policies is huge!
(doubly exponential in horizon h)

 Clearly intractable...

h num. joint policies

1 4

2 64

3 16384

4 1.0737e+09

5 4.6117e+18

6 8.5071e+37

7 2.8948e+76

8 3.3520e+153
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● Still, there are better algorithms that work better for 
at least some problems...

● Useful to gain understanding about problem.
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

a
i

? ?

S L

Q i
τ
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

a
i

a new qτ+1

S L

Q i
τ
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Dynamic Programming – 1

 Generate all policies in a special way: 
 from 1 stage-to-go policies Qτ=1

 construct all 2-stages-to-go policies Qτ=2, etc.
Exhaustive backup operationExhaustive backup operation

a
i

S L

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

To generate all Qτ+1

● All actions
● All assignments of qτ to observations

S L

Q i
τ
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Dynamic Programming – 2

 (obviously) this scales very poorly...

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=2 Q2

τ=2

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L

O

O A

S L

O

A A

S L

A

A A

S L

A

O A

S L

O

O O

S L

O

A O

S L

A

A O

S L

A

O O

S L



Mar 18, 2013 Decentralized POMDPs 58/115

Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 2

 (obviously) this scales very poorly...

Q1
τ=3 Q2

τ=3

h num. indiv. policies

1 2

2 8

3 128

4 32768

5 2.1475e+09

6 9.2234e+18

7 1.7014e+38

8 5.7896e+76

This does not get us anywhere!

but...

This does not get us anywhere!

but...
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i



Mar 18, 2013 Decentralized POMDPs 61/115

Dynamic Programming – 3
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Qi
τ=1

=A i

Note: cannot prune independently!

● usefulness of a q
1 
depends on Q

2

● and vice versa
→ Iterated elimination of policies
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Dynamic Programming – 3

 Perhaps not all those       are useful!
 Perform pruning of 'dominated policies'!

 Algorithm [Hansen et al. 2004]

Qi
τ

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Initialize Q1(1), Q2(1)
for tau=2 to h
  Q1(tau) = ExhaustiveBackup(Q1(tau-1))
  Q2(tau) = ExhaustiveBackup(Q2(tau-1))
  Prune(Q1,Q2,tau)
end

Qi
τ=1

=A i

Note: cannot prune independently!

● usefulness of a q
1 
depends on Q

2

● and vice versa
→ Iterated elimination of policies

pruning itself: 
via LP [Hansen et al. 2000]

pruning itself: 
via LP [Hansen et al. 2000]
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Dynamic Programming – 4

 Initialization

A O

Q1
τ=1 Q2

τ=1

A O
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Dynamic Programming – 4

 Exhaustive Backups gives
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Dynamic Programming – 4

 Pruning agent 1...
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Hypothetical Pruning
(not the result of actual pruning)



Mar 18, 2013 Decentralized POMDPs 66/115

Dynamic Programming – 4

 Pruning agent 2...

Q1
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Dynamic Programming – 4

 Pruning agent 1...
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Dynamic Programming – 4

 Etc...

Q1
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Dynamic Programming – 4

 Etc...
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In this case: symmetric
→ but need not be in general!

In this case: symmetric
→ but need not be in general!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3

We avoid generation of many policies!
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Dynamic Programming – 4

 Exhaustive backups:

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 1...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Pruning agent 2...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3

At the very end:

● …?

 

At the very end:

● …?
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Dynamic Programming – 4

 Etc...

Q1
τ=3 Q2

τ=3

At the very end:

● evaluate all the remaining combinations of 
policies 

● select the best one

At the very end:

● evaluate all the remaining combinations of 
policies 

● select the best one

V (qτ=h
)=∑s

b0
(s)V (s , qτ=h

)
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Bottom-up vs. Top-down

 DP constructs bottom-up
 Alternatively try and construct top down

→ leads to (heuristic) search [Szer et al. 2005, Oliehoek et al. 2008]
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Heuristic Search – Intro

 Core idea is the same as DP: 
 incrementally construct all (joint) policies
 try to avoid work

 Differences
 different starting point and increments
 use heuristics (rather than pruning) to avoid work
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'

O

A

S L

A O

S L
A

A O

S L

O

A

S L

A A

S L
O

A O

S L

1 joint policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'
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? ?? ?

1 partial joint policy

Start with unspecified policyStart with unspecified policy
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'
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Heuristic Search – 1

 Incrementally construct all (joint) policies
 'forward in time'
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S L

1 complete joint policy
(full-length)
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!
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Root node:
unspecified joint policy
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!
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Creating a child node:
 assignment actions at t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!
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Node expansion:
create all children
Node expansion:
create all children
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

             t=0
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=1

Expand next node...

How many children?

Expand next node...

How many children?
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

Many more children!

need to assign action to
4 OHs now: 2^4 = 16

             t=1
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Heuristic Search – 2

 Creating ALL joint policies → tree structure!

...
             t=2

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

Last stage: even more!

need to assign action to
8 OHs now: 2^8 = 256 children 
(for each node at level 2!)

...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 



Mar 18, 2013 Decentralized POMDPs 92/115

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]



Mar 18, 2013 Decentralized POMDPs 93/115

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53



Mar 18, 2013 Decentralized POMDPs 94/115

Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

5

3.53

Select highest 
valued node
& expand...
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53
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Heuristic Search – 3

 too big to create completely...
 Idea: use heuristics 

 avoid going down 
non-promising branches!

 Apply A* →  Multiagent A* [Szer et al. 2005]

 

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

Main intuition A*

● For each node, compute F-value
● Select next node based on F-value
● More info: [Russel&Norvig 2003]

42.9 3.53

F-Value of a node n

● F(n) is a optimistic estimate
● I.e., F(n) >= V(n')  for any descendant n' of n

● F(n) = G(n) + H(n)

reward up to n
(for first t stages)

Optimistic estimate of reward 
below n
(reward for stages  t,t+1,...,h-1 )
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Heuristic Search – 4

 Use heuristics F(n) = G(n) + H(n)

 G(n) – actual reward of reaching n
 a node at depth t specifies φt   (i.e., actions for first t stages)

→ can compute V(φt)  over stages 0...t-1

 H(n) – should overestimate!
 pretend that it is an MDP, or POMDP: 
 compute 

 H (n)=H (φ t)=∑s
P (s∣φt ,b0)Q̂(s)

Q̂MDP , Q̂ POMDP
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Further Developments
 DP

 Improvements to exhaustive backup [Amato et al. 2009]

 Compression of values (LPC) [Boularias & Chaib-draa 2008]

 (Point-based) Memory bounded DP [Seuken & Zilberstein 2007a]

 Improvements to PB backup [Seuken & Zilberstein 2007b,  Carlin and 
Zilberstein, 2008; Dibangoye et al, 2009; Amato et al, 2009; Wu et al, 2010, etc.]

 Heuristic Search
 No backtracking: just most promising path

[Emery-Montemerlo et al. 2004, Oliehoek et al. 2008]

 Clustering of histories: reduce number of child nodes
[Oliehoek et al. 2009]

 Incremental expansion: avoid expanding all child nodes
[Spaan et al. 2011]

 MILP [Aras and Dutech 2010]
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State of The Art

To get an impression...
 Optimal solutions

 Improvements of MAA* lead to 
significant increases

 but problem dependent

 Approximate (no quality guarantees)
 MBDP: linear in horizon [Seuken & zilberstein 2007a]

 Rollout sampling extension: up to 20 agents  [Wu et al. 2010b]

 Transfer planning: use smaller problems to solve large 
(structured) problems (up to 1000) agents [Oliehoek 2010]

h MILP LPC GMAA-ICE*

4 72 534.9 0.04

6 - 46.43*

h MILP LPC GMAA-ICE*

5 25 – <0.01

500 – – 0.94*

dec-tiger – runtime (s)

broadcast channel runtime (s)
* excluding heuristic
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Further Topics

 Infinite-horizon planning
 Communication:

 implicit/explicit
 delays
 costs

 Structured Models
 e.g., factored Dec-POMDPs

 Reinforcement learning
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Some Further Topics
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 Further topics
 Communication
 Infinite Horizon
 Reinforcement Learning
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Communication

 instantaneous, cost-free, and noise-free: 
 Dec-MDP → multiagent MDP (MMDP)
 Dec-POMDP → multiagent POMDP (MPOMDP)

 but in practice:
 probability of failure
 delays
 costs

 Also: implicit communication! 
(via observations and actions)
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]
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Implicit Communication

 Encode communications by actions and observations

 Embed the optimal meaning of messages by finding 
the optimal plan [Goldman and Zilberstein 2003, Spaan et al. 2006]

 E.g. communication bit

 doubles the #actions and observations!
 Clearly, useful... but intractable for general settings

(perhaps for analysis of very small communication systems)
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Explicit Communication

 perform a particular information update (e.g., sync) as 
in the MPOMDP:

 each agent broadcasts its information, and 
 each agent uses that to perform joint belief update

 Other approaches:
 Communication cost [Becker et al. 2005]

 Delayed communication [Hsu et al. 1982, Spaan  et al. 2008, 
Oliehoek & Spaan 2012]

 Communicate every k stages [Goldman & Zilberstein 2008]
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Infinite-horizon Dec-POMDPs

 Infinite-horizon case: undecidable.
 Can compute ε-approximate solution 

 Use finite-state controllers to represent policies.
 'back up' operations on controllers, [Bernstein et al. 2009]

 BPI [Bernstein et al, 2005].
 NLP [Amato et al, 2010].
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Reinforcement Learning

 All this assumed the model is given, 
if not the case: not a great deal of work

 Plenty of MARL [Busoniu et al, 2008] but not for the general Dec-POMDP 
setting...

 Exceptions:  
 decentralized gradient ascent [Peshkin et al, 2000] 

 single-agent methods (e.g., Q-learning) [Claus and Boutilier 1998,  
Crites and Barto 1998]

 Centralized sample-based planning [Wu et al 2010b]

 problems:
 when/how the agents observe the rewards? (episodes?)

 how to learn about coupled dynamics from only individual observations? 
(cannot even compute a belief with the model!)

 learning in a POMDP is hard!
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Extra Slides...
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No Compact Representation?

There are a number of types of beliefs considered
 Joint Belief, b(s)  (as in MPOMDP) [Pynadath and Tambe 2002]

 compute b(s) using joint actions and observations
 Problem: agents do not know those during execution

 Multiagent belief, b
i 
(s,q

-i 
) [Hansen et al. 2004]

 Belief over future policies of other agents, q
-i

 Need to be able to predict the other agents!
 for belief update P(s'|s,a

i
,a

-i
), P(o|a

i
,a

-i
,s'), and prediction of R(s,a

i
,a

-i
)

 form of those other policies? 
 most general: 
 if they use beliefs? → infinite recursion of beliefs!

π j : o⃗ j→a j
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Coordination vs. Exploitation of 
Local Information

 Inherent trade-off

coordination vs. exploitation of local information

 Ignore own observations → 'open loop plan'
 E.g., “ATTACK on 2nd time step”

+ maximally predictable
-  low quality

 Ignore coordination
 E.g., 'individual belief' b

i 
(s) and execute the MPOMDP policy

+ uses local information
-  likely to result in mis-coordination

 Optimal policy      should balance between these!

bi(s)=∑q−i

b(s , q−i)

π∗
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Value of a Joint Policy

 Sub-tree 
policies:

 Given a particular joint policy  

→ Just a (complex) Markov Chain
 Augmented state 

V (s , qτ=k
)=R(s ,a)+∑s ' ∑o

P(s ' , o∣s ,a)V (s ' ,q τ=k−1
)

〈 s ,q τ=k
〉

π=q τ=h
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Optimal Value Functions – 1

 Optimal value functions 
are difficult!

 consider selecting the best 
joint sub-tree policy qτ

 We can compute value

 but cannot select the maximizing qτ  independently!

V (θ ,q τ=k
)=∑s

P(s∣θ , b0
)V (s ,qτ=k

)


