
MADP Toolbox 0.2

Frans Oliehoek

faolieho@science.uva.nl

Matthijs Spaan

mtjspaan@isr.ist.utl.pt

September 2, 2009

Contents

1 Introduction 1

2 MADPs and basic notation 2

2.1 Discrete time MASs . 2
2.2 Basic MADP components . 3
2.3 Histories . 3

3 Overview of the MADP Toolbox 4

3.1 The base library (libMADPBase) 4
3.2 The parser library (libMADPParser) 4
3.3 The support library (libMADPSupport) 5
3.4 The planning library (libMADPplanning) 5

4 Using the MADP toolbox 6

5 Indices for discrete models 6

5.1 Enumeration of joint actions and observations 7
5.2 Enumeration of (joint) histories 7

5.2.1 Observation histories . 7
5.2.2 Action histories . 9
5.2.3 Action-observation histories 9
5.2.4 Joint histories . 10

6 Joint beliefs and history probabilities 11

6.1 Theory . 11
6.2 Implementation . 12

7 Policies 12

1 Introduction

This text describes the Multiagent decision process (MADP) Toolbox, which is a
software toolbox for scientific research in decision-theoretic planning and learn-
ing in multiagent systems (MASs). We use the term MADP to refer to a collec-
tion of mathematical models for multiagent planning: multiagent Markov de-
cision processes (MMDPs) [2], decentralized MDPs (Dec-MDPs), decentralized

1

partially observable MDPs (Dec-POMDPs) [1], partially observable stochastic
games (POSGs) [3], etc.

The toolbox is designed to be rather general, potentially providing support
for all these models, although so far most effort has been put in planning algo-
rithms for discrete Dec-POMDPs. It provides classes modeling the basic data
types of MADPs (e.g., action, observations, etc.) as well as derived types for
planning (observation histories, policies, etc.). It also provides base classes for
planning algorithms and includes several applications using the provided func-
tionality. For instance, applications that use JESP or brute-force search to solve
.dpomdp files for a particular planning horizon. In this way, Dec-POMDPs can
be solved directly from the command line. Furthermore, several utility applica-
tions are provided, for instance one which empirically determines a joint policy’s
control quality by simulation.

This document is split in two parts. The first presents a mathematical
model of the family of MADPs, which also introduces notation, gives a high-
level overview of the toolbox and an example of how to use it. In the second
part, some more specific design choices and mechanisms are explained.

MADPs and overview

2 MADPs and basic notation

As mentioned, MADPs encompass a number of different models. Here we intro-
duce the components of these mathematical models and some basic notation.

2.1 Discrete time MASs

A MADP is often considered for a particular finite number of discrete time
steps t. When searching policies (planning) that specify h actions, this number
is referred to as the (planning-)horizon. So typically we look at time steps:

t = 0, 1, 2, ..., h− 2, h− 1.

At each time step:

• The world is in a specific state s ∈ S.

• Each agent receives an individual observation: a (noisy) observation of
the environment’s state.

• The agents take an action.

The individually selected actions form a joint action. After such a joint action,
the system jumps to the next time step. In this jump the systems’ state may
change stochastically, and this transition is influenced by the taken joint action.
In MADP models (such as the Dec-POMDP), there are transition and observa-
tion functions describing the probability of state transitions and observations.

2

2.2 Basic MADP components

More formally, a multiagent decision process (MADP) consists of a subset of
the following components:

• A finite set of n agents.

• S is a finite set of world states.

• The set A = ×iAi is the set of joint actions, where Ai is the set of actions
available to agent i. Every time step, one joint action a = 〈a1, ..., an〉 is
taken. Agents do not observe each other’s actions.

• O = ×iOi is the set of joint observations, where Oi is a finite set of
observations available to agent i. Every time step one joint observation
o = 〈o1, ..., on〉 is received, from which each agent i observes its own
component oi.

• b0 ∈ P (S), is the initial state distribution at time t = 0.1

• A transition function that specifies the probabilities P (s′|s,a).

• An observation function that specifies the probabilities P (o|a, s′).

• A set of reward functions R(s,a) that specify the payoffs of the agents.

The partially observable stochastic game (POSG) is the most general model
in the MADP-family. Dec-POMDPs are similar, but all the agents receive the
same reward, so only 1 reward function is needed.

Unless stated otherwise, we use superscript for time-indices. I.e., a2
i denotes

the agent i’s action at time t = 2.

2.3 Histories

Let us more formally consider what the history of the process is. A MADP
history of horizon h specifies h time-steps t = 0, ..., h−1. At each of these time-
steps, there is a state st, joint observation ot and joint action at. Therefore,
when the agents will have to select their k-th actions (at t = k− 1), the history
of the process is a sequence of states, joint observations and joint actions, which
has the following form:

(

s0,o0,a0, s1,o1,a1, ..., sk−1,ok−1
)

.

Here s0 is the initial state, drawn according to the initial state distribution
b0. The initial joint observation o0 is usually assumed to be the empty joint
observation: o0 = o∅ =

〈

o1,∅, ..., on,∅

〉

. Consequently in the MADP toolbox
there is no initial observation.

An agent can only observe his own actions and observations. Therefore we
introduce notions of histories from the perspective of an agent. We start with
the action-observation history of agent i at time step t:

~θ t
i =

(

a0
i , o

1
i , a

2
i , ..., o

t−1
i , at−1

i , ot
i

)

1We use P (X) to denote the infinite set of probability distributions over the finite set X.

3

note that the choice points for the agents are right before the action:

~θ k
i =

(

↑t=0
a0

i , o
1
i , ↑t=1

a2
i , ..., o

k−1
i ,

↑t=k−1
ak−1

i , ok
i

)

Therefore, when we write

~o t
i =

(

o1
i , , ..., o

t−1
i , ot

i

)

for agent i’s observation history at time step t and

~a t
i =

(

a0
i , a

1
i , , ..., a

t−1
i

)

for the action history of agent i at time step t, we can redefine the action-
observation history as:

~θ t
i ≡

〈

~o t
i ,~a t

i

〉

.

For time step t = 0, we have that

• ~a 0
i = (()) = ~a∅

• ~o 0
i = (()) = ~o∅

are empty sequences.

3 Overview of the MADP Toolbox

The framework consists of several parts, grouped in different libraries. These
are briefly discussed here.

3.1 The base library (libMADPBase)

The base library is the core of the MADP toolbox. It contains:

• A representation of the basic elements in a decision process such as states,
(joint) actions and observations.

• A representation of the transition, observation and reward models in a
multiagent decision process. These models can also be stored in a sparse
fashion.

• A uniform representation for MADP problems, which provides an interface
to a problem’s model parameters.

• Auxiliary functionality regarding manipulating indices, exception han-
dling and printing: E, IndexTools, PrintTools. Some project-wide defi-
nitions are stored in the Globals namespace.

3.2 The parser library (libMADPParser)

The parser library only depends on the base library, and contains a parser for
.dpomdp files, which is a file format for problem specifications of discrete Dec-
POMDPs. A set of benchmark problem files can be found in the problems/ di-
rectory, and the .dpomdp syntax is documented in problems/example.dpomdp.
The format is based on Tony’s POMDP file format, and the formal specifica-
tion is found in src/parser/dpomdp.spirit. The parser uses the Boost Spirit
library. Also, parsers for several transition-observation independent models are
provided, which are derived from the .dpomdp parser.

4

3.3 The support library (libMADPSupport)

The support library contains basic data types and support useful for planning,
such as:

• A representation for (joint) histories, for storing and manipulating obser-
vation, action and action-observation histories.

• A representation for (joint) beliefs, both stored as a full vector as well as
a sparse one.

• Functionality for representing (joint) policies, as mappings from histories
to actions.

• Shared functionality for discrete MADP planning algorithms, collect in
PlanningUnitMADPDiscreteand PlanningUnitDecPOMDPDiscrete. Com-
putes (joint) history trees, joint beliefs, and value functions.

• An implementation of the DecTiger problem [4] which does not use
dectiger.dpomdp, see ProblemDecTiger. Also an implementation of the
Fire Fighting problem [6].

• Functionality for handling command-line arguments is provided by
ArgumentHandlers.

3.4 The planning library (libMADPplanning)

The planning library depends on the other libraries and contains functionality
for planning algorithms, as well as some solution methods. In particular it
contains

• Dec-POMDP solution algorithms:

– Brute Force Search.

– JESP (exhaustive and dynamic programming variations) [4].

– Direct Cross-Entropy Policy Search [5].

– GMAA∗, in particular MAA∗ [8] and k-GMAA∗ (as well as forward
sweep policy computation) [6].

• POMDP solution techniques: Perseus [7].

• Functionality for building and solving Bayesian Games.

• Heuristic Q-functions: QMDP, QPOMDP, and QBG [6].

• A simple simulator to empirically test the control quality of a solution.

5

1 #include "ProblemDecTiger.h"

2 #include "JESPExhaustivePlanner.h"

3 int main()

4 {

5 ProblemDecTiger dectiger;

6 JESPExhaustivePlanner jesp(3,&dectiger);

7 jesp.Plan();

8 cout << jesp.GetExpectedReward() << endl;

9 cout << jesp.GetJointPolicy()->SoftPrint() << endl;

10 return(0);

11 }

Figure 1: A small example program that runs JESP on the DecTiger problem.

4 Using the MADP toolbox

Here we give an example of how to use the MADP toolbox. Figure 1 provides
the full source code listing of a simple program. It uses exhaustive JESP to plan
for 3 time steps for the DecTiger problem, and prints out the computed value
as well as the policy. Line 5 constructs an instance of the DecTiger problem
directly, without the need to parse dectiger.dpomdp. Line 6 instantiates the
planner, with as arguments the planning horizon and a reference to the problem
it should consider. Line 7 invokes the actual planning and lines 8 and 9 print
out the results.

This is a simple but complete program, and in the distribution (in
src/examples) more elaborate examples are provided which, for instance,
demonstrate the command-line parsing functionality and the use of the .dpomdp
parser. Furthermore, for each of the solution methods provided there is a pro-
gram to use it directly.

Background and design of
particular functionality

5 Indices for discrete models

Although the design allows for extensions, the MADP toolbox currently only
provides implementation for discrete models. I.e., models where the sets of
states, actions and observations are discrete. For such discrete models, imple-
mentation typically manipulates indices, rather than the basic elements them-
selves. The MADP toolbox provides such index manipulation functions. In
particular, here we describe how individual indices are converted to and from
joint indices.

6

5.1 Enumeration of joint actions and observations

As a convention, joint actions a = 〈a1, ..., an〉 are enumerated as follows

〈0, . . . , 0, 0〉 — 0

〈0, . . . , 0, 1〉 — 1

...
...

...

〈0, . . . , 1, 0〉 — |An|

...
...

...

〈1, . . . , 1, 1〉 — |A1| · . . . · |An| − 1.

This enumeration is enforced by ConstructJointActions in
MADPComponentDiscreteActions. The joint action index can be deter-
mined using the IndividualToJointIndices functions from IndexTools.h.
This file also lists functions for the reverse operation.

Joint observation enumeration is analogous to joint action enumeration (and
therefore the same functions can be used).

5.2 Enumeration of (joint) histories

Most planning procedures work with indices of histories. For example, Poli-
cyPureVector implements a mapping not from observation histories to actions,
but from indices (of typically observation-) histories to indices (of actions).

It is important to be able convert between indices of joint/individual ac-
tion/observation histories and therefore that the method by which the enumer-
ation is performed is clear. This is what is described in this section.

The number of such histories is dependent on the number of observations for
each agent, as well as the planning history h. As a result the auxiliary functions
for histories have been included in PlanningUnitMADPDiscrete. This class also
provides the option to generate and cache joint (action-) observation histories,
so that the computations described here do not have to be performed every
time.

5.2.1 Observation histories

Figure 2 illustrates how observation histories are enumerated. This enumeration
is

• based on the indices of the observations of which they consist.

• breadth-first, such that smaller histories have lower indices and histories
for a particular time step t occupy a closed range of indices (also indicated
in figure 2).

We will now describe the conversion between observation history indices and
observation indices in more detail.

7

Figure 2: Illustration of the enumeration of (joint) observation histories. This
illustration is based on a MADP with 4 (joint) observations.

Observation indices to observation history index In order to convert a

sequence of observation indices up to time step k for agent i
(

Io1

i
, Io2

i
, ..., Iok

i

)

2

to an observation history index, the following formula can be used:

I~o k
i

= offsetk +
(

Io1

i
· |Oi|

k−1
+ Io2

i
· |Oi|

k−2
+ ... + Iok−1

i
· |Oi|

1
+ Iok

i
· |Oi|

0
)

,

I.e.,
(

Io1

i
, Io2

i
, ..., Iok

i

)

is interpreted as a base-|Oi| number and offset by

offsetk =

k−1
∑

j=0

|Oi|
j
− 1 =

|Oi|
k
− 1

|Oi| − 1
− 1.

(One is subtracted, because the indices start numbering from 0.)
As an example, the sequence leading to index 45 in figure 2 is (1, 2, 0) with

k = 3 and |Oi| = 4. We therefore get:
[

43 − 1

4 − 1
− 1

]

+
[

1 · 42 + 2 · 41 + 0 · 40
]

=

64 − 1

3
+ 16 + 8 + 0 =

21 + 24 = 45.

This conversion is performed by GetObservationHistoryIndex.

Observation history index to observation indices The inverse is given
by a standard division procedure:

45 − 21 =24 %4
→

0
/4
→

6 %4
→

2
/4
→

1

2Note, we assume the initial observation o0

i to be empty. I.e. the sequence of indices
“

Io1

i
, Io2

i
, ..., I

ok
i

”

corresponds to the following sequence of observations:
`

oi,∅, o1

i , o2

i , ..., ok
i

´

.

8

0

1

[0,0]

[1,6]

[7,42]

0 1

0 1 2 0 1 2

2 3 4 5 6

13

0

0 1 2

14 15 16

1

0 1 2

17 18

0

0 1 2

32 3331

1,2,...

1,2,... (joint) action-observation history indices

(joint) observation indices

1,2,... (joint) action indices

Figure 3: Illustration of the enumeration of (joint) action-observation histo-
ries. This illustration is based on a MADP with 2 (joint) actions and 3 (joint)
observations.

5.2.2 Action histories

Individual action histories are enumerated exactly the same way as observation

histories: a sequence of actions indices up to time step k
(

Ia0

i
, Ia1

i
, ..., Iak−1

i

)

can

be converted to an action history index by:

I~a k
i

= offsetk +
(

Ia0

i
· |Ai|

k−1 + ... + Iak−1

i

· |Ai|
0
)

.

5.2.3 Action-observation histories

Enumeration of action-observation histories follows the same principle as for
observation histories (and action histories), but have a complicating factor.
‘Action-observations’ are no data type and indices are not clearly defined.

Therefore, in order to implement action-observation histories an enu-
meration of action-observation is assumed. Let an action observation his-
tory ~θ k

i =
(

o0
i , a

0
i , o

1
i , a

1
i , o

2
i , ..., a

k−1
i , ok

i

)

be characterized by its indices
(

Ia0

i
, Io1

i
, Ia1

i
, Io2

i
, ..., Iak−1

i
, Iok

i

)

(again we assume no initial observation). We

can group these indices as
(〈

Ia0

i
, Io1

i

〉

,
〈

Ia1

i
, Io2

i

〉

, ...,
〈

Iak−1

i
, Iok

i

〉)

, such that

each
〈

Iat−1

i
, Iot

i

〉

corresponds to an action-observation. Clearly, there are

|Ai| · |Oi| action-observations. Let’s denote an action-observation with θi and
its index with Iθi

, corresponding to action ai and observation oi, we then have
that:

Iθi
= Iai

· |Oi| + Ioi
.

ActionAndObservation to ActionObservationIndex from
IndexTools.h performs this computation. The inverse opera-
tion is performed by ActionObservation to ActionIndex and
ActionObservation to ObservationIndex,

9

Now these indices are defined, the same procedure for observation histories
can be used as illustrated in fig. 3. I.e.,

I~θ k
i

=offsetk + Iθ1

i
· (|Ai| · |Oi|)

k−1
+ Iθ2

i
· (|Ai| · |Oi|)

k−2
+ ...

+ Iθk−1

i

· (|Ai| · |Oi|)
1 + Iθk

i
· (|Ai| · |Oi|)

0
,

Note that

Iθp

i
t · (|Ai| · |Oi|)

k−t =
(

Iat
i
· |Oi| + Iot

i

)

· (|Ai| · |Oi|)
k−t

= Iat
i
· |Oi|

k−t+1
· |Ai|

k−t
+ Iot

i
|Oi|

k−t
· |Ai|

k−t

As an example, index 32 is corresponds to index sequence (1, 1, 0, 1) which, in
action-observation indices, corresponds with (4, 1) and thus:

(

60 + 61
)

+ 4 · 62−1 + 1 · 62−2 =

7 + 24 + 1 = 32

Alternatively we can use the sequence (1, 1, 0, 1) directly:

7 +
(

1 · 32−1+1 · 22−1 + 1 · 32−1 · 22−1
)

+
(

0 · 31−1+1 · 21−1 + 1 · 31−1 · 21−1
)

=

7 +
(

1 · 32 · 21 + 1 · 31 · 21
)

+
(

0 · 31 · 20 + 1 · 30 · 20
)

=

7 + (1 · 9 · 2 + 1 · 3 · 2) + (0 · 3 · 1 + 1 · 1 · 1) =

7 + 18 + 6 + 1 =

7 + 25 =32

5.2.4 Joint histories

Joint observations are enumerated in the same way as individual observation
histories, only now using the indices of joint observations rather than individual
observations.

I.e., figure 2 also illustrates how joint observation histories are enumerated.
And in order to convert a sequence of joint observations indices up to time step
k (I

o
1 , ..., I

o
k) to an observation history index, the following formula can be

used:

I~o = offsetk +
(

I
o
0 · |O|

k−1
+ I

o
1 · |O|

k−1
+ ... + I

o
k−1 · |O|

1
+ I

o
k · |O|

0
)

,

I.e., (I
o
1 , ..., I

o
k) is interpreted as a base-|O| number and offset by

offsetk+1 =
k−1
∑

j=0

|O|j − 1 =
|O|

k
− 1

|O| − 1
− 1.

Indices for joint action histories and joint action-observation histo-
ries are computed in the same way. The action-observation functions
(ActionObservation to ActionIndex, etc.) can also be used for joint action-
observations.

PlanningUnitMADPDiscrete also provides functions to convert joint to indi-
vidual history indices JointToIndividualObservationHistoryIndices, etc.

10

6 Joint beliefs and history probabilities

Planning algorithms for MADPs will typically need the probabilities of par-
ticular joint action observation histories, and the probability over states they
induce (called joint beliefs). PlanningUnitMADPDiscrete provides functionality
for this, which we discuss here.

6.1 Theory

Let Pπ(at|~θt) denote the probability of a as specified by π, then P (st, ~θt|π, b0)
is recursively defined as

P (st, ~θt|π, b0) =
∑

st−1∈S

P (st, ~θt|st−1, ~θt−1, π)P (st−1, ~θt−1|π, b0). (1)

with

P (st, ~θt|st−1, ~θt−1, π) = P (ot|at−1, st)P (st|st−1,at−1)Pπ(at−1|~θt−1).

For stage 0 we have that ∀s0 P (s0, ~θ∅|π, b0) = b0(s0).

Since we tend to think in joint beliefs b
~θt

(st) ≡ P (st|~θt, π, b0), we can also
represent the distribution (1) as:

P (st, ~θt|π, b0) = P (st|~θt, π, b0)P (~θt|π, b0) (2)

The joint belief P (st|~θt, π, b0) The joint belief P (st|~θt, π, b0) is given by:

P (st|~θt, π, b0) =
P (ot|at−1, st)

∑

st−1 P (st|st−1,at−1)P (st−1|~θt−1, π, b0)
∑

st P (ot|at−1, st)
∑

st−1 P (st|st−1,at−1)P (st−1|~θt−1, π, b0)

=
P (st,ot|at−1, ~θt−1, π, b0)

P (ot|at−1, ~θt−1, π, b0)
(3)

where P (ot|at−1, ~θt−1, π, b0) = P (~θt|at−1, ~θt−1, π, b0) .

The probability of an history P (~θt|π, b0) The second part of (2) is given
by

P (~θt|π, b0) = P (~θt|~θt−1, π, b0)P (~θt−1|π, b0)

= P (~θt|at−1, ~θt−1, π, b0)Pπ(at−1|~θt−1, π, b0)P (~θt−1|π, b0)

= P (ot|at−1, ~θt−1, π, b0)Pπ(at−1|~θt−1, π, b0)P (~θt−1|π, b0) (4)

where P (ot|at−1, ~θt−1, π, b0) is the denominator of (3).

11

Algorithm 1 [b
~θt

, P (~θt|π,~θt′ , b
~θt′

)] = GetJAOHProbs(~θt, π, b
~θt′

, ~θt′)

1: if ~θt = ~θt′ then

2: return [b
~θt

= b
~θt′

, P (~θt|π,~θt′ , b
~θt′

) = 1]
3: end if

4: if ~θt not an extention of ~θt′ then

5: return [b
~θt

= ~0, P (~θt|π,~θt′ , b
~θt′

) = 0]
6: end if

7: ~θt′′ = (~θt′ ,at′ ,ot′+1) {consist. with ~θt}

8: [b
~θt′′

, P (~θt′′ |at′ , ~θt′ , b
~θt′

)] = b
~θt′

.Update(at′ ,ot′+1) {belief update, see (3)}

9: [b
~θt

, P (~θt|π,~θt′′ , b
~θt′′

)] = GetJAOHProbs(~θt, π, b
~θt′′

, ~θt′′)

10: P (~θt|π,~θt′ , b
~θt′

) = P (~θt|π,~θt′′ , b
~θt′′

)P (~θt′′ |at′ , ~θt′ , b
~θt′

)Pπ(at′ |~θt′ , π)

11: return [b
~θt

, P (~θt|π,~θt′ , b
~θt′

)]

6.2 Implementation

Since computation of P (~θt|π, b0) is interwoven with the computation of the joint

belief through P (ot|at−1, ~θt−1, π, b0), it is impractical to separately evaluate (3)
and (4).

Rather we define a function

[b
~θt

, P (~θt|π, b0)] = GetJAOHProbs(~θt, π, b0)

Because in many situations an application might evaluate similar ~θt (i.e.,
ones with an identical prefix), a lot of computation will be redundant. To give
the user the possibility to avoid this, we also define

[b
~θt

, P (~θt|π,~θt′ , b
~θt′

)] = GetJAOHProbs(~θt, π, b
~θt′

, ~θt′)

which returns the probability and associated joint belief of ~θt, given that ~θt′

(and associated joint belief b
~θt′

) are realized (i.e., given that P (~θt′) = 1).

7 Policies

Here we discuss some properties and the implementation of policies. Policies
are plans for agents that specify how they should act in each possible situation.
As a result a policy is a mapping from these ‘situations’ to actions. Depending
on the assumption on the observability in a MADP, however, these ‘situations’
might be different. Also we would like to be able to reuse the implementations
of policies for problems with a slightly different nature, for instance (Bayesian)
games.

In the MADP toolbox, the most general form of a policy is a mapping from
a domain (PolicyDomain) to (probability distributions over) actions. Currently
we have only considered policies for discrete domains, which are mappings from
indices (of these histories) to indices (of actions). It is typically still necessary
to know what type of indices a policy maps from in order to be able to reuse
our implementation of policies. To this end a discrete policy maintains its
IndexDomainCategory. So far there are four types of index-domain categories:
TYPE INDEX, OHIST INDEX, OAHIST INDEX and STATE INDEX.

12

As said PolicyDiscrete class represents the interface policies for discrete
domains. PolicyDiscretePure is the interface for a pure (deterministic) policy.
A class that actually implements a policy is PolicyPureVector. This class also
implements a function to get and set the index of the policy (pure policies over
a finite domain are enumerable). Joint policies are are represented by similarly
named classes JointPolicyDiscrete, JointPolicyPureVector, etc.

In order to instantiate a (joint)policy, it needs to know several things
about the problem it is defined over. We already mentioned the index do-
main category, but there is information needed as well (the number of agents,
the sizes of their domains, etc.). To provide this information, each prob-
lem for which we want to construct a (joint) policy has to implement the
Interface ProblemToPolicyDiscretePure.

References

[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein.
The complexity of decentralized control of Markov decision processes. Math-

ematics of Operations Research, 27(4):819–840, 2002. ISSN 0364-765X. doi:
http://dx.doi.org/10.1287/moor.27.4.819.297.

[2] Craig Boutilier. Planning, learning and coordination in multiagent decision
processes. In Proceedings of the 6th conference on Theoretical Aspects of

Rationality and Knowledge, pages 195–210. Morgan Kaufmann, 1996. ISBN
1-55860-417-9.

[3] Eric A. Hansen, Daniel S. Bernstein, and Shlomo Zilberstein. Dynamic pro-
gramming for partially observable stochastic games. In Proc. of the National

Conference on Artificial Intelligence, pages 709–715. AAAI Press / The MIT
Press, 2004. ISBN 0-262-51183-5.

[4] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy
Marsella. Taming decentralized POMDPs: Towards efficient policy compu-
tation for multiagent settings. In Proc. of the International Joint Conference

on Artificial Intelligence, pages 705–711, 2003.

[5] Frans A. Oliehoek, Julian F.P. Kooi, and Nikos Vlassis. The cross-entropy
method for policy search in decentralized POMDPs. Informatica, 32:341–
357, 2008.

[6] Frans A. Oliehoek, Matthijs T. J. Spaan, and Nikos Vlassis. Optimal and
approximate Q-value functions for decentralized POMDPs. Journal of Ar-

tificial Intelligence Research, 32:289–353, 2008.

[7] Matthijs T. J. Spaan and Nikos Vlassis. Perseus: Randomized point-based
value iteration for POMDPs. Journal of Artificial Intelligence Research, 24:
195–220, 2005.

[8] Daniel Szer, François Charpillet, and Shlomo Zilberstein. MAA*: A heuristic
search algorithm for solving decentralized POMDPs. In Proc. of Uncertainty

in Artificial Intelligence, pages 576–583, 2005.

13

