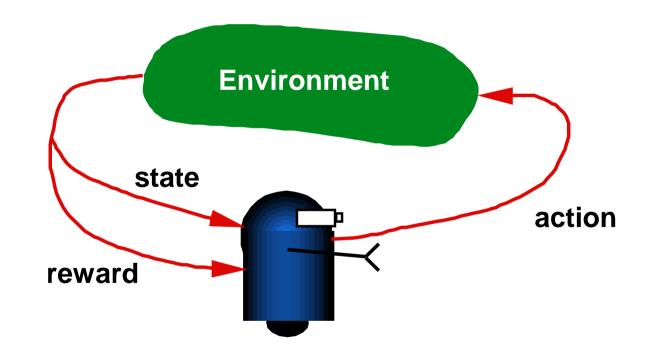


Decsision Making in Intellingent Systems:

Partially observable Markov decision processes

14 april 2008 Frans Oliehoek

• Up to now...

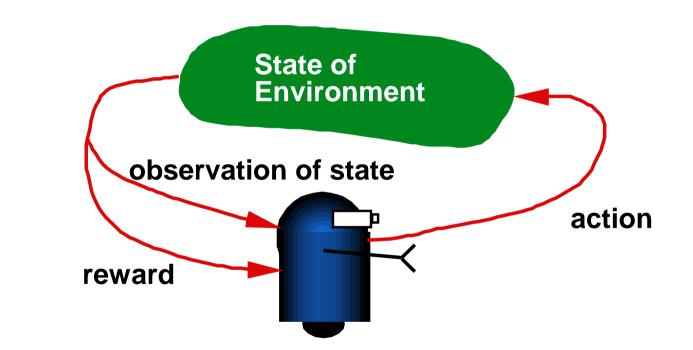


State = state of environment!

Frans Oliehoek - DMIS: POMDPs

14-4-08

• Up to now...

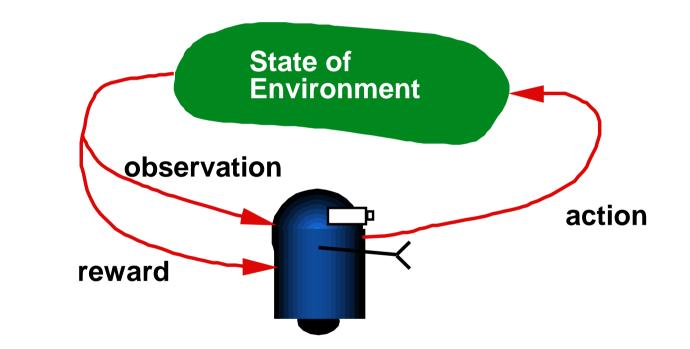


Agents observe the state (of the environment) -> Fully Observable MDP

IAS

Partially observable MDPs

- Now: Partially observable environment
 - agent can't observe the full state.

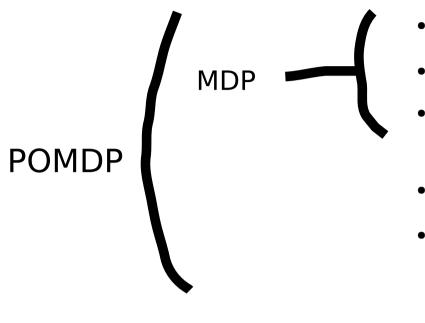


- ...but observation gives hint about the true state.

- In this course: focus on reinforcement learning(RL).
- RL = learning the model + planning
 - Planning is `using the model'
 - explicit: `model-based RL'
 - implicit: Q-learning etc.
- In this lecture: only planning!
 - We assume we have a perfect model of the (partially observable) world.

Ň

Partially observable MDPs

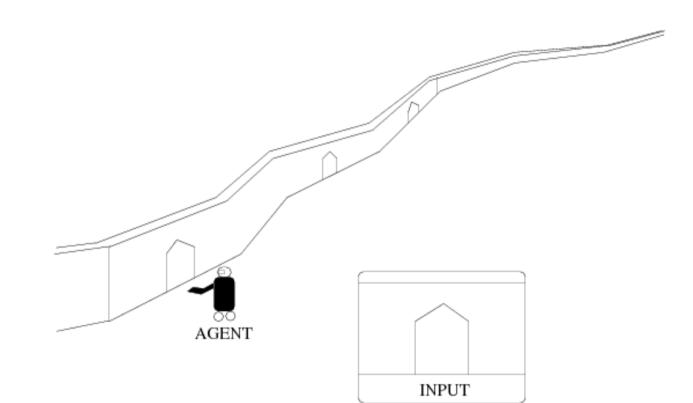


• States – s₁ ... s_n

- Transitions P(s' | s,a)
- Rewards R(s,a)
- Observations o₁...o_m
- Observation probs P(o | a, s')

POMDP: an example

• Where am I?



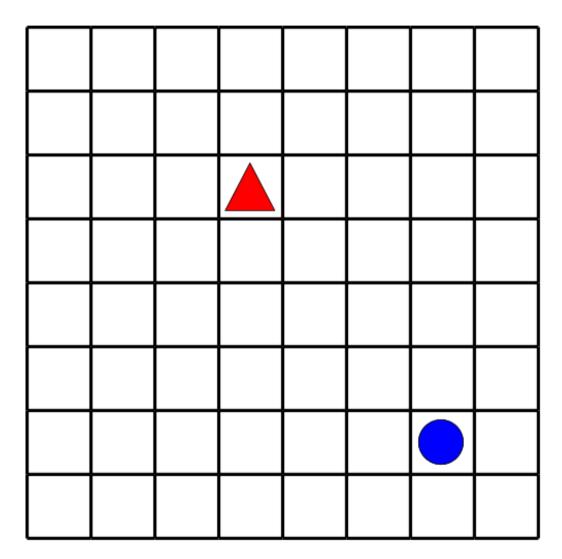
Partial observability

- When is an agent's environment partially observable?
 - Real world: almost always.

- Types of partial observability
 - Noise
 - Sensors have measurement errors.
 - Sensor (or other part of the agent) can fail.
 - Perceptual aliasing
 - When multiple situations can't be discriminated. I.e., multiple states give the same observation.
 - e.g. what is behind a wall?

Example: predator-prey

- Fully observable
- o=s=(-3,4)

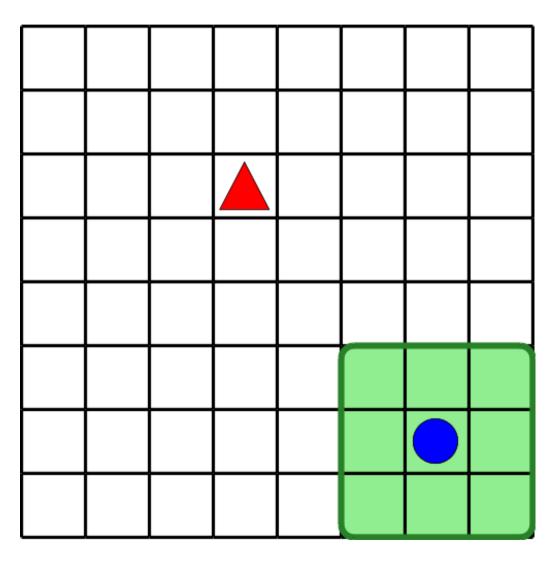


14-4-08

IAS

Example: predator-prey

- Partially observable perceptual aliasing
- o=Null

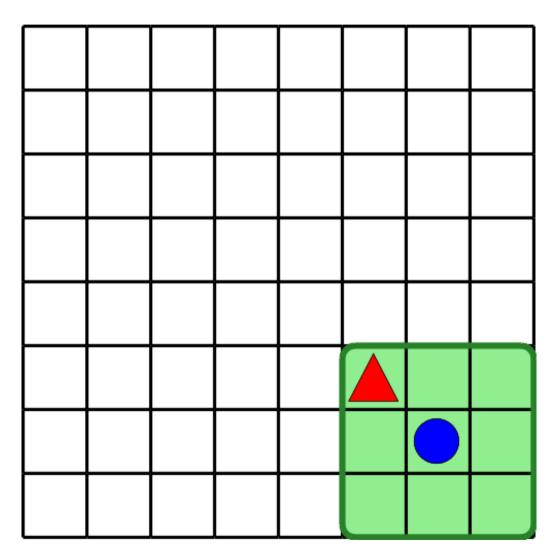


14-4-08

IAS

Example: predator-prey

- Partially observable (noise?)
- o=(-1,1)



14-4-08

IAS

Policies under partial observability?

- Now given that the agent only gets some observations, what policy should he follow?
 - How does such a policy look?

Policies under partial observability?

- Now given that the agent only gets some observations, what policy should he follow?
 - How does such a policy look?

- No more Markovian signal (i.e. the state) directly available to the agent...
 - In general: should use all information!
 - → The full history of observations.
- We will do something smarter in a moment...

A full POMDP: the Tiger problem

- •States: left / right (50% prob.)
- •Actions: Open left, open right, listen

•Observation: Hear left, Hear right

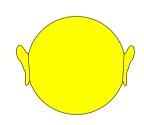
•**Transitions**: static, but opening resets.

•Rewards:

- correct door +10,
- wrong door -100
- listen -1

•Observations are correct 85% of the time.

- P(HearLeft | Listen, State=left) = 0.85
- P(HearRight | Listen, State=left) = 0.15



14-4-08

The Tiger problem

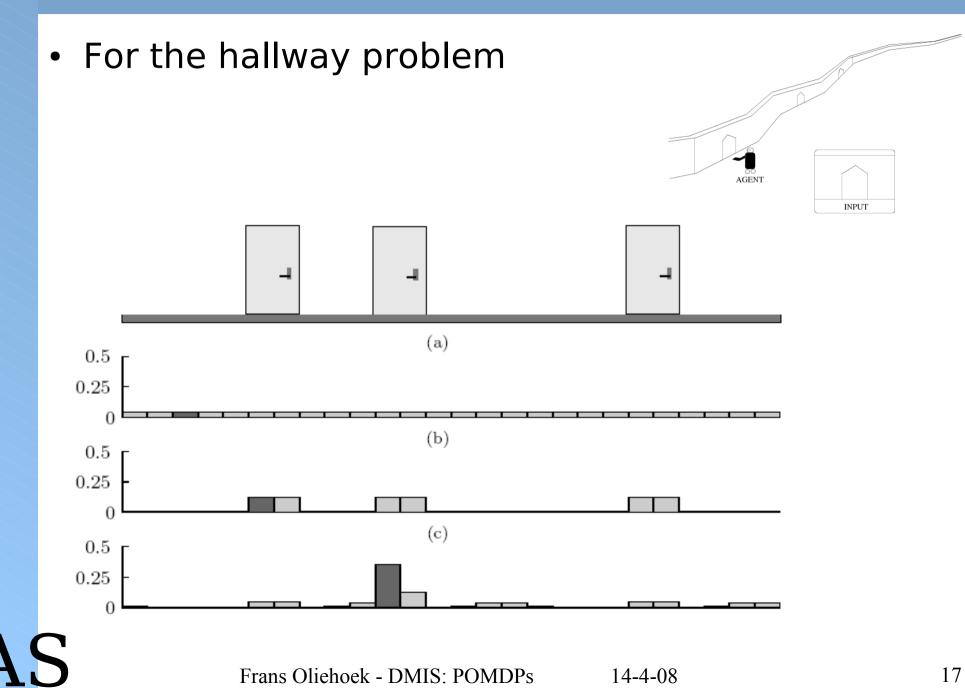
•When do you open...?

•After HL, HL ?

•After HL, HL, HL ?

IAS

- As promised: there is something smarter than trying all possible policies.
 - mappings from obs. histories -> actions is approx. $A^{(O^{t})}$
- Maintain the probability of all states.
 - Use that to make your decisions.
 - Did you estimate the probability of the states for the tiger problem?
 - The probability distribution over states at some time step, is called the belief b.
 - For all s: b(s) = Pr(s)
 - Sufficient statistic for the history.



Calculating the belief

- A POMDP is often specified with an initial belief.
 - So we want to keep track of the probs. of the states.
 - I.e., given b, a and o, we want to find the new belief b'_{ao} .
 - Process is called belief update.

DO not forget: the term `belief' can be misleading.

Not: `something that one agent can belief, but some other agent would not' But: The actual probability of the states, given the history.

Belief update – prerequisites

- b'_{ao} can be calculated from b and T, O... (resp. the transition, observation model)
- ...using Bayes' rule.

Bayes rule:

$$P(A|B) = P\frac{(A,B)}{P(B)} = \frac{P(B|A)P(A)}{P(B)}$$

Belief update

• substituting relevant vars in Bayes' rule. P(o|s')P(s')

$$P(s'|o) = \frac{P(o|s')P(s')}{P(o)}$$

adding same arguments to `given'

$$P(s'|b, a, o) = \frac{P(o|b, a, s')P(s'|b, a)}{P(o|b, a)}$$

expanding P(s'|b,a) gives the belief update:

$$P(o|a,s')\sum_{s} P(s'|s,a)b(s)$$
$$b'_{ao}(s') = \frac{P(o|a,s')\sum_{s} P(o|b,a)}{P(o|b,a)}$$
with $P(o|b,a) = \sum_{s'} P(o|a,s')\sum_{s} P(s'|s,a)b(s)$

POMDPs: making decisions

- Now we know how to maintain a belief over states...
 - ->but what decisions should we make?
- We treat 3 methods
 - Approximate
 - most likely state (MLS)
 - Q_{MDP}
 - Exact, given the initial belief
 - Solving the `belief MDP'

Most likely state

- Take the action that would seem best in...
 ...the most likely state s_{ml}.
 - I.e., state with highest probability.
 - b= $(0.1 \ 0.3 \ 0.5 \ 0.1)^{T}$ -> state 3
- But what is the best action in s_{ml}?
 - Solve the `underlying MDP'.
 - pretend there are no observations.
 - Solve the MDP.
 - Result: the MDP policy $\pi_{_{\rm MDP}}$
 - Perform action π_{MDP} (s_{ml}).

- Also uses solution of the `underlying MDP'
 - but now uses the found Q values, not the policy.
- Find the MDP Q(s,a)-values
 - E.g., using value iteration.
- Given the current belief b, for each action compute

$$Q(b,a) = \sum_{s} Q(s,a)b(s)$$

select the action with highest Q-value

$$a_{Qmdp} = arg max_a Q(b, a)$$

Solve the beliefs MDP

- For a finite (and not too large) horizon...
- and given an initial belief...
- → we can compute all possible beliefs.
 - `belief tree'
- Propagate back the expected reward

$$V(b) = max_a(R(b, a) + \sum_o P(o|b, a)V(b_{ao}))$$

with
$$R(b, a) = \sum_{s} R(s, a)b(s)$$

 The optimal action a* is the one that maximizes the above expression.

Pros and cons

- Exact (`belief MDP').
 - Gives **the** optimal policy.
 - Only applicable to fairly small problems.
 - Few actions and observations.
 - Small horizon.
- Approximate (MLS, Q-MDP)
 - Scales to larger problems.
 - Solving the underlying MDP is the hardest.
 - Also selecting the final action can be done on-line.
 - Not optimal:
 - Too positive.
 - Information gaining actions are undervaluated.

14-4-08

Solving for ANY initial belief

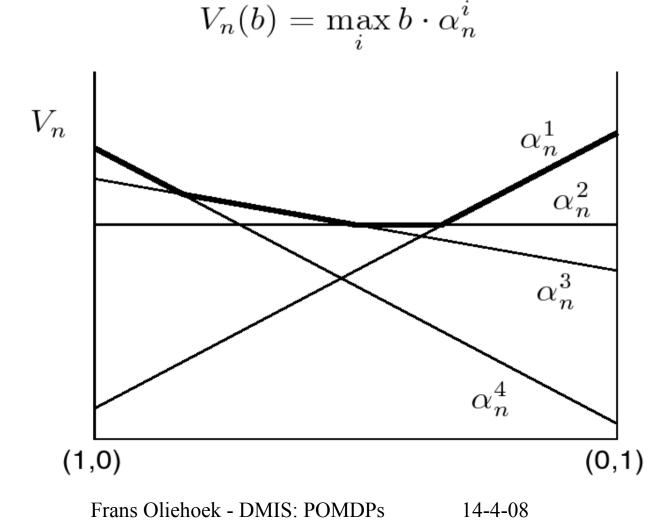
- In some cases no initial belief b⁰ available.
 - Perform planning for all possible initial beliefs.
- This is possible because of special property of the POMDP value function:
- Piecewise-linear and convex (PWLC)
- Like VI for MDPs: use a backup operator H

$$-V_{k+1} = HV_k$$

inf. horizon: V*=HV*

$$V(b) = max_a(R(b, a) + \gamma \sum_o P(o|b, a)V(b_{ao}))$$

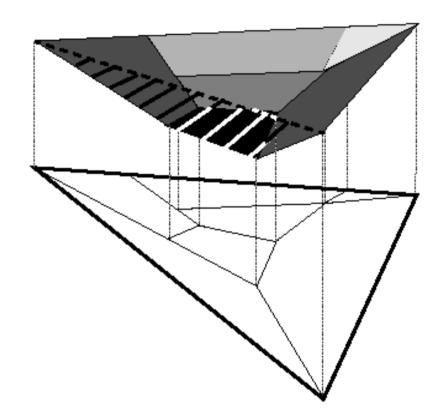
- V_k is PWLC (when k is finite)
 - Can be represented by a set of vectors.



IAS

PWLC in 3D

• 3 states



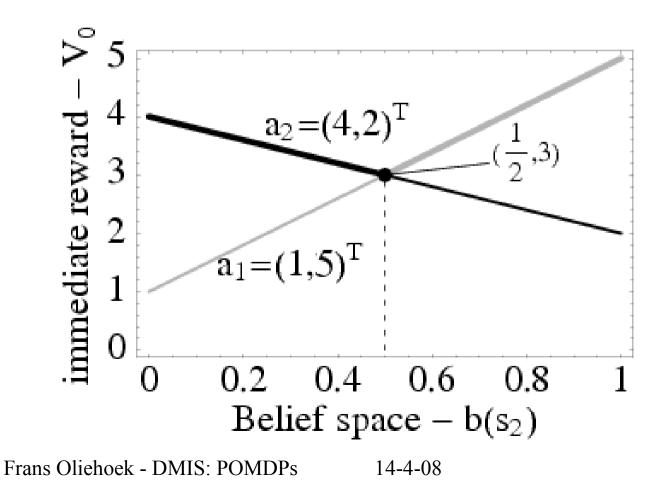
14-4-08

- Generalizes to arbitrary number of states.
 - Although hard to visualize.

A numeric example

V₀ given by the immediate rewards

R(s,a)	a_1	a_2
s_1	1	4
s_2	5	2



IAS

Constructing V_{k+1} from V_k

- Basic procedure for a particular belief b
 - for all a
 - $\alpha_{temp} = (0 \dots 0)^{T}$
 - for all o
 - calculate b_{ao}
 - Select $\alpha_{_{\text{ao}}}$ the maximizing vector from $V_{_k}$ at $b_{_{\text{ao}}}$

-
$$\alpha_{temp}$$
 += P(o|b,a) * α_{ao}

- create a new vector: $\alpha_a = R_a + \alpha_{temp}$
- Select the action that maximizes α_a . b
- However, need to do this for all beliefs...
 - Just generate all possible vectors.

- Planning in a partially observable world.
- In such a setting an agent can maintain a belief over states.
 - using Bayes' Rule
- We considered 3 planning methods for use with an initial belief:
 - Exact: `solving the belief MDP'
 - Approximate: MLS and Q-MDP
- When no initial belief:
 - use PWLC property to generate a value function.

14-4-08

 PWLC property also basis for more advanced algorithms.