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ABSTRACT
Bayesian methods for reinforcement learning are promising
because they allow model uncertainty to be considered ex-
plicitly and offer a principled way of dealing with the explo-
ration/exploitation tradeoff. However, for multiagent sys-
tems there have been few such approaches, and none of them
apply to problems with state uncertainty. In this paper we
fill this gap by proposing two frameworks for Bayesian RL
for multiagent systems with state uncertainty. This includes
a multiagent POMDP model where a team of agents oper-
ates in a centralized fashion, but has uncertainty about the
model of the environment. We also consider a best response
model in which each agent also has uncertainty over the
policies of the other agents. In each case, we seek to learn
the appropriate models while acting in an online fashion. We
transform the resulting problem into a planning problem and
prove bounds on the solution quality in different situations.
We demonstrate our methods using sample-based planning
in several domains with varying levels of uncertainty about
the model and the other agents’ policies. Experimental re-
sults show that overall, the approach is able to significantly
decrease uncertainty and increase value when compared to
initial models and policies.

1. INTRODUCTION
In recent years Bayesian reinforcement learning (RL) tech-

niques have received increased attention. Bayesian methods
are promising in that, in principle, they give an optimal
exploration/exploitation trade-off with respect to the prior
belief. In many real-world situations, the true model may
not be known, but a prior can be expressed over a class of
possible models. The uncertainty over models can be ex-
plicitly considered to choose actions that will maximize ex-
pected value over models, reducing uncertainty as needed to
improve performance. In practice, experience and domain
knowledge can be used to construct an informed prior which
can be improved online while acting in the environment.
Unfortunately, in multiagent systems, only a few Bayesian

RL methods have been considered. For example, the Bayesian
RL framework has been used in stochastic games [7] and fac-
tored Markov decision processes (MDPs) [28]. While either
model is intractable to solve optimally, both approaches gen-
erate approximate solutions (based on the value of perfect in-
formation) which perform well in practice. Both approaches
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also assume the state of the problem is fully observable (or
can be decomposed into fully observable components). This
is a common assumption to make, but many real-world prob-
lems have partial observability due to noisy or inadequate
sensors as well as a lack of communication with the other
agents. To the best of our knowledge, no approaches have
been proposed that can model and solve problems with par-
tial observability. In fact, while planning in partially observ-
able domains has had success [4, 5, 6, 13, 14, 16, 17, 19], very
few multiagent RL approaches of any kind consider partially
observable domains (notable exceptions, e.g., [1, 8, 20, 34]).

In this work, we propose two approaches for Bayesian
learning in multiagent systems with state uncertainty: a
centralized perspective using multiagent partially observ-
able MDPs (MPOMDPs) and a decentralized perspective
using best response models. In the centralized perspec-
tive, all agents share the same partially observable view of
the world and can coordinate on their actions, but have
uncertainty about the underlying environment. To model
this problem, we extend the Bayes Adaptive POMDP (BA-
POMDP) model [23, 24], which represents beliefs over pos-
sible model parameters using Dirichlet distributions. A BA-
POMDP can be characterized and solved as a (possibly infi-
nite state) POMDP. Because an MPOMDP can be mapped
to a POMDP, our centralized approach can be converted into
and solved as a BA-POMDP. This approach learns policies
and the underlying model while acting, but makes strong as-
sumptions about centralization of viewpoints and decisions.

As an alternative, we consider a decentralized perspec-
tive. We explore two different models that assume 1) all
other agents’ policies are known and fixed, 2) all other agent
policies are fixed, but unknown. In both scenarios, we as-
sume there is uncertainty about the underlying environ-
ment model. To represent and solve these models we show
how the BA-POMDP approach can be extended using ap-
propriate distributions over other agent policies. In both
the centralized and decentralized perspectives, we propose
a Bayesian approach to online learning which represents the
initial model and the initial policies for the other agents us-
ing priors and updates probability distributions over these
models as the agent acts in the real world. In many real-
world scenarios, these approaches should be able to quickly
learn a high-quality policy while acting online.

In Section 2, we describe the POMDP, MPOMDP and
Dec-POMDP [6] models as well as summarize the BA-POMDP
approach. We then introduce the BA-MPOMDP model in
Section 3 and discuss the theoretical results that transfer
from the BA-POMDP case, allowing solution quality to be



bounded when solving a finite approximation. In Section 4,
we describe the best-response models and extend theoretical
results to include uncertainty over the other agents’ policies.
In Section 5, we present proof-of-concept experimental re-
sults showing that model uncertainty and solution quality
can be improved over a small number of learning episodes
when compared to priors over models and policies. We dis-
cuss related work in Section 6 and conclude in Section 7.

2. BACKGROUND
This section provides a concise description of the relevant

frameworks for multiagent planning under uncertainty as
well as the previous work on Bayesian RL for POMDPs.

2.1 POMDPs, MPOMDPs, & Dec-POMDPs
Dec-POMDPs form a framework for multiagent planning

under uncertainty. We will reserve this name for the setting
where there is no explicit communication (e.g., no sharing of
observations) between agents. This means that each agent
will act based only on its individual observations. Formally,
a Dec-POMDP is a tuple 〈I, S, {Ai}, T, R, {Zi}, O, h〉 with:

• I, a finite set of agents;
• S, a finite set of states with designated initial state

distribution b0;
• Ai, a finite set of actions for each agent, i;
• T , a set of transition probabilities: T s~as

′

= Pr(s′|s,~a),
the probability of transitioning from state s to s′ when
the set of actions ~a are taken by the agents;

• R, a reward function: R(s,~a), the immediate reward
for being in state s and taking the set of actions ~a;

• Zi, a finite set of observations for each agent, i;
• O, a set of observation probabilities: O~as

′~z = Pr(~z|~a,s′),
the probability of seeing the set of observations ~o given
the set of actions ~a was taken which results in state s′;

• h, the horizon.

When agents are permitted to have different reward func-
tions, this model becomes the partially observable stochastic
game (POSG)[14]. Alternatively, it is possible to consider
the multiagent setting where the agents are allowed to share
their individual observations. In this case, we will restrict
ourselves to the setting where such communication is free
of noise, costs and delays and call the resulting model a
multiagent POMDP (MPOMDP). Thus, an MPOMDP is
a Dec-POMDP with the additional assumption of explicit
communication.
A POMDP [15] can be seen as the special case of a Dec-

POMDP with just one agent. Also, an MPOMDP can be
reduced to a special type of POMDP in which there is a
single centralized controller that takes joint actions and re-
ceives joint observations [22].
Most research concerning these models has considered the

task of planning : given a full specification of the model,
determine an optimal (joint) policy (e.g., [6, 14]). However,
in many real-world applications, the model is not (perfectly)
known in advance, which means that the agents have to learn
about their environment during execution. This is the task
considered in (multiagent) reinforcement learning (RL) [27].

2.2 Bayesian RL for POMDPs
A fundamental problem in RL is that it is difficult to

decide whether to try new actions in order to learn about
the environment, or to exploit the current knowledge about

the rewards and effects of different actions. In recent years,
Bayesian RL methods have become popular because they
potentially can provide a principled solution to this explo-
ration/exploitation trade-off [9, 11, 12, 21, 30].

In particular, we consider the framework of Bayes-Adaptive
POMDPs [23, 24]. This framework utilizes Dirichlet distri-

butions to model uncertainty over transitions, T sas
′

, and

observations, Oas
′z (typically assuming the reward function

is chosen be the designer and thus known). In particular,
if the agent could observe both states and observations, it
could maintain vectors φ and ψ of counts for transitions
and observations respectively. That is, φass′ is the transi-
tion count representing the number times state s′ resulted
from taking action a in state s and ψas′z is the observation
count representing the number of times observation z was
seen after taking action a and transitioning to state s′.

While the agent cannot observe the states and has uncer-
tainty about the actual count vectors, this uncertainty can
be represented using the regular POMDP formalism. That
is, the count vectors are included as part of the hidden state
of a special POMDP, called BA-POMDP. Formally, a BA-
POMDP is a tuple 〈SBP , A, TBP , RBP , Z,OBP , h〉 with

• SBP , the set of states SBP = S × T ×O;
• A, a finite set of actions;
• TBP , a set of state transition probabilities;
• RBP , a reward function;
• Z, a finite set of observations;
• OBP , a set of observation probabilities;
• h, the horizon.

We discuss these components in more detail below.
First, we point out that actions and observations remain

the same as in case there was no uncertainty about the
transition and observation function (i.e., the same as in
the regular POMDP). However, as mentioned, the state
of the BA-POMDP now includes the Dirichlet parameters:
sBP = 〈s, φ, ψ〉 and the set of states SBP = S×T ×O where

T = {φ ∈ N
|S||A||S|} is the space of all possible transition

parameters where each state action pair is visited at least
once. Similarly O = {ψ ∈ N

|S||A||Z|} is the space of all
possible observation parameters.1

Given a pair of count vectors φ,ψ, we can define the ex-
pected transition and observation probabilities as:

T sas
′

φ = E[T sas
′

|φ] =
φass′

Nsa
φ

, Oas
′z

ψ = E[Oas
′z|ψ] =

ψas′′z
Nas′

ψ

,

where Nsa
φ =

∑

s′′ φ
a
ss′′ , and N

as′

ψ =
∑

z′ ψ
a
s′z′ .

Remember that these count vectors are not observed by
the agent, since that would require observations of the state.
The agent can only maintain belief over these count vectors.
Still, when interacting with the environment, the ratio of
the true—but unknown—count vectors will converge to co-
incide with the true transition and observation probabilities
in expectation. It is important to realize, however, that this
convergence of count vector ratios does not directly imply
learnability by the agent: even though the ratio of the count
vectors specified by the true hidden state will converge, the
agent’s belief over count vectors might not.

The expected transition and observation probabilities can
be used to define the transition and observation model of

1Note that at least one of the counts per Dirichlet parameter
vector needs to be non-zero.



the BA-POMDP. In particular, the transition probabilities
P (〈s′, φ′, ψ′〉|〈s, φ, ψ〉, a) can be defined using a vector δass′
which is 1 at the index of a, s and s′ and 0 otherwise. Sim-
ilarly, for observations, we define δas′z to be a vector that
has value 1 at the index a, s′ and z and 0 otherwise. The
resulting transition and observation models are

TBP ((s,φ,ψ),a,(s
′,φ′,ψ′)) =

{

T sas
′

φ Oas
′z

ψ if φ′ = φ+ δass′ and ψ′ = ψ + δas′z
0 otherwise

(2.1)

OBP ((s,φ,ψ),a,(s
′,φ′,ψ′),z) =

{

1 if ψ′ = ψ + δas′z
0 otherwise

(2.2)

Note that the observation model is now deterministic as the
observation expectations are in the transition function: in
TBP , z is determined by ψ′ − ψ = δas′z.
The reward model remains the same (since it is assumed

to be known), RBP ((s,φ,ψ),a) = R(s,a). An initial state
distribution b0 as well as initial count vectors φ0 and ψ0 are
also assumed.
Notice that the BA-POMDP model described above has

an infinite number of states if we allow ourselves to consider
all possible count vectors for transitions and observations.
This infinite state representation makes performing belief
updates and solving the BA-POMDP impossible without
sampling. Fortunately, Ross et al. prove that the solution
quality can be bounded when considering a finite number of
count vectors [24]:

Theorem 1. Given any BA-POMDP, ǫ > 0 and horizon
h, it is possible to construct a finite POMDP by removing

states with count vectors φ,ψ that have Ns,a
φ > N ǫ

S or Nas′

ψ >
N ǫ
Z for suitable thresholds N ǫ

S, N
ǫ
Z .

However, even with finite count vectors, the BA-POMDP
formulation remains very large, necessitating sample-based
planning approaches to provide solutions. For example, the
approach of Ross et al. used an online planning approach
that determined the best action to take at a given belief
by performing dynamic programming using a simulator for
a small horizon, updating the belief (approximately) after
taking that action and receiving an observation and con-
tinuing this process until the end of the of the problem is
reached. Different methods for updating the belief were used
such as Monte Carlo sampling and heuristics for limiting the
number of belief states considered.

3. BA-MPOMDPS
In this section, we extend the BA-POMDP to the multi-

agent setting. As mentioned in Section 2 it is well-known
that, under the assumption of instantaneous communication
without noise or costs, a Dec-POMDP can be reduced to
an MPOMDP, which can then be treated as a single agent
model. In the same way, for a multiagent setting in which
there are uncertainties about the model, we propose to treat
the problem as a BA-MPOMDP. A BA-MPOMDP can be
seen as a BA-POMDP where the actions are joint actions
and the observations are joint observations. Due to this cor-
respondence, the theoretical results related to BA-POMDPs
also apply to the BA-MPOMDP model. The BA-MPOMDP
model is in principle applicable in any multiagent RL setting
where there is such instantaneous communication.

3.1 The Model
Formally, a BA-MPOMDP is a tuple

〈I, SBM , {Ai}, TBM , RBM , {Zi}, OBM , h〉 with:

• I, a finite set of agents;
• SBM , states S × T × O with initial state distribution
b0 and initial counts φ0 and ψ0;

• Ai, a finite set of actions for each agent, i;
• TBM , a set of state transition probabilities as defined

below;
• RBM , a reward function as defined below;
• Zi, a finite set of observations for each agent, i;
• OBM , a set of observation probabilities as defined be-

low;
• h, the horizon.

The framework is very similar to the POMDP case, but
actions, a, now become joint actions, ~a, and observations,
z’s, become joint observations, ~z. This means that a BA-
MPOMDP is specified using count vectors φ~ass′ and ψ~as′~z,

from their respective spaces: T = {φ ∈ N
|S||A||S|} is the

space of all possible transition counts and similarly O is
the space of all possible observation parameters O = {ψ ∈

N
|S||A||Z|}.
Each pair of vectors has associated expected transition

and observation probabilities T s~as
′

φ = φ~ass′/N
s~a
φ , Os

′~az
ψ =

ψ~as′z/N
~as′

ψ . These in turn are used to specify the transition
and observation model:

TBM ((s,φ,ψ),~a,(s′,φ′,ψ′)) =
{

T s~as
′

φ Os
′~az
ψ if φ′ = φ+ δ~ass′and ψ

′ = ψ + δ~as′z
0 otherwise

(3.1)

OBM ((s,φ,ψ),~a,(s′,φ′,ψ′),z) =
{

1 if φ′ = φ+ δ~ass′and ψ
′ = ψ + δ~as′z

0 otherwise
(3.2)

The reward model is given as RBM ((s,φ,ψ),~a) = R(s,~a)

3.2 Solution Methods
BA-MPOMDP formalism also suffers from an infinite state

space, since there can be infinitely many count vectors. How-
ever, also in the multiagent case, it is possible to create a
finite approximate model

Theorem 2. Given any BA-MPOMDP, ǫ > 0 and hori-
zon h, it is possible to construct a finite POMDP by re-
moving states with count vectors φ,ψ that have Ns,a

φ > N ǫ
S

or Nas′

ψ > N ǫ
Z for suitable thresholds N ǫ

S, N
ǫ
Z that depend

linearly on the number of states and joint observations, re-
spectively.

Proof. Since an MPOMDP is a special case of POMDP,
the BA-MPOMDP is a special case of BA-POMDP, thus
this follows directly from Theorem 1.

While this result is straightforward, the interesting part is
that while N ǫ

Z does depend on the number of joint observa-
tions, the count thresholds do not have any dependence on
the number of joint actions. Therefore, for problems with
few observations per agent, constructing this approximation
might be feasible, even if there are many actions.



Of course, in general even a finite approximation of a BA-
MPOMDP is intractable to solve optimally. Fortunately,
online sample-based planning approaches in principle apply
to this setting too. That is, the team of agents could perform
online planning by considering a small finite horizon. After
taking the joint action that resulted from the online planning
phase, the environment makes a transition, the agents get
observations, these observations are synchronized via com-
munication and every agent computes the new ‘joint belief’.
Then this process repeats, etc.
The actual planning could take place in a number of ways:

one agent could be designated the planner, which would re-
quire this agent to broadcast the computed joint action. Al-
ternatively, each agent can in parallel perform an identical
planning process (by, in the case of randomized planning,
syncing the random number generators). Then each agent
will compute the same joint action and execute its compo-
nent. An interesting direction of future work is whether the
planning itself can be done more effectively by distributing
the task over the agents.
However, in the above, there is an additional bottleneck

compared to the BA-POMDP: the number of joint actions
and joint observations is exponential in the number of agents.

4. BA-BRM
In many real-world scenarios, instantaneous, noise and

cost free communication may not be possible or practical.
Similarly, in competitive domains, this type of communica-
tion often does not make sense. As a result, agents must
learn during execution based solely on their own local infor-
mation. In this section, we describe different way of applying
Bayesian RL techniques in multiagent systems by giving a
subjective description of the problem. That is, we describe
the problem from a single agent’s perspective by defining
its best-response model (BRM). We propose a Bayesian ap-
proach to online learning which represents the initial model
and the initial policies for the other agents using priors and
updates probability distributions over these models as the
agent acts in the real world.

4.1 Best-Response Models
When making a subjective model from the perspective

of a given agent, there are a number of assumptions one
can make about uncertainty: First, we can assume that the
agent is uncertain about only the transition and observation
functions, but certain about the policies of the other agents.
Second, we can assume that it also is uncertain about the
other agents’ policies, but that these are fixed. Finally, we
can also assume that the other agents in turn are adaptive.
We discuss these different assumptions in the subsections
below, focusing on the first two. It is also possible that the
agent is certain about T,O but uncertain about the policy of
other agent. For such cases, the model we introduce for the
second setting applies. Alternatively, such a setting might
also be modeled using an I-POMDP (see Section 6).

4.2 Transition & Observation Uncertainty
Under the first assumption, agent i is uncertain about

the transition and observation functions, but knows the (de-
terministic) policy πj for all other agents.2 Since those πj

2These policies can be represented as look-up tables or be
computational procedures themselves. We do make the re-

map observation histories ωtj =
(

z1j , . . . ,z
t
j

)

to actions atj at
time t, agent i can model this situation using an augmented
POMDP [16], which we will call the best-response model, in
which states are tuples

〈

s,~ωt−i
〉

of nominal states s and ob-

servation histories of other agents ~ωt−i =
〈

~ωt1 . . . ~ω
t
i−1~ω

t
i+1 . . . ~ω

t
n

〉

.
Given that this is a POMDP, we can incorporate uncertainty
about transition and observation models by transforming it
to its Bayes adaptive variant.

Formally, we define a BA-BRM as a tuple
〈SBB ,Ai,TBB ,RBB,Zi,OBB , h〉 where

• Ai,Zi are the sets of actions and observations of agent i;
• SBB is the set of states

〈

s,~ωt−i,φ,ψ
〉

where φ is the
vector of counts φas~ωs′~ω′ and ψ is the vector of counts
ψas′~ω′z′ ;

• TBB is the transition function (see below);
• RBB is the reward function defined as
RBB(s,~ω

t
−i,φ,ψ,ai) =

∑

a−i
π−i(a−i|~ω

t
−i)R(s,ai,a−i);

• OBB is the observation function. As earlier
OBB((s,~ω

t
−i,φ,ψ),ai,(s

′,~ωt+1
−i ,φ

′,ψ′)) is 1 iff the count
vectors add correctly;

• h is the horizon.

The transition function is defined as

TBB((s,~ω
t
−i,φ,ψ),ai,(s

′,~ωt+1
−i ,φ

′,ψ′)) =
{

T s~ωas
′~ω′

φ Os
′~ω′az
ψ ,φ′ = φ+ δas~ωs′~ω′ , ψ′ = ψ + δas′~ω′z

0 otherwise.

where we dropped sub- and superscripts that are clear from
context. In this equation, the expected transition and ob-
servation functions are defined as

T s~ωas
′~ω′

φ =
φas~ωs′~ω′

∑

s′′~ω′′ φas~ωas′′~ω′′

(4.1)

Os
′~ω′,a,z
ψ =

ψas′~ω′,z
∑

z′ ψ
a
s′~ω′,z′

(4.2)

The former count ratio converges to P (s′,z−i|s,ai,a−i) (where
a−i is the action profile specified by π−i for ~ω−i) which is
the true probability of s′,~ωt+1

−i given s,~ωt−i,ai and π−i for
the true, but unknown, count vector φ∗. The latter ratio,
for ψ∗, converges to P (zi|ai,~a−i,s

′), the true probability of
receiving observation zi given s

′,~ωt+1
−i ,ai and π−i.

We point out that for this formulation, all the BA-POMDP
theory holds even with the inclusion of other agent histories
as part of the state information. Nevertheless, this model
assumes the policies of other agents are fixed, known and de-
terministic. This latter assumption can be removed. When
the other agents use a stochastic policy, those πj map action-
observation histories htj =

(

a0jz
1
j . . . a

t−1
j ztj

)

to actions atj .
For this case, we can trivially adapt the BA-BRM by re-

placing the ~ωt−i by ~h
t
−i.

4.3 Policy Uncertainty
The substitution of ~ωt−i by ~h

t
−i for stochastic policies brings

an interesting insight: two subsequent states (s,~ht−i) and

(s′,~ht+1
−i ) specify what actions the other agents took in the

previous step (since those are specified in the action-observation
histories). As such, counting these transitions, in general

striction, however, that they do not depend on the policy
followed by agent i.



may also allow us the learn about the policies of others if we
have uncertainty about them.
That is, the expected transition can be calculated as

T s
~has′~h′

φ =
φa
s~hs′~h′

∑

s′′,~h′′ φa
s~hs′′~h′′

with ~h = ~ht and ~h′ = ~ht+1, and therefore the true count
vector ratio will converge to the probability

P (st+1,~ht+1|st,~ht−i,a
t
i) = P (st+1,(~ht−i,~a

t
−i,~z

t+1
−i )|st,~ht−i,a

t
i)

= π−i(~a
t
−i|~h

t
−i)P (st+1|st,~at)

∑

z
t+1

i

P (~zt+1|st+1,~at) (4.3)

Note that we only need to consider h′ if it includes h. This
value includes the probabilities induced by the policies of
the other agents, allowing uncertainty with respect to the
other agents’ policies to also be represented.
An interesting aspect of this formulation is that it can be

used to bound the loss of computing a best response to one
particular policy while in fact the agent uses a different one.
To show this, we assume that there is a single other agent
and that for two policies πxj ,π

y
j of agent j we have that

∀ajhj

∣

∣πxj (aj |hj)− πyj (aj |hj)
∣

∣ ≤ ǫ. (4.4)

Assume that πxj is the true policy of agent j. In that case
the φ count vectors converge to some φ∗

x that satisfies

∀shas′h′

φa,x
shs′h′

N a,x
sh

= πxj (aj |h
t
j)P (st+1,zt+1

j |st,ati,a
t
j)

(whereN a
sh denotes the normalization constant) while, when

πyj is the true policy, these count ratios converge to

πyj (aj |h
t
j)P (st+1,zt+1

j |st,ati,a
t
j) =

φa,y
shs′h′

N a,y
sh

Additionally, we have that, independently of πj the policy
of the other agent, the ψ count ratios of the true hidden state
converge to

P (zt+1
i |ati,a

t
j ,s

t+1,zt+1
j ) =

ψa
s′~h′,z

N a

s′~h′

Note that here ~h′
j specifies both atj and zt+1

j .
It follows that, upon convergence of these ratios, we have

∣

∣

∣

∣

∣

φa,x
shs′h′

N a,x
sh

ψa
s′~h′,z

N a

s′~h′

−
φa,y
shs′h′

N a,y
sh

ψa
s′~h′,z

N a

s′~h′

∣

∣

∣

∣

∣

=
∣

∣

(

πxj (aj |hj)− πyj (aj |hj)
)

P (st+1,zt+1
j |st,ati,a

t
j)
∣

∣

P (zt+1
i |ati,a

t
j ,s

t+1,zt+1
j )

≤ǫP (st+1,zt+1
i ,zt+1

j |st,ati,a
t
j)

Moreover,

∑

s

∑

z

∣

∣

∣

∣

∣

φa,x
shs′h′

N a,x
sh

ψa
s′~h′,z

N a

s′~h′

−
φa,y
shs′h′

N a,y
sh

ψa
s′~h′,z

N a

s′~h′

∣

∣

∣

∣

∣

≤

∑

s

∑

z

ǫP (st+1,zt+1
i ,zt+1

j |st,ati,a
t
j) = ǫ (4.5)

That is, given that the difference between two policies is
bounded, the difference between count vector ratios, and
thus expected transition probabilities that they will induce

is bounded as well. This can subsequently be used to bound
the loss in value when optimizing against a wrong policy.

Theorem 3. Given φ∗
x, φ

∗
y and ψ∗, the converged count

vectors corresponding to two policies πxj ,π
y
j of agent j that

satisfy (4.4), then, for all stages-to-go t, then for any t-steps-
to-go policy for agent i, the associated values are bounded:

max
s∈S

∣

∣αt(s,φ
∗
x,ψ

∗)− αt(s,φ
∗
y,ψ

∗)
∣

∣ ≤
ǫ(γ − γt) ‖R‖∞

(1− γ)2
(4.6)

Proof. Here, ‖R‖∞ is the reward with greatest magni-
tude and γ is the discount factor. The proof is given in the
appendix.

The implication of this theorem is that if we compute
a best-response against some policy πxj which differs from
πyj , the true policy used by agent j, by at most ǫ, then
that loss in value is bounded by (4.6). While this relates
to bounds for model equivalence [33], no bounds on the loss
in value for different policies of the other agent have been
proposed. Also, we expect that these bound could have big
implications for work on influence based abstraction [31],
and, in particular, using approximate influences.

Finally, we point out that, when other agents are adaptive,
the assumption of a unknown, but fixed policy is violated.
In fact there are inherent limits to what can be learned by
Bayesian learners that perform a best-response [32]. Never-
theless, methods such as Q-learning have been shown to be
effective in such domains [25, 29]. We expect that it might
be possible to deal with this issue by, for instance, perform-
ing discounting of counts while learning during execution.
This is a fertile area for future research.

4.4 Solving BA-BRMs
BA-BRMs have an intractable (infinite) number of param-

eters, but again, the theory from [23] applies such that we
can ensure that a solution that is boundedly optimal can be
generated using a finite model.

Theorem 4. Given any BA-MPOMDP, ǫ > 0 and hori-
zon h, it is possible to construct a finite POMDP by re-
moving states with count vectors φ,ψ that have Ns,a

φ > N ǫ
S

or Nas′

ψ > N ǫ
Z for suitable thresholds N ǫ

S, N
ǫ
Z that depend

linearly on the number of augmented states and individual
observations, respectively.

Proof. Again, since a BRM is a special case of POMDP,
the BA-BRM is a special case of BA-POMDP, thus this
follows directly from Theorem 1.

The result itself is straightforward. In this case, however,
N ǫ
Z only depends on the size of the individual observation

set. However, this comes at a cost, since Nas′

ψ now de-
pends linearly on the number of augmented states, which
is O(|S|(|Aj ||Zj |)

h(n−1)). In case of a single other agent,
this means that complexity dependence on joint observa-
tions in the BA-MPOMDP is replaced by an exponential
dependence on the horizon.

Even in this case, the model will often be large and diffi-
cult to learn. Sample-based planning can also be used in this
scenario by transforming the BA-BRM into a BA-POMDP
and solving it. The number of states may become large, but
the number of number of actions in the BA-BRM remains
the same as in the original Dec-POMDP model (unlike the



BA-MPOMDP). Communication can also be incorporated
to coordinate the learning and improve its efficiency.
Prior distributions over environment and agent models

can be represented as initial count vectors. As is clear from
(4.3), the φ ratios correspond to (should converge to) the

true probability π−i(~a
t
−i|~h

t−1
−i )P (s′|s,~a)

∑

zi
P (~z|s′,~a). If these

probabilities can be estimated, the count vectors can be set
to ratios representing this quantity. Then, the confidence in
this estimation can be reflected in a scaling factor of the var-
ious counts. In this way, different aspects of the agent and
environment models can have different parameters and con-
fidence based on knowledge of the problem. In the absence
of domain knowledge a uniform prior with small counts can
be utilized.

5. EXPERIMENTAL EVALUATION
We performed a preliminary empirical evaluation of the

BA-MPOMDP and BA-BRM models.

5.1 Sample-Based Planning
To test performance of the different models, we imple-

mented a simulation of agents that interact with an environ-
ment over a number of episodes (Nepisodes). Importantly, at
the end of each episode, the belief over states is reset to the
initial belief, but the belief over count vectors is maintained.
That way, the agents learn across all the episodes.
The agents use an on-line sample-based planner to act:

in each stage of each episode, the agent(s) perform sample-
based planning in order to select a (joint) action. This ac-
tion is subsequently executed, a transition and observation is
sampled, the agents update their (joint) beliefs, and a new
round of online planning is initiated, etc. The beliefs are
represented using a particle filter (with Nparticles particles).
As the sample-based planner, we use Monte Carlo plan-

ning: the expected value for each (joint) action is evaluated
using a number (Nsamples) of Monte Carlo rollouts (i.e., us-
ing a random (joint) action selection) up to a particular
lookahead planning horizon (which can be shorter than h).
This planner also uses particle-based belief representations.3

5.2 Experimental Setup
We evaluate our BA-MPOMDP and BA-BRM approaches

by performing online learning using the common decentral-
ized tiger benchmark [16] for horizon 3. In this cooperative
problem, two agents have the choice of listening or opening
one of two doors. If both agents listen, they each hear a
noisy signal of the tiger’s location (0.85 probability of hear-
ing the correct location). If either agent opens a door, there
is a shared penalty for opening the door with the tiger and
a shared reward for opening the other door (which has trea-
sure behind it). If both agents choose to open the same
door, they receive a reduced penalty or a greater reward.
Whenever a door is opened the tiger transitions uniformly
to be behind one of the doors.
For illustration, we show only error in the observation

model, but unlike Ross et al. we do not assume the tran-
sition function is known. Instead, we assume we have high
confidence in the transition parameters and reflect this in the
transition count vectors, (φ were initialized as 1000 times the

3When the number of reachable states was small, we used a
closed-form description of beliefs to speed up planning.

true probability as discussed above). The observation priors
that were used are listed in Table 1.

For the BA-BRMs, the optimal pair of (deterministic)
policies was found (using [2]) and one of these policies was
used as the fixed policy of the other agent. This policy rep-
resents the other agent listening until it has heard the tiger
on the same side twice and then opening the appropriate
door. The count vectors for the transitions were set sim-
ilarly to those above (with 1000 times the true transition
probabilities) and the observation count vectors were set as
in Table 1.

To determine performance, we consider model error and
value. Model error is calculated as a sum of the L1 distances
between the correct and estimated probabilities weighted by
the probability associated with the count vectors (as de-
scribed in [23]). The error and value produced are averaged
over a number of simulations (Nsimulations). Note that at
the start of each simulation also the count vectors are reset,
so there is no learning across simulations — these are only
to determine average values. These experiments were run
on a 2.5 GHz Intel i7 using a maximum of 2GB of memory.

5.3 Results
The errors in the observation functions for all methods

are shown in Figure 1. For the BA-MPOMDP formulation,
for which we have performed Nsimulations = 50 simulations
with Nepisodes = 50, Nparticles = 200, Nsamples = 500, and
a lookahead horizon of two. We see that the error decreases
sharply and then decreases more slowly. This error will likely
continue to improve if more episodes are completed. The
nonmonotonic improvement is due to randomness in the
sample values and the fact that only 50 simulations were
used to average the data. Value for this problem from the
initial belief and count vectors is approximately -6 (the value
of listening at each step) and the optimal value for this prob-
lem with known parameters is 13.015 (listening twice and
then collectively opening the appropriate door if the same
observation was heard twice). After 50 episodes, the value
was estimated and was found to be -4.5.

For the BA-BRM experiments, we used the following pa-
rameters: Nsimulations = 50 simulations with Nepisodes =
50, Nparticles = 100, Nsamples = 200 and a lookahead hori-
zon of two. It is worth noting that the optimal value of this
version of the problem with known parameters is 5.19. No-
tice that this is less than in the MPOMDP case because the
agents can no longer coordinate to always open the same
door at the same time.

The model error for BA-BRM with a known other agent
policy is also shown in Figure 1. Similar to the BA-MPOMDP
case, we see a decrease in model error over as the number
of episodes increases. Sampling to determine the value pro-
duces a value of approximately -3.78 with the initial count
vectors and -2.03 after 50 episodes.

For BA-BRM with unknown other agent policy, the set-
tings were: Nsimulations = 10 simulations with Nepisodes =
50, Nparticles = 50, Nsamples = 50 and a lookahead horizon
of one. This reduction in samples is due to the increased
time required for updating and evaluation by considering
unknown actions in the other agent histories. The value
produced in this model after learning is unchanged from the
initial value. It is likely that increased sampling would im-
prove both uncertainty and the resulting value, suggesting
the need for more computationally efficient methods.



joint action joint observation count

both listen both correct 5
1 correct 2
both incorrect 1

other all 2

action observation count

listen correct 3
incorrect 2

open all 2

Table 1: Observation prior counts for the BA-MPOMDP (left) and BA-BRM (right).
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Figure 1: Model error (weighted L1) in the 2-agent tiger problem for the BA-MPOMDP and BA-BRM with
known and unknown other agent policies

6. RELATED WORK
The BA-BRM is closely related to the framework of I-

POMDPs [13, 33] in that it is also a model for describing
an interactive setting from the perspective of a protagonist
agent. There are a few differences, however. First, the I-
POMDP treats another agent as an entity that (potentially)
also reasons about the protagonist agent, but at a lower
level. In contrast, the BA-BRM just considers the other
agent as executing a particular policy. As such, there are
no difficulties with infinite recursions of beliefs. Second, the
I-POMDP does not consider uncertainty about the actual
transition and observation model. However, we point out
that since an I-POMDP is a special type of POMDP, it is
possible to consider Bayes adaptive extensions that consider
such uncertainty [18].
Other work that is out of the scope of this paper has de-

veloped other learning techniques for Dec-POMDPs. These
approaches include model-free reinforcement learning meth-
ods using gradient-based methods to improve the policies
[10, 20] and learning using local signals and modeling the
remaining agents as noise [8]. Another approach has uti-
lized communication and sample-based planning to generate
best-response policies [3].

7. CONCLUSIONS
In this paper, we presented the first set of approaches

for Bayesian reinforcement learning for multiagent systems
with state uncertainty. We consider a centralized perspec-
tive where the team of agents is modeled as a multiagent
POMDP, allowing Bayesian RL techniques from the POMDP
literature to be applied. Because the centralized perspective
assumes centralization or full communication between the
agents, we also consider a decentralized perspective. In this
perspective, we explore cases in which an agent knows the
fixed policies of the others, but has uncertainty over the envi-
ronment model and when an agent has uncertainty over the

policies of the fixed agents and environment models. Each
of these cases reflects realistic assumptions about real-world
scenarios. We present proofs bounding the solution quality
under these different assumptions. Our experimental results
show a proof of concept for Bayesian RL in multiagent sys-
tems with state uncertainty, demonstrating how an agent
can improve model estimates and performance while acting
online.

These approaches can serve as the basis for many future
work directions in multiagent learning. This could include
the use of (delayed or noisy) communication to allow the
best response model to update parameters based on informa-
tion from the other agents. Similarly, additional domain or
policy assumptions could be imposed to improve scalability.
For instance, with transition and observation independence
[4], models of others can be represented as mappings from
local states to actions and using finite-state controllers [5],
parameters can be limited by the size of the controllers. We
also expect more efficient solutions for these models could
be generated by more sophisticated sample-based planning
methods such as [26], allowing greater scalability to larger
domains and a larger number of agents. Lastly, even though
our experiments consisted of a cooperative domain, our ap-
proach extends to competitive models and we plan to test
its effectiveness in those problems as well.
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APPENDIX
An α-vector for a BA-POMDP, can be expressed as the immediate
reward for the specified action a plus value of next stage vectors
for some mapping α′ : Z → Γt−1 [24]. Therefore, for any policy



πt, for all states s, we have that
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Now, we can substitute in (4.5) and get
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We note that this holds for an arbitrary πt and thus for arbi-
trary 〈a,α′〉. Now, define a recurrence by via the max:
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