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ABSTRACT
Coevolutionary algorithms search for test cases as part of the
search process. The resulting adaptive evaluation function
takes away the need to define a fixed evaluation function, but
may also be unstable and thereby prevent reliable progress.
Recent work in coevolution has therefore focused on algo-
rithms that guarantee progress with respect to a given solu-
tion concept. The Nash Memory archive guarantees mono-
tonicity with respect to the game-theoretic solution concept
of the Nash equilibrium, but is limited to symmetric games.
We present an extension of the Nash Memory that guar-
antees monotonicity for asymmetric games. The Parallel
Nash Memory is demonstrated in experiments, and its per-
formance on general sum games is discussed.

Categories and Subject Descriptors
F.0 [General]

General Terms
Algorithms, Experimentation, Performance

Keywords
Coevolution, coevolution archive, Nash Memory, monotonic
progress, game theory, Nash equilibrium

1. INTRODUCTION
Coevolution makes it possible to search for solutions to

test-based problems without the need to specify a fixed eval-
uation function [1, 24, 16, 21, 23]. Rather than evaluating
individuals with such a fixed fitness function, as done in most
other approaches to evolutionary computation, coevolution
simultaneously searches the space of tests that are used to
evaluate the candidate solutions. These tests can in princi-
ple take any form, and test-based coevolution can be used

© ACM, (2006). This is the author’s version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution. The
definitive version will be published in GECCO’06, July 8–12, 2006, Seattle,
Washington, USA., http://doi.acm.org/10.1145/nnnnnn.nnnnnn

to address a wide variety of problems that includes learning
in games, concept learning, and function approximation.

The promise of coevolution follows from both theoretical
considerations and practical demonstrations. Regarding the
former, the biases that accompany a hand-designed fitness
function can in principle be avoided, and the development
of complex evaluation cases that would be difficult to con-
struct by hand can in principle be performed by the search
process itself. For instance, in order to evaluate the differ-
ence in strength between two high quality chess strategies,
a sophisticated opponent strategy is required. In a non-
coevolutionary approach, this opponent must somehow be
available before the search process begins, which is problem-
atic, as the goal of the search process itself was to identify
a sophisticated game strategy; in coevolution, high-quality
opponent strategies may be developed in the course of the
search, when they are required.

Practical demonstrations of the potential of coevolution
include the evolution of sorting networks [16], density clas-
sification using cellular automata [18, 12, 17, 30, 32], pursuit
and evasion [37, 10, 4], function approximation and classifi-
cation [29, 31] , the evolution of complex behavior [14, 42],
and games such as backgammon [33], Tron [15], checkers,
and Go [39] . While we focus on the application of coevo-
lution to test-based problems here, coevolution can also be
used to address problems where a fitness function is given;
this form of coevolution is called Cooperative or Composi-
tional Coevolution [35, 48, 49, 2].

While the potential of coevolutionary approaches is clear,
the use of an adaptive evaluation function also introduces
new problems. Unless carefully designed, the adaptive eval-
uation function can lead to a variety of problems that pre-
vent stable progress [3, 47, 7]. A central current question in
coevolution research therefore is how stable progress can be
guaranteed.

As Ficici eloquently argues in his thesis [8], the question
of how progress can be guaranteed must be preceded by a
consideration of the desired solution concept. The solution
concept specifies precisely which candidate solutions qual-
ify as optimal solutions and which do not. Many, if not
most disappointing results in earlier coevolution work can
be traced back to incongruence between the employed algo-
rithm and the desired solution concept. We briefly review
the main solution concepts employed so far in test-based
coevolution.

We follow the specification of solution concepts given in
[6]. The simplest solution concept, S0, requires an opti-



R P S

R 0 −1 +1
P +1 0 −1
S −1 +1 0

R P S

R 0 +1 −1
P −1 0 +1
S +1 −1 0

A B

Table 1: The payoff matrices for Rock-scissors-

paper. A: the payoff matrix of the row player. B:

the column player’s payoff matrix.

mal solution C to maximize the outcome over all possible
tests simultaneously. The covering competitive algorithm
[39] guarantees monotonicity for the S0 solution concept,
and Schmitt [40] presents a convergence proof for a variant of
S0 involving more than two types of individuals (’species’).
For most problems of practical interest however, no single
solution exists that simultaneously maximizes the outcomes
of all tests, in which case the algorithms for this solution
concept cannot be applied.

Solution concept S1, maximizing expected utility, speci-
fies as a solution the individuals that maximize the expected
score against a randomly selected opponent. Monotonic
progress with respect to this solution concept is provided
by the MaxSolve algorithm [6].

Pareto-coevolution [11, 46] views each test as a separate
objective. The entire set of non-dominated solutions can
be specified as a solution concept (S3). However, this set
may contain many equivalent candidate solutions that each
solve the same combination of tests. S4 is a variant of this
solution concept that avoids such duplicate candidate solu-
tions. Monotonic progress for S4 is guaranteed by the IPCA
algorithm [5].

In this paper we adopt the solution concept of the Nash
equilibrium (S2) for 2-player games [28]. In this setting, the
set of individual solutions is the set of all pure strategies
for player 1, whereas the set of tests is the set of all pure
strategies for player 2. A Nash equilibrium specifies a pair
of mixed (randomized) strategies, one for each player, such
that no player has an incentive to unilaterally deviate given
the strategies of the other players. From a game-theoretic
perspective, a solution to a game is a recommendation for
both players how to play. Clearly such a solution has to be a
Nash equilibrium as otherwise at least one player would be
better off using a different strategy (if it is not a Nash equi-
librium, per definition there is a player who has an incentive
to deviate). It is this same reasoning that also has led re-
search in the field of multi-agent systems to focus on the
Nash equilibrium as a solution concept [43]. For symmetric
zero-sum games, Ficici’s Nash Memory [8, 13] guarantees
monotonicity for the solution concept of the Nash equilib-
rium, provided that no information is ever discarded [9].

The original description of the Nash Memory [13] was re-
stricted to symmetric games (although it was already recog-
nized that this could be extended to asymmetric games). In
a 2-player symmetric game, e.g. Rock-Scissors-Paper which
is shown in table 1, both players select their strategy from
the same set of pure strategies available for the game, and
the payoffs for the players are symmetric, i.e., the payoff ma-
trix of the first player is the transpose of the second player’s
payoff matrix: A = BT . If the game is zero-sum, addition-

ally A = −B holds. However, many problems of practical
interest are asymmetric; examples of asymmetric games are
backgammon, chess, poker, etc. In fact, all games in which
players act in a turnwise fashion and observe (some of) each
other’s actions are asymmetric: a second player can always
condition his action on the action of the first player in this
case.

We present an extension of the Nash Memory to asym-
metric games called the Parallel Nash Memory. This exten-
sion significantly widens the class of problems to which the
Nash Memory algorithm can be applied. In particular, we
address the case of finite extensive form games [22] or any
game that can be cast as such. The Parallel Nash Mem-
ory is an archive method, and can be combined with any
method for finding new strategies. Thus, any coevolutionary
algorithm can be combined with the Parallel Nash Memory
to produce a setup that guarantees monotonic progress for
asymmetric games. In this paper, we focus on the behav-
ior of the archive. Therefore, as a search heuristic we use a
method that finds a best response strategy, based on solv-
ing a partially observable Markov Decision Process appro-
priately constructed from the corresponding finite extensive
form game.

The structure of this paper is as follows. First, we describe
extensive form games in Section 2. In Section 3, we describe
the Nash Memory as introduced by Ficici. Section 4 presents
the Parallel Nash Memory that will be investigated. Section
5 describes the best-response search heuristic employed in
the experiments. The experiments are reported in Section
6. Section 7 discusses the applicability of to general sum
games. Finally, Section 8 concludes.

2. EXTENSIVE FORM GAMES
Ficici’s Nash Memory mechanism [13] deals with symmet-

ric games in normal- or strategic form. We will now discuss
a richer model that allows us to reason over a larger class
of agent interactions, with several interesting applications.
The model is a well known tree representation of agent dy-
namics originating from the classical game theory and called
the extensive form representation. Here we will introduce
this framework for partial information games.

An extensive form game [22] is given by a tree, the game-
tree, in which nodes represent game states and whose root
is the starting state. There are two types of non-terminal
nodes: decision nodes that represent points at which agents
can make a move, and chance nodes which represent stochas-
tic transitions ‘taken by nature’. Terminal nodes, or out-
come nodes are the leaves of the game-tree. These specify
the payoff for each agent.

In a partial information game, an agent may be uncertain
about the true state of the game. This is reflected by the
fact that an agent may not be able to discriminate between
some nodes in the tree. Such groups of nodes in which the
agent has the same information regarding the state are called
information sets.

A pure- or deterministic strategy for an extensive form
game is a mapping from information sets to actions. It is
also possible to have strategies that allow randomization.
There are two types of such strategies. A mixed strategy is
a set of pure strategies together with a probability distribu-
tion over this set. A stochastic strategy is a mapping from
information sets to probability distributions over actions.
For more details we refer to [25].



3. THE NASH MEMORY MECHANISM
In this section, we describe the Nash Memory algorithm

introduced by Ficici [13], and which forms the basis for the
Parallel Nash Memory algorithm that will be presented here.
The Nash Memory mechanism presents a method for itera-
tively reaching a Nash equilibrium for two-player symmetric
zero-sum games.

In a two-player zero-sum game, a Nash equilibrium pro-
vides a security level payoff (the maximin value) for both
players. Also, these maximin values sum to 0, so if the max-
imin value for the first player is v, that for the second player
is −v. In symmetric zero-sum games, however, the expected
payoff of a strategy played against itself is 0. Let E1, E2

denote the expected payoff for respectively the first and sec-
ond player (we also write simply E for E1). In symmetric
zero-sum games holds ∀π E1(π, π) = E2(π, π) = 0. As a
consequence a Nash strategy should provide a security-level
payoff of 0. Let S(π) denote the security set of strategy π,
i.e., S(π) = {π′|E(π, π′) ≥ 0}. We are thus searching for a
strategy π, such that ∀π′ π′ ∈ S(π).

Let N and M be two mutually exclusive sets of pure
strategies. N is defined to be the support of mixed strat-
egy πN , which will be the approximation of the Nash strat-
egy during the coevolution process. The set M will con-
tain encountered strategies that are not in the support of
πN . These strategies are not needed by πN in order for the
latter to be secure against all encountered strategies, i.e.
N ∪ M ⊆ S(πN ). In contrast to [13], we will not put any
bounds on the size of the memory M, in order to guarantee
convergence.

Apart from these two sets, the Nash Memory mechanism
specifies a search heuristic H. This is an arbitrary heuristic
that delivers new tests against which πN is evaluated.

At the start of the Nash Memory coevolution process, M
is initialized as the empty set and N is initialized as a set
containing an arbitrary pure strategy.1 πN is initialized as
the ‘mixed’ strategy that assigns probability 1 to this pure
strategy. At this point the first iteration begins. Figure 1
shows one iteration of the Nash Memory. First, a set of
test-strategies, T , is delivered by the search heuristic and
evaluated against πN , to define the set of ‘winners’:

W = {π ∈ T |E(π, πN ) > 0}.

When this set is non-empty, clearly πN is not a Nash
equilibrium strategy, as it is not secure against all strategies.
Therefore πN should be updated in this case.

Next, a payoff matrix A of all strategies in M ∪ N ∪ W
played against each other is constructed. In this matrix, the
rows represent the pure strategies of the first player and the
columns those of the second player. Matrix entry (i, j) gives
the payoff (for player 1) of strategy i played against strategy
j. Together with the constraint that the probabilities of a
mixed strategy must sum to 1 and the desire of both players
to maximize their own payoff, A can be converted to a linear
program (LP) [44], which then can be solved [38]. The result
will be a new mixed strategy π′

N , the strategies to which it
assigns positive weight, N ′, and the other strategies, M′.
π′
N is a Nash equilibrium in the sub-game formed by re-

stricting the full game to the encountered policies, meaning
it provides a security level payoff of 0 within this sub-game.

1In [13] a different initialization is proposed: the initial set
N is also provided by the search heuristic.

Figure 1: One iteration of the Nash Memory.

At this point a new iteration is started. The whole process
is repeated until convergence.

This convergence is guaranteed: although S(π′
N ) is not

necessarily a strict superset of S(πN )2, we know that S(π′
N ) ⊇

M∪N ∪W holds for every iteration and that the set of en-
countered policies M∪N ∪W grows monotonically. As the
set of pure strategies is bounded (because we consider finite
games), this means that in the worst case after a finite num-
ber of iterations the full game is constructed for which the
Nash approximation is an actual Nash equilibrium. There-
fore the algorithm has to converge to a Nash equilibrium.

Related is the definition of monotonic solution concepts,
as presented in [9]. Let a sub-game formed by restricting a
symmetric 2-player game to a set of pure policies A be de-
noted by GA. Similar GB, GC denote sub-games restricted
to sets B and C. Loosely speaking, a monotonic solution con-
cept means that the ‘quality’ of the solution found in each
iteration monotonically improves as more strategies are en-
countered (provided that old strategies are never discarded).
This ‘quality’ is defined with respect to a preference relation
that specifies that a solution πS is preferred to another π′

S ,
if all the games for which π′

S is the solution are proper sub-
games of games for which πS is the solution. Formally, for
monotonic solution concept S the following holds: If πS is a
(possibly mixed) strategy that is a solution for GA and for
GC, then

A ⊆ B ⊆ C ⇒ πS is a solution for GB

Ficici [9] proves that the Nash equilibrium is a monotonic
concept for symmetric 2 player games: We know πS ∈ B
as B ⊇ A. If πS is not a Nash equilibrium in GB, then B
must contain a policy that is a better response to πS than
πS itself, however as B ⊆ C, C should also contain this better
response which conflicts with the premise that πS is a Nash
equilibrium for GC.

4. ASYMMETRIC NASH MEMORY
In the following, we present a generalization that renders

the Nash Memory applicable to asymmetric zero-sum games.
We will describe two methods: a naive method, and the
proposed Parallel Nash Memory.

2π′
N might not attain positive payoff against a yet unencoun-

tered strategy against which πN did attain positive payoff.
Also, S(πN ) + S(π′

N ) as π′
N is secure against the winners

W of last iteration and πN , per definition, is not.



4.1 Naive symmetrization
A simple way to extend the Nash Memory mechanism

to asymmetric 2-player games, is by converting asymmetric
games to symmetric games. This can be done very easily
by defining a new compound game consisting of two copies
of the original asymmetric games: one played as the first
player and one played as the second player. This compound
game is symmetric and a particular strategy πi is given by
πi =

˙

πi
1, π

i
2

¸

. I.e., the set of policies in the compound game
is the Cartesian product of the set of player 1 and player 2
policies. The expected payoff of two policies πi =

˙

πi
1, π

i
2

¸

,

πj =
˙

π
j
1
, π

j
2

¸

for the compound game is given by the sum
of the expected payoffs of their ‘sub-policies’ played against
each other:

E(πi
, π

j) = E(πi
1, π

j
2
) + E(πj

1
, π

i
2)

Using this representation the Nash Memory mechanism can
directly be applied without changes.

However, it is clear that the flexibility with which the new
mixed strategy is constructed is constrained. Observe that
it is not possible to put more weight on a particular first
player strategy πi

1 without putting the same weight on the
corresponding second player strategy πi

2. For this reason we
refer to this method as naive symmetrization.

4.2 Parallel Nash Memory
Here we will present another way of extending the Nash

Memory to deal with asymmetric games. This approach is
more sophisticated than naive symmetrization and referred
to as the parallel Nash Memory. Note that in the Nash
Memory’s operation (section 3), there are only two reasons
why the game must be symmetric: to determine whether
a test strategy T ∈ T beats the current mixed strategy,
E(T, πN ) > 0, and because the next Nash approximation
is calculated from one large set containing all encountered
strategies (the set M∪N ∪W).

The idea behind our approach is to apply the Nash Mem-
ory mechanism per player, i.e, we maintain sets Mp, Np, Tp,
Wp and a Nash strategy approximation πp,N for both play-
ers p = 1, 2. As mentioned in section 3, in zero-sum games
if the Nash approximation is an actual Nash equilibrium,
the strategies π1,N and π2,N should both provide a security
level payoff (the maximin levels for the players), and these
payoffs should sum to 0. We use this information to decide
whether the Nash approximations should be updated when
new strategies are found by the search heuristic. Now, if,
without loss of generality, we assume that the search heuris-
tic delivers a single test strategy for both players, T1 and T2,
we can test whether the compound strategy T = 〈T2, T1〉

3

beats the compound strategy πN = 〈π1,N , π2,N 〉, as:

E(T, πN ) = E(T2, π2,N ) + E(T1, π1,N ).

If E(T, πN ) > 0, then πN is not secure against T and
the strategy should be updated. In this case let W1 = T2

and vice versa. This results in two sets M1 ∪ N1 ∪ W1

and M2 ∪ N2 ∪ W2 of encountered pure strategies for the
respective players. By constructing the payoff matrix A for
these pure strategies and applying linear programming we
calculate the new Nash approximation π′

N =
˙

π′
1,N , π′

2,N

¸

,
finishing one iteration.
3Note that a test strategy T1 for player 1, is a strategy for
his opponent, player 2, and vice versa.

Figure 2: An iteration of parallel Nash Memory us-

ing the best-response heuristic.

In figure 2 one iteration (the 2nd) of the parallel Nash
Memory is illustrated. In the first step T1 and T2 are calcu-
lated by using the best-response heuristic, i.e., by calculating
a best-response against the current Nash policy approxima-
tions π1,N and π2,N . Because of the use of the best-response
heuristic, the test E(T, πN ) > 0 is in this case unnecessary,
as further discussed in the next section. In the second step
a LP is constructed from all the encountered strategies and
subsequently solved. This results in the new Nash approxi-
mation π′

N =
˙

π′
1,N , π′

2,N

¸

. As before, π′
N is an exact Nash

equilibrium for the sub-game formed by restricting the full
game to the encountered policies and therefore both π′

1,N

and π′
2,N give the best worst-case payoff, i.e. the security

level payoff for this sub-game. The new sets N ′
1,N

′
2 are con-

structed as the support of π′
1,N and π′

2,N . The remaining
policies are stored in M′

1 and M′
2.

Convergence is still guaranteed for the parallel Nash Mem-
ory. We know now that: S(π′

1,N ) ⊇ M2 ∪ N2 ∪ W2 and
S(π′

2,N ) ⊇ M1 ∪N1 ∪W1 holds for every iteration and that
the sets of encountered policies Np, Tp, Wp for both players
p = 1, 2 grow monotonically. Again, because the sets of pure
strategies are bounded, in the worst case we will construct
the full game for which the Nash approximation is an ac-
tual Nash equilibrium, so the algorithm has to converge to
a Nash equilibrium.

Similarly, the Nash equilibrium is a monotonic solution
concept for asymmetric games. Suppose that π = 〈π1, π2〉
is a Nash equilibrium for GA and GC, that A ⊆ B ⊆ C,
but π is not a Nash equilibrium for GB. This would mean
that either player would have a better response policy in
game GB. Suppose this is player 1, so this means that there
is a π′

1 ∈ B that is a better response to π2. However, as
B ⊆ C π′

1 ∈ C, this conflicts with the premise that π is a
Nash equilibrium for GC and therefore can hold. The same
argument holds for player 2.



5. BEST-RESPONSE SEARCH HEURISTIC
Here we discuss the search heuristic. This is an impor-

tant aspect for coevolutionary approaches as it should be
powerful enough to discover improvements to the current
candidate solution. In our setting this means that it has to
find strategies that beat the current Nash approximation.

In principle, any coevolutionary algorithm can be used as
a search heuristic. However, in order to test the behavior
of the memory mechanism, rather than the search heuris-
tic employed, we use a maximally effective search heuristic
here that identifies a best response strategy to the current
archive.

As illustrated in [26], when the stochastic strategy of the
opponent is fixed and known (e.g. estimated from repeated
play), an extensive form game can be recast as a partially
observable Markov decision process (POMDP) [41] from the
perspective of the protagonist agent. For more details on
this transformation, we refer to [26, 27]. It is known that
solving a POMDP gives an optimal deterministic strategy
[36], which we will call a best-response strategy. This best-
response strategy gives the highest payoff attainable against
the fixed opponent strategy. Solving a POMDP exactly is
intractable in general. However, in the special case of an
extensive form game, in which the transition model has a
tree-like structure, solving the POMDP is relatively easy.
Because the tree is finite, the number of possible beliefs is
bounded: there is exactly one belief for each information set.
Therefore all possible beliefs and transitions between them
can be generated, resulting in a completely observable MDP
over beliefs. This MDP can then be solved using standard
dynamic programming techniques, such as value iteration
[36].

Calculating a best-response against the current Nash ap-
proximation is an effective search heuristic as this provides
the highest payoff possible. This also means that it pro-
vides the worst case payoff of the current Nash approxi-
mation. Another nice effect is that this provides a conver-
gence criterion: when the best-response strategies do not
attain a positive payoff in the compound game, E(T, πN ) =
E(T2, π2,N ) + E(T1, π1,N ) = 0, then πN is a Nash strategy
and the algorithm converged.

There is still one problem to be overcome, however. We
can calculate a best-response against a stochastic strategy
[26]. In contrast, the Nash approximations, are mixed strate-
gies, making it necessary to convert such a mixed strategy
to a stochastic strategy. Proof that this is possible and the
accompanying algorithm is given in [25]. The intuition is
the following. We want to know the probability P (a|I) of
an action a at an information set I that corresponds with
a particular mixed strategy µ. Every pure strategy π in
µ’s support only allows a subset of information sets to be
reached. Therefore at I, π’s contribution to P (a|I) has to be
weighted by the chance that this strategy, π, was responsible
for realizing I. This is very closely related to the notion of
‘realization weights’ [19].

6. EXPERIMENTS
Here we describe some experiments we performed on a

simple poker game from literature [20], called 8-card poker.
We also performed experiments on a similar, but larger
poker variant.
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Figure 3: Results for the parallel Nash Memory ap-

proach. Top: 8-card poker. Bottom: 2-round, 3-

bets-per-round 6-card poker.

6.1 8-card poker
This poker variant is a zero-sum game played by two play-

ers: a dealer and a gambler, who both own two coins. Before
the game starts, they pay one coin to the pot, the ante. Then
both players are dealt one card out of a deck of eight cards
(1 suit, ranks 1–8). After the players have observed their
card, they are allowed to bet their remaining coin, starting
with the gambler. If the gambler bets his coin, the dealer
has the option to fold or call. If the dealer folds he loses the
ante. If he calls, showdown follows. If the gambler didn’t
bet, the dealer can choose to bet his coin. If he does, the
gambler will have to decide whether to fold or call. If the
game reaches the showdown (neither player bets or the bet
is called), the player with the highest card wins the pot.

We implemented the parallel Nash Memory using best-
response heuristic and applied it to 8-card poker. Figure 3
shows the results. It only takes a few iterations to obtain a
strategy that is fairly secure, implying that this technique
might be applied for larger games to obtain an approximate
Nash strategy.

The figure also indicates that only a relatively small num-
ber of pure strategies are needed to make up a secure mixed



strategy. It turns out that the number of pure strategies
used by the mixed strategy is even lower than the figure
suggests: when reaching the Nash level (iteration 12) only
6 out of 12 pure strategies are assigned weight for both the
gambler and the dealer strategy.

Although convergence to Nash equilibrium is guaranteed,
we can observe that the worst case payoff does not increase
monotonically. Even though with every iteration the ap-
proximate Nash becomes secure against more (known) strate-
gies, a particular strategy against which it is not secure yet
might become a best-response and do more damage than
the current best-response.

6.2 Some larger poker games
After the encouraging results for 8-card poker some exper-

iments were performed on larger poker games. The results
of these were similar, therefore we restrict our discussion to
one of them. It is a 2 round poker game with a deck of 6
cards, both players receive one card and play a bet-round,
after which 1 public card appears face-up on the table. Then
a final bet-round is played. In both bet-rounds a maximum
of 3 coins can be bet per player. The game-tree for this
game consists of over 18,000 nodes.

The obtained results are shown in figure 3. As was the
case for 8-card poker, the Nash Memory is able to obtain
a reasonable security level in a relatively low number of it-
erations. The small number of strategies needed for the
support of the mixed strategy was also confirmed for the
larger games: at iteration 150 for the 6-card poker game4,
the number of strategies with positive weight was 29 for both
players.

7. NON ZERO-SUM GAMES
In this section, we discuss the applicability of the parallel

Nash memory using a best-response heuristic to identical-
and general payoff games. In games with identical payoff,
the payoff matrix of the two players is equal, i.e.: A = B. In
this case, linear programming doesn’t apply anymore. In-
stead, the players select the pair of pure strategies that maxi-
mize the payoff. This is illustrated in table 2. Shown are two
payoff matrices with arbitrarily picked numbers. Assume
the Nash approximations π1

1,N , π1

2,N in the first iteration are

pure strategies. The best-responses to π1

1,N , π1

2,N calculated

in this first iteration are T 1

1 , T 1

2 .5 The constructed payoff
matrix A shows that the strategy pair

˙

T 1

2 , π1

2,N

¸

yields the
highest payoff for both players and consequently is the only
Nash equilibrium in this sub-game. Therefore the players
will select the pure strategies π2

1,N = T 1

2 and π2

2,N = π1

2,N

as their new Nash approximation for iteration 2.
In iteration 2, again two best-responses will be calcu-

lated. However, as π2

2,N = π1

2,N the new best-response will

be identical to the previous, i.e. T 2

2 = T 1

2 , and therefore
the expected payoff of

˙

T 2

2 , π2

2,N

¸

will remain 3.4. This
means that an improvement can only come from the new
best-response T 2

1 . Note that, because only the newly cal-
culated pure strategies will be assigned weight as they are
guaranteed to provide a better payoff for both players, it is

4The algorithm was not fully converged at this point, as it
still received a worst case payoff of -0.027 instead of 0.
5Again, T 1

2 denotes the best-response against the player 2
Nash approximation π1

2,N and therefore is a pure strategy
for player 1.
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Table 2: The identical payoff matrix A. Left: itera-

tion 1. Right iteration 2.

not necessary to retain the previously found strategy in the
memory M. In this way, for identical payoff games, the par-
allel Nash Memory effectively reduces to coordinate ascent
or alternating maximization.

In contrast to 2-player zero-sum games, where all Nash
equilibria are guaranteed to have the same value, in iden-
tical payoff games there can be Nash equilibria specifying
different values. Parallel Nash memory will converge to an
arbitrary Nash equilibrium which does not have to be Pareto
optimal. This corresponds to the fact that coordinate ascent
methods are only guaranteed to find local optima.

A general payoff game, where A and B are two indepen-
dent matrices, can be translated to a linearly complementary
problem (LCP) and subsequently solved using for example
the Lemke-Howson algorithm [19]. This suggests that we
can adapt the Nash memory for general payoff games by re-
placing the LP by a LCP. Because for a general payoff game
a Nash equilibrium is only guaranteed to exist in randomized
strategies, like for zero-sum games, it will be necessary to
retain previously encountered strategies in the memory M,
as solving the LCP will calculate a mixture over all encoun-
tered strategies. Because the Nash equilibria can specify
different payoffs, like for identical payoff games, the result
can only be guaranteed to be a locally optimal joint strat-
egy. By enumerating all Nash equilibria in the sub-game
formed by restriction to the encountered policies [19, 45], it
is possible to find the optimal solution within the sub-game,
but this still doesn’t need to be optimal for the full game.

The original convergence argument was based on the no-
tion of security sets. Although this notion is no longer use-
ful in the setting of general sum games, the algorithm is still
guaranteed to converge. This can be seen as follows: solving
the LCP at an iteration t will give a Nash equilibrium for
the sub-game induced by the t+1 strategies6 Np ∪Mp ∪Tp

for each player p found up to this iteration. If this Nash
equilibrium for the induced game is not a Nash equilibrium
for the full game, that means that (for at least one of the
players) there exists at least one pure7 strategy in the full
game to which he has an incentive to deviate and this strat-
egy, per definition, is a best-response. The best-response
search heuristic will identify such a strategy and include it
in the next iteration. As there are only a finite amount of
pure strategies, parallel Nash Memory using best-response
search heuristic will always converge to a Nash equilibrium.
When a different search heuristic is used, convergence is still
guaranteed, provided that the search heuristic is powerfull
enough. More specifically, there should be a non-zero prob-
ability that the search heuristic returns the best-response
that is not yet included.

6One new strategy per iteration plus the initial strategy.
7A mixed strategy is only a best-response when all the
pure strategies it assigns positive support to are also best-
responses.



8. CONCLUSION AND DISCUSSION
We presented an extension of the Nash Memory mecha-

nism, the Parallel Nash Memory, that enables calculation of
Nash equilibria for asymmetric games. The Parallel Nash
Memory was combined with a best-response search heuris-
tic for extensive form games. Experiments with zero-sum
poker games were presented, and the applicability of the
method to identical payoff games and general payoff games
was discussed.

When comparing the performance of the setup used in
this paper against an approach solving the sequence form as
in [20], there are some interesting differences. Overall, the
setup employed in the experiments here uses more time com-
pared to sequence-form solving. However, it spends its time
differently: most time is spent in the search heuristic dur-
ing, in particular in constructing and solving the POMDP
models and determining outcomes between the encountered
pure strategies. Far less time is spent by the linear program-
ming method that forms part of the archive itself, as the
size of the linear programs to be solved is generally smaller:
e.g. the 6-card poker game contains 2162 sequences for both
players and therefore requires solving a linear program with
a payoff matrix of size 2162 × 2162. In contrast, the largest
linear program solved by the Nash Memory approach, has
a matrix of size 150 × 150 for the same problem. Thus, the
Parallel Nash Memory that has been presented may provide
an efficient archive method for asymmetric coevolutionary
problems.

Regarding the search heuristic that was employed, we
expect that a considerable speed-up can be obtained by
streamlining the implementation of POMDP model con-
struction and solving. Furthermore, approximate methods
could be used for both solving the POMDP and evaluating
the rewards to achieve a further speedup.

Another idea for future work is to focus on extending this
approach to multiple players. A form of ‘symmetrization’
might also be possible in this case. Finding a secure mix-
ture of strategies could be done using any of the methods
described in [34].
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