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1 POSGs

In this report we will treat methods and models for sequential multi-agent decision making under
uncertainty. The problem in this setting is that there are multiple decision makers, or agents,
who can only observe a part of the world they are located in and have to select their actions at
different time-steps in order to either reach some goal, minimize some cost or to optimize some
payoff.

In this section we treat two models for sequential multi-agent decision making under uncer-
tainty: the Decentralized partially observable Markov decision process (Dec-POMDP) model and
its generalization the partially observable stochastic game (POSG). Both models do not allow
for explicit communication, but there are extensions for the Dec-POMDP that do [5, 6, 17, 22].

1.1 Formal model

The partially observable stochastic game (POSG) is the most general framework for partially
observable multi-agent systems (MASs) without explicit communication.

Definition 1.1 A POSG is defined as a tuple
〈

S,A, T,R,O, O, h, bt=0
〉

where:

• There is a finite set of m agents.

• S is a finite set of states.

• The set A = ×iAi is the set of joint actions, where Ai is the set of actions available to
agent i. Every time-step, one joint action a = 〈a1, ..., am〉 is taken. Agents do not observe
each other’s actions.

• T is the transition function, a mapping from states and joint actions to probability distri-
butions over states: T : S ×A → P(S).1

• R=〈R1, ..., Rm〉 where Ri is the individual reward function for agent i, a mapping from
states, joint actions and successor states to real numbers: Ri : S × A× S → R. Thus the
joint reward function, R, specifies a vector of m real numbers: R : S ×A× S → R

m.

• O = ×iOi is the set of joint observations, where Oi is a finite set of observations available
to agent i. Every time-step, a joint observation o = 〈o1, ..., om〉 is from O is emitted, each
agent i only observes his own component oi of this joint observation.

• O is the observation function, a mapping from states, joint actions and successor states to
probability distributions over joint observations: O : S ×A× S → P(O).

• h is the horizon of the problem.

• bt=0 ∈ P(S), also denoted b0, is the initial state distribution and is optional.

In a POSG, the goal of an agent is to maximize the expected (discounted) future reward.
Therefore the planning problem is to find a conditional plan or policy for each agent as to
maximize its expected (discounted) future reward.

When all the payoff functions are identical, ∀i,j,s,a Ri(s,a) = Rj(s,a), we refer to the model
as a partially observable identical payoff stochastic game (POIPSG) or a decentralized POMDP
(Dec-POMDP). In this case we simply write R(s,a).2

We use the notation a 6=i = 〈a1, ..., ai−1, ai+1, ..., am〉 and o 6=i = 〈o1, ..., oi−1, oi+1, ..., om〉 to
denote a tuple of respectively actions and observations for all agents but i.

1We use P(X) to denote the infinite set of probability distributions over the finite set X.
2So in this case each agent receives a payoff of R(s,a). However, one can also think of one reward R(s,a) that

is split equally.



2 Dec-POMDPs and extensive form games: equivalence of models and algorithms

1.2 Histories, sequences and policies

As mentioned above, the goal of an agent in a POSG or Dec-POMDP is to maximize its expected
discounted future reward and to do that he has to select a good or optimal policy. This is a
conditional plan of what action to perform in what circumstances. Clearly an agent can only
condition his plan on what he knows or observes, i.e. on the history. Here we will first formalize
two different notions of history.

Definition 1.2 We define the action-observation history for agent i, ~θi, as the sequence of
actions taken by and observations received by agent i. At a specific time-step t, this is:

~θ t
i =

(

o0
i , a

0
i , o

1
i , a

1
i , ..., a

t
i, o

t
i

)

.

The joint action-observation history, ~θ, is the action-observation history for all agents:

~θ t =
〈

~θ t
1 , ...,

~θ t
m

〉

.

The set of possible action-observation histories for agent i at time t is ~Θt
i = ×t(Oi × Ai). The

set of all possible action-observation histories for agent i is ~Θi = ∪
h−1
t=0

~Θt
i. Finally the set of all

possible joint action-observation histories is given by ~Θ = ∪h−1
t=0 (

~Θt
1 × ...× ~Θt

m).

The action-observation history of an agent corresponds to everything the agent knows. The
joint action-observation history corresponds to everything the agents know together. In a POSG,
each time-step consists of a state, a joint observation and joint action. So a joint action-
observation history specifies the full history of the process except for the states.

We will now look at the second notion of history. This second notion doesn’t include the
agents’ actions.

Definition 1.3 Formally, we define the observation history for agent i, ~oi, as the sequence of
observations an agent has received. At a specific time-step t, this is:

~o t
i =

(

o0
i , o

1
i , ..., o

t
i

)

.

The joint observation history, ~o , is the action-observation history for all agents:

~o t =
〈

~o t
1, ..., ~o

t
m

〉

.

The set of observation histories for agent i at time t is denoted ~Ot
i = ×tOi. Similar to above we

also use ~Oi and ~O .

Now we can formalize the notion of policy. We will start with the simplest case.

Definition 1.4 A pure- or deterministic policy, πi, for agent i is a mapping from action-
observation histories to actions, πi : ~Θi → Ai.

Note that when an agent takes its action deterministically, he will be able to infer what action
he took from only the observation history. I.e. when an agent takes its actions according to a
pure policy, there are other actions he will never take. This means that most of the observation-
action histories will never be realized. Therefore it is possible to replace a pure policy by a
mapping from observation histories to actions: πi : ~Oi → Ai. We will describe this in more
detail in section 3.3.

It is also possible for agents to use randomized policies that allow taking an action in some
situation with some probability. There are two types of randomized policies:
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Definition 1.5 A stochastic policy, πi, for agent i is a mapping from action-observation histories
to probability distributions over actions, πi : ~Θi → P(Ai).

Definition 1.6 A mixed policy, µi, for agent i is a non-empty set of policies, Πi, together with
a probability distribution over it: µi : P(Πi). In general the set Πi can contain any type of
policies, but unless stated otherwise we will assume it contains only pure policies.

Similar to previous notation we use π = 〈π1, ..., πm〉 to denote a joint policy. Also we use
π 6=i, ~θ 6=i, etc. to denote a tuple of policies, action-observation histories, etc. for all agents except
i.

1.3 The 1 agent case: POMDPs

When there is only one agent, a POSG or Dec-POMDP reduces to a regular POMDP. Regular
POMDPs have received quite some attention and as a consequence there are some well-known
results.

In particular, in a POMDP it is possible to maintain a probability distribution over states,
called a belief b ∈ P(S), instead of remembering the full action-observation history, because
such a belief is a sufficient statistic with respect to future rewards. After taking an action and
receiving an observation the belief is updated using Bayes rule.

A consequence of this is that a policy is no longer defined as a mapping from action-
observation histories to actions, but instead as a mapping from beliefs to actions. Effectively
this means that a POMDP can be converted to an MDP over belief states, as we summarize
here. Let τ = h− t denote the number of time-steps-to-go, then the standard POMDP Bellman
backup is:

V τ+1(b) = max
a∈A

[

R(b, a) + γ
∑

o∈O

P (o|a, b)V τ (boa)

]

,

boa(s
′) =

P (o|s′, a)
∑

s∈S P (s′|s, a)b(s)

P (o|a, b)
, (1.1)

where

P (o|a, b) =
∑

s′∈S

P (o|s′, a)
∑

s∈S

P (s′|s, a)b(s). (1.2)

Writing this in time-steps t (vs. ‘time-to-go’) as used in most places in this report, this is:

V t(b) = max
a∈A

[

R(b, a) + γ
∑

o∈O

P (o|a, b)V t+1(boa)

]

.

The expected immediate reward for a belief R(b, a) is given by:

R(b, a) =
∑

s∈S

R(s, a)b(s).

Clearly, this is very similar to the definition of a value function of a regular MDP. The problem
here is that one can not directly apply value iteration over the continuous belief space, therefore
specialized techniques are required [7, 2]. Moreover, this is intractable for all but the smallest
problems and therefore approximating methods are required [19, 12].



4 Dec-POMDPs and extensive form games: equivalence of models and algorithms

a sl → slR sl → slL sr → srR sr → srL sl/sr → sE slR/slL/srR/srL →
sE

〈aLe, aF 〉 0 1.0 0 1.0 0 n/a

〈aRi, aF 〉 1.0 0 1.0 0 0 n/a

〈*, aQ〉 0 0 0 0 1.0 1.0

〈aQ, *〉 n/a n/a n/a n/a n/a 1.0

〈aO, aO〉 n/a n/a n/a n/a n/a 1.0

Table 1: Transition model for the deaf, the blind and the tiger problem. Not all actions are
available at all both time-steps, indicated with n/a. * is a wild-card denoting any action.

2 The deaf, the blind and the tiger

We will introduce a very small problem to illustrate different methods for finding good or optimal
policies for Dec-POMDPs. Because we will also show the extensive form of this problem, it has
been constrained to make it representable on one page, as a consequence the problem looks
slightly artificial. We emphasize that the analysis also holds for more natural (thus larger)
problems.

Example 2.1 The deaf, the blind and the tiger. This is a variation on the Dec-tiger problem
[11]. There are two agents, one deaf and one blind, who can’t observe each other’s actions. They
are located in a labyrinth in which there are two doors. We will call these door ‘left’ (l) and
‘right’ (r), but they are assumed to be located in arbitrary places. The doors are heavy and
can only be opened by the two agents simultaneously. Behind one of these is a treasure, behind
the other a tiger. Agent 1 is good in navigating but deaf, the agent 2 has good ears, but can’t
navigate as he’s blind. The goal of the agents is to open to door to the treasure. To accomplish
this goal both agents can select an action at two time-steps.

In the first time-step, agent 1 has the choice to go to door ‘left’ or to door ‘right’. At the
same time agent 2 will have to decide if he wants to ‘follow’ agent 1 or ‘quit’. If he leaves, the
problem ends, as they will not be able to achieve their goal. Because they wasted their time and
split up, leading to a quarrel, they receive a payoff of −2. If agent 2 follows, they will arrive at
the door selected by agent 1 with certainty. The cost of this travel is −0.1. On arrival at the
selected door agent 1 will knock on the door to provoke the tiger that is potentially behind this
door to roar.

In the second time-step, again both have to select an action, however, agent 2 now can also
make an observation: either he hears a tiger roaring or not, but this observation is noisy. So
at this point, agent 2 knows whether he heard a roar and agent 1 knows which door they are
standing in front of. Both have to decide whether they ‘open’ or ‘quit’. The door can only be
opened if both agent select ‘open’, in which case they receive a reward of +10 or −10 depending
on whether they found the tiger or the treasure. ¤

The formal Dec-POMDP model of consists of six states plus an end-state sE . sl, sr are
the initial states in which the tiger is behind the left and right door and the agents have not
navigated to either door yet. Their probabilities (b0 — the initial belief) are P (sl) = 0.55 and
P (sr) = 0.45. In these states the first agent’s actions are to navigate to the left door (aLe) or
the right door (aRi), leading to four possible successor states slL, slR, srR and srL, where the
capital letter denotes the door at which the agents are located and the lowercase letter denotes
the door behind which the tiger is located. Agent 2’s ‘follow’ action is denoted aF , other actions
are ‘quit’ (aQ) and ‘open’ (aO). Table 1 shows the transition model.
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s a s′ 〈o∅, oRo〉 〈o∅, oSi〉 〈o∅, o∅〉

* * slL 0.85 0.15 0

* * srR 0.7 0.3 0

* * slR 0.03 0.97 0

* * srL 0.03 0.97 0

* * * 0 0 1

Table 2: The deaf, the blind and the tiger observation model. * is a wild-card denoting any
state or action, such that there is no overlap with an earlier specified s,a, s′ triple.

a sl sr slL srR slR srL

〈aO, aO〉 n/a n/a −10 −10 +10 +10

〈aQ, aQ〉 n/a n/a −1 −1 −1 −1
〈aQ, aO〉 n/a n/a −2 −2 −2 −2
〈*, aQ〉 −2 −2 −2 −2 −2 −2
〈*, aF 〉 −0.1 −0.1 n/a n/a n/a n/a

Table 3: The reward function for the deaf, the blind and the tiger. * is a wild-card denoting any
action, such that there is no overlap with any earlier specified joint action.

Apart from states and transitions we also need to specify the observation and reward model.
Only agent 2 can make an actual observation in the second time-step, he either hears a roar
(oRo) or silence (oSi). In all other cases the agents receive no-observation (o∅). The two doors
and rooms have different isolating properties, so the probability of P (oRo | srR) is different from
P (oRo | slL). We assume that observing a roar when the tiger is behind the other door is entirely
due to mental pressure and therefore P (oRo | slR) = P (oRo | srL). The observation and reward
model are shown in table 2 and table 3.

3 Extensive form representation

We will now introduce the extensive form representation of a POSG and illustrate it for the
deaf and the blind problem. We start with this, because it gives a good intuition of the problem
and because it allows for the most straightforward solution methods: normal form and sequence
form solving, which we will also discuss here.

3.1 Extensive form games

An extensive form game is given by a tree, in which nodes represent what (chance) moves have
been taken and whose root is the start of the game. There are two types of non-terminal nodes:
decision nodes for agents, that represent points at which agents can make a move, and chance
nodes which represent stochastic transitions. The latter are modeled as decision nodes for the
special player ‘nature’. Terminal nodes, or outcome nodes are the leaves of the game-tree. These
specify the payoff for each agent.

In a partial information game, an agent may be uncertain about the true state of the game.
This is reflected by the fact that an agent may not be able to discriminate between some nodes
in the tree. Such groups of nodes in which the agent has the same information regarding the
state are called information sets. Formally we define an extensive form as follows:
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Definition 3.1 An extensive form game is a tuple Ge.f. =
〈

N , E, I, I, O, n0
〉

, where:

• There is a set of m players or agents. We use i with 1 ≤ i ≤ m to index these. The special
agent ‘nature’ is indexed with i = 0.

• N =
⋃m

i=0N
d
i ∪N

o is the set of all nodes. N d
i is the set of decision nodes for agent i. We

also write N d =
⋃m

i=0N
d
i as the set of all decision nodes. N o is the set of outcome nodes.

• E ⊂ N d × N is the edges relation specifying transitions from decision nodes to other
(decision or outcome) nodes.

• I =
⋃m

i=0 Ii is the set of all information sets. Ii is the set of information sets of agent i

and Ii is one of these information sets. The special player nature can always discriminate
the node he is in, implying that |I0| = |N d

0 |.

• K : N d → I is the knowledge or information function that maps decision nodes for an
agent to information sets. I.e., ∀i K : N d

i → Ii.

• O : N o → R
m is the outcome function, specifying a payoff of an outcome node for each

agent.

• nroot ∈ N
d is the start node.

Strictly speaking, an extensive form game does not define actions; instead an agent i at node
nd
i ∈ N

d
i selects an edge and thus a successor node from the set {x|E(nd

i , x)}. However, we will
assume that there is an action associated with the selection of each edge. As for POSGs we will
denote the set of actions for agent i as Ai.

A policy in an extensive form game is very similar to a policy in a POSG or Dec-POMDP
as defined in section 1.2. Only now there are no explicit sequences of actions and observations
(the action-observation histories), but information sets. Therefore a pure policy is a mapping
from information sets to actions and a stochastic policy a mapping from information sets to
probabilities over actions. The notion of mixed policies remains the same.

3.2 Extensive form of POSGs

Definition 3.2 The extensive form of a POSGs is an extensive form game and thus a tree.
Every trace from root to leaf has the following structure:

n0, (n1, ..., nm, n0)
h−1, n1, ..., nm, no

where n0 are decision nodes of nature, ni with i ≥ 1 are decision nodes of the agents and no are
outcome nodes. The root nroot is the first n0 node. Because of this structure, each node n has
an associated time-step in the POSG, we denote this time-step as tn.

The structure of an extensive form POSG is illustrated in figure 1. Shown in the figure is
that nature’s nodes can be split in transition probability nodes, nT

0 , and observation probability
nodes, nO

0 , so the structure of a trace becomes nT
0 , n

O
0 , (n1, ..., nm, nT

0 , n
O
0 , )h−1, n1, ..., nm, no,

where the first nO
0 corresponds with an initial observation, which is usually omitted in POSGs.

Definition 3.3 A path, σ(n), in an extensive form of a POSG is the path from the root nroot

to node n. This path determines all the actions taken by the agents and nature and therefore
corresponds with a sequence of joint actions, joint observations and states. For a particular
decision node n1 for agent 1 with tn1 = k, this sequence has the following form:

σ(n1) ≡
(

nroot, s
0,o0,a0, s1,o1,a1, ..., sk,ok

)

.
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O

S

O

S S SS

O

S S SS

O
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... ...

chance node for a stochastic transition

chance node for a stochastic observation

S

O

agent 1 decision node

agent 2 decision node

t

t+1

PSfrag replacements

s1

s2s2

s2

st

st+1

ot

ot+1

at

1

at+1

1

at

2

at+1

2

Figure 1: General illustration of the structure of an extensive form of a POSG. Also indicated
are two different paths in the tree that specify the same joint action-observation history.
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We write st ∈ σ(n) if the path specifies state s at time-step t. Similarly we also write at ∈
σ(n), ati ∈ σ(n),ot ∈ σ(n), oti ∈ σ(n) if tn ≥ t (such that the path consists of at least t time-
steps) and the path σ(n) specifies the particular (joint) action/observation at time-step t. As a
consequence we also write ~θ t ∈ σ(n) and ~o t ∈ σ(n) if the path specifies the particular (joint)
action-observation history or (joint) observation history.

Definition 3.4 The outcomes in an extensive form of a POSG correspond to the sums of
rewards obtainable in the POSG. The sum of rewards for agent i specified by a full path σ(no)
from root to an outcome node no, which stretches over h time-steps, is:

Oi(n
o) ≡ Oi(σ(n

o)) =
h−1
∑

t=0

Ri(s
t,at), (3.1)

where st,at are the state and joint action specified by the path σ(no) at time t.

Example 3.1 The extensive form of the deaf and the blind problem is shown in figure 2. The
figure clearly illustrates the complexity of even this very small problem. Because the problem is
a Dec-POMDP the outcome nodes specify only one outcome. In accordance with equation 3.1,
the outcomes shown are the sum of rewards received along a path. E.g. the outcome for the
‘good door opened’ is −0.1 for the first time-step plus +10 for the second time-step.

Also clearly shown is, how information sets correspond to action-observation histories. In
the deaf and the blind problem, both agents have three information sets. Agent one has the
initial information set I0

1 which corresponds to an empty action-observation history ~θ1 = ∅,

the information set ILe
1 ‘left’ corresponding to ~θ1 = 〈aLe, o∅〉 and IRi

1 ‘right’ corresponding to
~θ1 = 〈aRi, o∅〉. Likewise, for agent 2, we have I0

2 (~θ2 = ∅), IRo
2 ‘roar’ (~θ2 = 〈aF ,oRo〉) and ISi2

‘silence’ (~θ2 = 〈aF ,oSi〉). ¤

3.3 Normal form solving

The normal (or strategic-) form of a game is a representation in terms of pure policies and
expected outcomes for combinations of these pure policies for different players. The expected
utility of a joint pure policy is given by the payoffs of the outcome nodes the joint pure policy
can realize, weighted by their probabilities (induced by nature). Formally:

Definition 3.5 The expected payoff Vi(π) for agent i of a joint policy π in an extensive form
game, is the sum of the outcomes of all full paths it can realize, weighted by their probability.
I.e., the value for agent i is given by [9]:

Vi(π) =
∑

no∈N o

Oi(n
o) · ν(no) · P (σ(no)|π) (3.2)

where ν(no) ≡ ν(σ(no)) is nature’s component of the probability that σ(no) is realized (the
product of the probabilities of the chance moves specified along the path) and P (σ(no)|π) is the
agents’ component of this probability, specified by the joint policy. In case of a pure joint policy,
this component is given by:

P (σ(no)|π) =

{

1 , π is consistent with σ(no)

0 , otherwise.

Consistent means that when the path is given by σ(no) =
(

s0,o0,a0, s1,o1,a1, ..., sk,ok
)

, the
joint policy specifies all the joint actions in the path. I.e.: π(

(

o0
)

) = a0, π(
(

o0,o1
)

) = a1, etc.
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1 leaves

-2.1 +9.9 -10.1-1.1 -2.1 +9.9

t=1

t=2

agent 1 decision node

agent 2 decision node

outcome node

S chance node for a stochastic transition

chance node for a stochastic observation for agent 2

agent 1 information set agent 2 information set

Quit
Open

PSfrag replacements

I0
1

I0
2

ILe1 IRi1

IRo2 ISi2

srsr

sr

slsl

sl

srRsrR

srR

srLsrL

srL

slRslR

slR

slLslL

slL

o2

o2o2o2o2

Figure 2: Extensive form for the deaf, the blind and the tiger problem. The nodes are annotated
with their states. Agent 1 never receives an observation and therefore has no chance nodes for
his observations. Except for the start node, the transitions are also deterministic, therefore there
is no chance nodes for these transitions. The ovals show which nodes are grouped together in
information sets.
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I0
2 : aF

IRo
2 : aO
ISi2 : aO

I0
2 : aF

IRo
2 : aQ
ISi2 : aO

I0
2 : aF

IRo
2 : aO
ISi2 : aQ

I0
2 : aF

IRo
2 : aQ
ISi2 : aQ

I0
2 : aQ
IRo
2 : ∗
ISi2 : ∗

I0
1 : aLe

ILe
1 : aO
IRi
1 : ∗

−1.1 +2.478 −5.678 −2.1 −2

I0
1 : aLe

ILe
1 : aQ
IRi
1 : ∗

−2.1 −1.619 −1.581 −1.1 −2

I0
1 : aRi

ILe
1 : ∗

IRi
1 : aO

+0.9 +3.222 −4.422 −2.1 −2

I0
1 : aRi

ILe
1 : ∗

IRi
1 : aQ

−2.1 −1.702 −1.298 −1.1 −2

Table 4: The (reduced) normal form representation of the deaf, the blind and the tiger problem.
In reduced normal form pure strategies specifying the same behavior are been merged. (the ‘full’
normal form would be 8 × 8). The actions on which these merged policies differ are indicated
with a *, which therefore can be interpreted as a wild-card.

Definition 3.6 In an extensive form of a POSG, nature’s component of the probability σ(no)
is realized, is given by:

ν(no) = b0(st=0)
h−2
∏

t=0

P (st+1|st,at) · P (ot+1|at, st+1), (3.3)

where st,at,ot are the state and joint action, observation specified by the path σ(no), i.e.,
∀t st,at,ot ∈ σ(no).

In general, the normal form gives the expected outcome for every joint policy for each player.
In the two agent case, this can be represented as a matrixR showing the outcome for both agents
for each joint policy (for identical payoffs; Dec-POMDPs) or by two separate ‘payoff matrices’Ri

for each agent i (general payoffs; POSGs). This generalizes to multi-dimensional arrays for more
than 2 agents. The entries ri of the payoff matrix Ri for agent i are given by Vi(π) according
to equation 3.2.

Table 4 shows the normal form of the deaf, the blind and the tiger. Again, because we
are dealing with a Dec-POMDP, there is only 1 outcome specified. To calculate the expected
outcome of a joint policy, the outcome nodes that are realizable under the joint policy are taken,
weighted by their probability, induced by the nature transitions along the path.

Example 3.2 As an example, the policy pair π1 = I0
1 : aRi, I

Le
1 : ∗, IRi

1 : aO, π2 = I0
2 : aF , IRo

2 :
aQ, ISi2 : aO can reach 4 outcome nodes: when both agents select aO, they can receive +9.9 or
−10.1, depending on whether the state was slR or srR. When agent 2 hears a roar, he will select
aQ, leading to −2.1 for both slR and srR. This leads to the following expected outcome of the
joint policy:

P (sl)P (oSi|slR) · 9.9 + P (sr)P (oSi|srR) · (−10.1) + ...

P (sl)P (oRo|slR) · (−2.1) + P (sr)P (oRo|srR) · (−2.1) = +3.222

Calculation of other entries is illustrated in appendix B.1. ¤
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How the normal form is solved to select a policy for each agent depends on the type of
outcomes (zero-sum, general- or identical payoff) and the number of agents (m = 2 or m > 2).
For 2-agent zero-sum games, the normal form can be converted to a linear program (LP) of
the same size [21] and solved by linear programming [18, 20]. 2-Agent general sum games can
be converted to a linearly complementary problem (LCP) [8] and solved with, for example,
the Lemke-Howson algorithm [10]. When the number of agents is higher than two, any of the
methods mentioned in [16] can be used for general payoff cases.

For identical payoff normal forms, such as the normal form of a Dec-POMDP, the solution is
given by simply selecting the joint policy with the highest expected outcome. This means that
for every Dec-POMDP there is at least one optimal pure joint policy:

Theorem 3.1 For every finite horizon Dec-POMDP there is at least one optimal pure joint
policy.

Proof The entries of the normal form for the Dec-POMDP specify the expected cumulative
rewards for all pure joint policies. At least one of these entries will be maximal. Assume that π

is a policy specifying such an entry. As all agents receive the same payoff, no agent will have an
incentive to deviate from π. Also π gives the maximal expected cumulative reward, therefore π

is an optimal joint policy. ¤

In non-reduced normal form, policies are specified as mappings from information sets, i.e.
action-observation histories to actions. At time-step t, there are (|Ai| · |Oi|)

t of these sequences
for agent i. As a consequence there are a total of

h−1
∑

t=0

(|Ai| · |Oi|)
t =

(|Ai| · |Oi|)
h − 1

(|Ai| · |Oi|)− 1

of such sequences for agent i. When we let |A∗| and |O∗| denote the largest individual action
and observation sets, the space complexity of the normal form which is equal to the number of
joint policies is given by:

O

([

|A∗|

„

(|A∗|·|O∗|)
h−1

(|A∗|·|O∗|)−1

«

]m)

= O

(

|A∗|
m[(|A∗|·|O∗|)

h−1]
(|A∗|·|O∗|)−1

)

.

This representation, however, suffers from two types of ‘redundancies’ as we illustrate using
figure 3. The first redundancy occurs in pure policies and was briefly discussed in section 1.2.
When a policy πi deterministically specifies an action say ai for a particular action-observation
history ~θi, this means that some parts of the tree of will not be reached. Clearly, it is unnecessary
to specify actions for these unreached parts. E.g., in figure 3, if agent 1 selects a policy π1 that
specifies ā1 at decision point 1, this policy will not have to specify an action at decision point 2.
This redundancy can be exploited by defining a pure policy πi as mapping from the observation
history ~oi, the sequence of all observations received by the agent, to actions.

This is exactly what is done in the reduced normal form, which reduces the size of the
representation to:

O

(

|A∗|
m[(|O∗|)

h−1]
(|O∗|)−1

)

Clearly, constructing the reduced normal form corresponds with brute-force joint policy evalua-
tion as mentioned in [11], as it simply calculates the expected outcome of all pure joint policies.
(For a detailed proof of this correspondence see appendix A.1.) This means that reduced normal
form solving, like brute-force policy evaluation, is intractable for all but the smallest problems,
as the complexity of brute-force policy evaluation is:
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PSfrag replacements
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ȧ1 ā1

ȯ1ȯ1 ō1ō1
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PSfrag replacements

1

2 3 4

ȧ2 ā2

ȯ2ȯ2 ō2ō2

Figure 3: Partial trees of action-observation histories for two agents. Left: tree of agent 1’s
action-observation histories. Right: the same for agent 2. The squares represent points at which
the agents can take decisions.

O

((

|A∗|
m[|O∗|

h−1]
|O∗|−1

)

· (|S| · |O∗|
m)h

)

, (3.4)

Here, (|S| · |O∗|m)h is the cost of evaluating one joint policy.
The second redundancy arises when reasoning about all pure policies, in this case different

policies share sub-trees. E.g. in figure 3, if π1 is a policy that specifies ā1 at decision point 3
and 4 and π′

1 is a policy that specifies ȧ1 at those decision points, then both policies specify ȧ1

for decision point 1. Intuitively, this means that it should be possible to represent the policies
more compactly. This is indeed possible, as we will discuss in the next section.

3.4 Sequence form

In [8, 9] a representation called sequence form for solving extensive form games is introduced.
The sequence form essentially translates the above intuitions into an appropriate data structure
for representing policies: Since policies are essentially trees, sequence form represents sets of
policies using their common sub-trees. As the name implies, sequence form is based on ‘se-
quences’. These are very much related to the paths and histories which we already discussed.
Formally:

Definition 3.7 A sequence for agent i, σi, is the portion of a path that is under agents i’s control
and observation. More specific, agents i’s sequence to a particular node n, σi(n), consists of:

• All agent i’s actions and observations up to nprec, agent i’s decision node preceding n in
path σ(n).

• The action specified at nprec.

Therefore a sequence can be summarized as a tuple 〈Ii, ai〉, where K(nprec) = Ii is agent i’s
information set preceding n in σ(n) and ai is the action specified for Ii by σ(n). When we need
to refer to the k-th sequence of agent i we will write σi,k.

Because a sequence σi(n) specifies the components of a path σ(n) that agent i can observe
and control, this can be used to express agent i’s contribution to the realization of a path
P (σ(n)|π) by defining realization weights over these sequences:

Definition 3.8 The realization weight of a sequence σi, denoted ρi(σi), is the probability that
agent i will take the moves specified by σi, given that the appropriate information sets are
reached.
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Of course not all arbitrary assignments of realization weights to an agent’s sequences repre-
sent a valid (possibly randomized) policy. In particular, the realization weights of continuations
of a sequence must sum up to the probability of that sequence. Let σi(Ii) be a sequence for
player i that can lead to a particular information set Ii. Let σi(Ii)◦a1, ..., σi(Ii)◦an be sequences
that are continuations of σi(Ii), that specify taking action a1, ..., an at information set Ii. The
constraints for realization weights tell us that:

ρi(σi(Ii)) = ρi(σi(Ii) ◦ a1) + ...+ ρi(σi(Ii) ◦ an).

When the realization weights of σi(Ii) and σi(Ii)◦ai are known, the probability of taking action
ai at information set Ii is:

P (ai|Ii, ρi) =
ρi(σi(Ii) ◦ ai)

ρi(σi(Ii))
.

So in this way, a set of realization weights satisfying the proper constraints corresponds to a
stochastic policy.

The other way around, it is also possible to find the realization weights, given a particular
stochastic (joint) policy. We write ρπi (σi) = ρπii (σi) for the realization weight of σi as specified
by joint policy π = 〈πi, π 6=i〉. For the extensive form of a POSG, in which an information set
corresponds with an action-observation history, we can write the realization weight of a sequence
as follows:

ρπi (σi) = ρπi (
〈

Ii, a
t
i

〉

) = ρπi (
〈

(o0
i , a

0
i , ..., o

t
i), a

t
i

〉

)

= P π(ati|(o
0
i , a

0
i , ..., o

t−1
i , at−1

i , oti))

·P π(at−1
i |(o0

i , a
0
i , ..., o

t−1
i )) · .... · P (a0

i |o
0
i )

=

t
∏

t′=0

P π(at
′

i |~θ
t′

i ), (3.5)

where P π denotes the probability according to π = 〈πi, π 6=i〉.
In sequence form, the expected outcome of a joint policy is defined as follow:

Definition 3.9 The expected value for agent i of a joint policy in sequence form is

Vi(π) =
∑

no∈N o

Oi(n
o) · ν(no) ·

m
∏

i=1

ρπi (σi(n
o)), (3.6)

where ν(no) is the product of probabilities of nature’s moves along the path as before (eq. 3.3).

This is the equivalent of equation 3.2 that was used for the normal form, generalized to stochastic
policies specified by realization weights. As before, in the two agent case, this can be rewritten to
matrix form, similar to the normal form,3 but with rows and columns corresponding to sequences
of the agents rather than pure policies. Let R be the sequence form payoff matrix for agent
1, then an entry rlk corresponds with the expected value of agent 1’s l-th sequence σ1,l against
σ2,k, and is given by:

rlk =
∑

no∈N o s.t. σ1(no)=σ1,l ∧ σ2(no)=σ2,k

ν(no) ·O1(n
o).

Here, the summation is over outcome nodes consistent with the sequences l and k. As these
sequences completely specify the joint action-observation history, the consistent outcome nodes
no specify paths σ(no) that only differ on the actual states. Other nodes will not have to be
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I0
2 IRo

2 ISi2

aQ aF aQ aO aQ aO

I0
1

aLe −2 0 0 0 0 0
aRi −2 0 0 0 0 0

IRi
1

aQ 0 0 −0.365 −0.696 −0.735 −1.404
aO 0 0 −0.696 −3.018 −1.404 +3.918

ILe
1

aQ 0 0 −0.529 −1.010 −0.571 −1.090
aO 0 0 −1.010 −4.588 −1.090 +3.488

Table 5: Sequence form of the deaf and the blind problem. The rows are sequences for the deaf
(agent 1), columns for the blind (agent 2). The sequences are grouped per action-observation
history or, equivalently, information set.









1 0 0 0 0 0 0
−1 1 1 0 0 0 0
0 −1 0 1 1 0 0
0 0 −1 0 0 1 1









·





















ρ1(σroot)
ρ1(
〈

I0
1 , aRi

〉

)
ρ1(
〈

I0
1 , aLe

〉

)
ρ1(
〈

IRi
1 , aQ

〉

)
ρ1(
〈

IRi
1 , aO

〉

)
ρ1(
〈

ILe
1 , aQ

〉

)
ρ1(
〈

ILe
1 , aO

〉

)





















=









1
0
0
0









Table 6: Sequence form constraint matrix and equation for the deaf (agent 1).

considered and, as a consequence, many of the matrix entries are zero. The complete sequence
form of the deaf and the blind problem is shown in table 5.

Example 3.3 As an example, the entry for the sequences
〈

(IRi
1 , aO), (I

Ro
2 , aO)

〉

is the summa-
tion over all the outcome nodes no that are consistent with these sequences weighted by their
probability induced by nature ν(no). Which for this specific combination of sequences gives:

P (sl) · P (oRo|slR) · 9.9 + P (sr) · P (oRo|srR) · (−10.1) =

0.55 · 0.03 · 9.9 + 0.45 · 0.7 · (−10.1) = −3.018.

Note that for all the combinations of the information sets ILe
1 , IRi

1 , ISi2 and IRo
2 , there is

a symmetry between sequences that specify a1 = aO, a2 = aQ and sequences that specify
a1 = aQ, a2 = aO . This is because the payoffs specified by all the outcome nodes that are
consistent with these sequences are the same (namely −2.1) and the probabilities induced by
nature are also the same. ¤

The agents will have to choose the realization weights of their sequences in agreement with
the relevant constraints, as illustrated by table 6 and 7 that shows the constraint matrix for
respectively agent 1 and 2. When both agents have selected such realization weights, this
specifies a joint policy. When R is the payoff matrix for agent 1, this agent’s value (given by eq.
3.6) can be written as:

V1(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) · rlk. (3.7)

3Again, this representation generalizes to a multi-dimensional array in the case of more than 2 agents.
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







1 0 0 0 0 0 0
−1 1 1 0 0 0 0
0 0 −1 1 1 0 0
0 0 −1 0 0 1 1









·





















ρ2(σroot)
ρ2(
〈

I0
2 , aQ

〉

)
ρ2(
〈

I0
2 , aF

〉

)
ρ2(
〈

IRo
2 , aQ

〉

)
ρ2(
〈

IRo
2 , aO

〉

)
ρ2(
〈

ISi2 , aQ
〉

)
ρ2(
〈

ISi2 , aO
〉

)





















=









1
0
0
0









Table 7: Sequence form constraint matrix and equation for the blind (agent 2).

Example 3.4 As an example, if π1 specifies ρ(
〈

IRi
1 , aO

〉

) = 1 and π2 specifies ρ(
〈

ISi2 , aO
〉

) =
ρ(
〈

IRo
2 , aQ

〉

) = 1,4 this corresponds with the optimal joint policy π1 = I0
1 : aRi, I

Le
1 : ∗, IRi

1 : aO,
π2 = I0

2 : aF , IRo
2 : aQ, ISi2 : aO which we encountered before. Its expected value according to

equation 3.7 is:
−0.696 + 3.918 = +3.222,

which is exactly what we calculated before. ¤

Solving the sequence form means finding optimal realization weights for all agents. As for
normal form games, the question of how to solve this sequence form, depends on the number
of players and the type of outcomes it specifies. Research has mainly addressed the two agent
case. We will focus on identical payoff games here.

For identical payoff games (e.g. Dec-POMDPs), optimally solving the sequence form takes
worst-case exponential time, assuming EXP 6= NEXP. This can be seen as follows. The size
of the sequence form payoff matrix is the number of joint action-observation histories times the
number of joint actions:

O

(

|A∗|
m ·

(

(|A∗| · |O∗|)
h − 1

(|A∗| · |O∗|)− 1

)m)

which is exponential in the size of the Dec-POMDP. Would there be a polynomial algorithm,
then solving a Dec-POMDP is in EXP. However, solving a Dec-POMDP is NEXP-complete [1].
Therefore, assuming EXP 6= NEXP, there can be no polynomial time algorithm for optimally
solving an identical payoff game in sequence form. This means that, although sequence form is
exponentially smaller than normal form and thus offers exponential space savings, the worst-case
time complexity is equal to that of constructing the full normal form (and thus to brute force
policy evaluation5). Currently, the only known algorithm for optimally solving the sequence
form of an identical payoff game is evaluating all combinations of pure policies, yielding all pure
joint policies, but there might be methods with better lower-bounds.

Another possibility for solving the sequence form of identical payoff games is to apply alter-
nating maximization. In this procedure, an arbitrary joint policy is used as initialization. Then
one agent is selected whose policy is improved, while keeping the policies of the other agents
fixed. The agent improves his policy by calculating a best-response: it assigns a realization
weight of 1 to those sequences that maximize the sum specified by equation 3.7, respecting the
constraints for the realization weights. E.g. in the two player case where R is the common
payoff matrix, agent 1 will perform the following maximization:

π′
1 = argmax

π1

∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) · rlk (3.8)

4Note that, because of the constraints, this also implies that ρ(I0
1 , aRi) = 1 and that ρ(I0

2 , aF ) = 1.
5In fact, brute-force policy evaluation has the best space complexity, as it requires storing only the best policy

found so far.
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I0
2 IRo

2 ISi2

aQ aF aQ aO aQ aO

I0
1

aLe −2 0 0 0 0 0
aRi −2 0 0 0 0 0

IRi
1

aQ 0 0 −0.365 −0.696 −0.735 −1.404
aO 0 0 −0.696 −3.018 −1.404 +3.918

ILe
1

aQ 0 0 −0.529 −1.010 −0.571 −1.090
aO 0 0 −1.010 −4.588 −1.090 +3.488

Table 8: Illustration of the calculation of a best-response for the agent 1 (the deaf) against the
policy π2 = I0

2 : aF , IRo
2 : aQ, ISi2 : aO of the second agent (the deaf). The dark columns can

not be realized under π2.

The procedure of this maximization is illustrated in table 8. Next, another agent is selected to
improve its policy, etc. This will lead to a Nash-equilibrium, but it might not be the best one.
I.e., it is only guaranteed to find a locally optimal solution.

4 Direct calculation of best-response policies (DCBRP)

In section 3.4 we showed how an agent could select a best-response policy using sequence form. It
is also possible to calculate a best-response for an extensive form game more directly, as is shown
for poker games in [13, 14]. We will refer to this method as direct calculation of best-response
policies (DCBRP) for extensive form games.

The approach is to transform the extensive form game to a POMDP for a protagonist
agent. The solution of this POMDP gives an optimal (deterministic) best-response policy for
the protagonist agent with regards to the policies of the other agents. The transformation
to a POMDP is accomplished by converting all decision nodes for the protagonist agent and
all outcome nodes to states for the POMDP. The deterministic transitions from the game-tree
are converted to stochastic transitions in the POMDP, where the transition probabilities are
defined through the fixed policies of the other agents, and any observations that are implicit in
the extensive form are made explicit in the observation model. Figure 4 shows a POMDP model
for the first agent in ‘the deaf and the blind’. Comparing it to figure 2 gives an intuition behind
this transformation.

Now we will further formalize the transformation to a POMDP model. First we will discuss
the transformation for arbitrary extensive form games, then for extensive forms of POSGs. We
will denote the states in the POMDP model as p in order not to confuse them with states for
POSGs (notated as s).

4.1 General extensive form games

We will now discuss DCBRP for general extensive form games in which there are m agents, but
in which these do not necessarily take actions simultaneously each time-step (or even in a fixed
order). For such a game, the probability of reaching a particular next decision node n′

i of the
protagonist agent i from a decision node ni after action ai, is determined by all other decision
nodes that are between them. E.g. suppose action ai leads to a node nj for agent j and that
the latter’s action aj leads to n′

i, then the probability is given by:

P (n′
i|ni, ai) = P (aj |nj),
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Figure 4: A POMDP model for the deaf and the blind for first agent (the deaf). For clarity, the
transitions from states slL and slR are omitted.
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where P (aj |nj) is 0 or 1 if agent j has a deterministic policy. So in this case, the POMDP model
would specify P (p′|p, ai) = P (aj |nj), where p′, p are the POMDP states that correspond with
n′
i, ni. In general, however, there can be any number of nodes. In this case the probability can

be expressed by sequences in the sub-tree induced by ni:
6

P (p′|p, ai) =

{

ν(n′
i) ·
∏

j 6=i ρ
π
j (σj(n

′
i)) , a0

i ∈ σ(n′
i)

0 , otherwise
(4.1)

where a0
i ∈ σ(n′

i) indicates that action ai must be the first action in σ(n′
i), the path from ni to

n′
i.
Equation 4.1 is also valid when n′

i is an outcome node and the initial state distribution,
b0(p), is given by the probability that the first decision nodes of agent i are reached. E.g. the
initial transitions in figure 2 determine the initial belief over POMDP states (which are shown
in figure 4). As a result the transition model is completely specified.

The observation and reward model for a general extensive form game are trivial. The obser-
vation the protagonist agent receives is the information set of the new node and he receives this
observation with probability 1:

P (I(n′
i)|ai, p

′) = P (I(n′
i)|p

′) = 1

where p′ is the state representing node n′
i.

The reward of reaching state p′ is non-zero only when the corresponding node is an outcome
node:

R(p′) =

{

O(n′
i) , n′

i ∈ N
o

0 , otherwise

as is illustrated in figure 4. The more commonly used reward function form R(s, a) can be found
by applying one backup step.

4.2 DCBRP for extensive form POSGs

In the previous subsection we specified the transition probabilities for the POMDP formed from
a general extensive form game. Because a general extensive form game can have any structure,
P (p′|p, ai) could only be defined by paths. Now, however, we consider extensive form POSGs
which have a well-defined and fixed structure. Therefore this probability can be defined more
explicitly.

Let p be the POMDP state that represents node ni, and let s and ~θ be the state and joint
action-observation history that ni specifies. The path σ(ni) differs from ~θ in that it also assigns
states for each time-step, so there are maximally |S|t (where t = tni , the time-step of the ni)
nodes (and thus as much POMDP states p) that specify the same action-observation history ~θ.
7

Similarly, p′ represents n′
i, the descendant decision node for agent i in the next time-step that

specifies state s′ and joint action-observation history
(

~θ,a,o
)

. Also the joint action a = 〈a 6=i, ai〉

specifies action ai for the protagonist agent i. Now we can define the probability of the transition
from p to p′ as:

P (p′|p, ai) = P (o|s′, 〈a 6=i, ai〉)P (s′|s, 〈a 6=i, ai〉)P (a 6=i|~θ).

6I.e., the sub-tree with ni as its root. Therefore the path σ(n′i) = (ni, ..., n
′
i) and a sequence σj(n

′
i) represents

agent j’ s components of that path.
7Alternatively, it is also possible to specify p as the POMDP state representing the group of |S|t−1 nodes that

specify the same ~θ and state st. Here, for ease of explanation, we will assume the former and more straightforward
specification in which there is a one to one correspondence to nodes in the game-tree.
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The observation agent i receives in such a transition is specified to be one of the observations
oi ∈ Oi from the POSG model. Therefore we can directly use these observations instead of
‘observing the information set’ as in section 4.1. Let n′

i specify joint observation o = 〈o 6=i, oi〉,
then:

P (oi|p
′) = 1.

Other observations o′i have probability 0.
The reward model can also be simplified.8We can specify the reward function as:

R(p′) = R(s,a),

where s is the POSG state specified by (ni and thus by ) p, the predecessor POMDP state of
p′. a is the joint action that leads to p′, i.e., a is the last joint action in σ(n′

i). Effectively, this
means that in each state p the rewards of the preceding transition are received. I.e. the rewards
are delayed one time-step. This is not uncommon though and additionally allows rewards that
are dependent on the next state: R(s, a, s′).

Alternatively, we can also specify:

R(p, ai) = R(s, 〈π 6=i(~o 6=i), ai〉),

where ~o 6=i is specified by p, or when the other agents are allowed to have stochastic policies:

R(p, ai) = E
[

R(s,
〈

π 6=i(~θ 6=i), ai

〉]

=
∑

a 6=i

R(s, 〈a 6=i, ai〉)P (a 6=i|π 6=i, ~θ 6=i).

4.3 Solving the POMDP

In general solving a finite POMDP is PSPACE-hard [15]. However, when constructing a POMDP
given the fixed policies of the other agents, there is exactly one belief for each information set of
the protagonist agent.9 As, for a finite extensive form game, the game-tree is finite, this means
that the number of beliefs is finite and linear in the size of the extensive form. Therefore it
is possible to construct a (fully observable) MDP over belief states by generating all possible
beliefs, their transitions and rewards. This MDP can then be solved exactly using value iteration.
[13, 14]

The construction of the belief MDP is straightforward. The chance of reaching a next belief
is equal to the chance of receiving the observation that leads to that belief, i.e.:

P (b′|b, a) = P (oi|ai, b),

where ai and oi are the action and observation leading to belief b′ and P (oi|ai, b) is the
probability of receiving observation oi after action ai from belief b, defined as:

P (oi|ai, b) =
∑

p′

P (oi|p
′)
∑

p

P (p′|p, ai)b(p),

which, because of the way the observations are defined reduces to:

P (oi|ai, b) =
∑

p′ s.t. P (oi|p′)=1

∑

p

P (p′|p, ai)b(p).

8This is different from what is shown in figure 4. However, it is easy to imagine the reward being divided per
time-step.

9An information set exactly and uniquely specifies the action-observation history for the agent.
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The reward of a particular belief b is also trivially defined as:

R(b) =
∑

p

R(p)b(p),

Now the only ingredient left is the belief update:

boiai(p
′) =

P (oi|p
′)
∑

p P (p′|p, ai)b(p)

P (oi|ai, b)
,

which is defined completely in terms of preceding equations.

5 JESP

Joint equilibrium based search for policies (JESP) [11] is a method for Dec-POMDPs that also
calculates a local optimum by applying the methodology of alternating maximization which we
discussed in section 3.4. The variant DP-JESP which we will consider here (and refer to as
simply ‘JESP’ hereafter) combines this with the direct calculation of best-responses as discussed
in section 4.

5.1 JESP’s dynamic program

Instead of first constructing the complete sequence form and using equation 3.8 to perform the
maximization thus calculating a best-response, JESP uses a function ‘best-response’ which we
prove to be equivalent to the direct best-response calculation from section 4.

As mentioned JESP is a dynamic programming algorithm that also performs alternating
maximization. That means that it fixes the policies of all but one agent, and calculates a best-
response for this agent. In order to do this, the agent calculates a value function over beliefs.
In this case, however, a belief over states s is insufficient: in order to predict the actions of the
other agents, the probability of their observations is required as well. Therefore JESP maintains
beliefs over states s and observation histories of the other agents ~o 6=i.

In the following we assume two agents. We calculate a best-response for agent 1, so agent
2’s policy is fixed. This means that a belief for agent 1 specifies the probabilities of states and
observation histories of agent 2: bt1(

〈

s, ~o t
2

〉

). We also assume that agent 2’s policy is deterministic.
In this case the value function for agent 1 is given by:

V t(bt1) = max
a1∈A1



R(bt1, a1) +
∑

o1∈O1

P (o1|b
t
1, a1)V

t+1(bt+1
1 )



 . (5.1)

In this equation

R(bt1, a1) =
∑

〈st,~o t2〉

bt1(
〈

st, ~o t
2

〉

)R(st,
〈

a1, π2(~o
t
2)
〉

) (5.2)

is the expected immediate reward of performing action a1 under belief bt1. The updated belief
resulting from bt1 after action a1 and observing o1 and given by:

bt+1
1 (

〈

st+1, ~o t+1
2

〉

) =
1

P (o1|bt1, a1)

∑

〈st,~o t2〉

bt1(
〈

st, ~o t
2

〉

)·P (
〈

st+1, ~o t+1
2

〉

, o1|
〈

st, ~o t
2

〉

,
〈

a1, π2(~o
t
2)
〉

),
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Because the observation history is formed by concatenation, the probability of ~o t+1
2 is non-zero

only when ~o t+1
2 =

(

~o t
2, o2

)

. Therefore we can write:

bt+1
1 (

〈

st+1,
(

~o t
2, o2

)〉

) =
1

P (o1|bt1, a1)

∑

st

bt1(
〈

st, ~o t
2

〉

) · P (st+1, 〈o1, o2〉 |s
t,
〈

a1, π2(~o
t
2)
〉

),

in the above equations, P (o1|b
t
1, a1) is a normalizing constant:

P (o1|b
t
1, a1) =

∑

st+1

∑

o2∈O2

P (〈o1, o2〉 |
〈

a1, π2(~o
t
2)
〉

, st+1)
∑

〈st,~o t2〉

bt1(
〈

st, ~o t
2

〉

) ·P (st+1|st,
〈

a1, π2(~o
t
2)
〉

).

5.2 The relation with DCBRP for extensive form games

Direct calculation of best-response policies for extensive form games as discussed in section 4
defines a standard POMDP and therefore uses the standard POMDPs expressions from section
1.3. However, although DCBRP solves a standard POMDP, the states p over which this POMDP
is defined, correspond with POSG states s and observation histories of other agents ~o t

2. Therefore
it is possible to show that JESP’s definition of the value function and the belief update is
equivalent to the definitions used by DCBRP:

Theorem 5.1 The function used in JESP to calculate a best-response for Dec-POMDPs is
equivalent to direct calculation of best-response policies for extensive form games when applied
to the extensive form representation of the same Dec-POMDP. I.e., they calculate the same
value function.

Proof See appendix A.2. ¤

Now we that we established that the value function is identical for both methods, the only
difference could be in how the methods actually perform the dynamic programming. This
is also almost identical: JESP also generates all reachable beliefs and than performs value
iteration. The only difference is that JESP specifies to perform this value iteration ordered,
i.e. from t = h − 1, ..., 0 (or equivalently expressed in time to go: τ = 1, ..., h − 1). This is an
implementational optimization one would also apply for DCBRP.

6 Immediate reward sequence form

In this section we introduce the immediate reward sequence form (IRSF). This is a model very
similar to the regular sequence form, but distributing the rewards over time-steps. We use this
model to make a link between JESP and the sequence form approaches as discussed. Suppose
agent 2 from the deaf and the blind has the following policy: π2 = I0

2 : aF , IR2 : aQ, IS2 : aO. In
this case, agent 1 will calculate a best-response policy by calculating the JESP value function:

V t(bt1) = max
a1∈A1



R(bt1, a1) +
∑

o1∈O1

P (o1|b
t
1, a1)V

t+1(bt+1
1 )



 ,

Were the belief bt1 is a distribution over states and observation histories of agent 2: bt1 ∈ P(S ×
~Ot

2). In this way, all possible beliefs given the fixed policy of agent 2 are evaluated per time-step.

In contrast, the sequence form performs the maximization of equation 3.8. Which, in its
substituted form, is:
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t = 0 t = 1
I0
2 IRo

2 ISi2

aQ aF aQ aO aQ aO

t =
0

I0
1

aLe −2 −0.1 0 0 0 0
aRi −2 −0.1 0 0 0 0

t =
1

IRi
1

aQ 0 0 −0.332 −0.663 −0.669 −1.337
aO 0 0 −0.663 −2.985 −1.337 +3.985

ILe
1

aQ 0 0 −0.481 −0.962 −0.519 −1.038
aO 0 0 −0.962 −4.540 −1.038 +3.540

Table 9: The IR sequence form of the deaf and the blind. The matrix contains two sub-matrices
for t = 0 and t = 1.

πBR
1 = argmax

π1

∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k)
∑

no∈N o:
σ1(no)=σ1,l∧
σ2(no)=σ2,k

ν(no) ·O1(n
o).

This maximization clearly is not performed in a time-step based manner. Therefore it is not
possible to directly relate JESP and alternating maximization using the sequence form. In the
next sub-section IRSF is introduced that then will be used to clarify the relation to JESP.

6.1 IRSF definition

In order to get closer to the JESP approach, we rewrite eq. 3.7, so that it performs a summation
over time-steps. The complete deduction can be found in appendix B.2.

Let σt
1,l =

〈

~θ t
1 , a

t
1

〉

be the l-th t + 1-step sequence for agent 1, i.e., a sequence containing

t+ 1 actions a1 ∈ A1. Similarly, let σt
2,k =

〈

~θ t
2 , a

t
2

〉

be the k-th t+ 1-step sequence for agent 2.

Then we can write the expected value for agent i of a joint policy as

Vi(π) =
h−1
∑

t=0

∑

l

ρπ1 (σ
t
1,l)
∑

k

ρπ2 (σ
t
2,k) · r

t
lk, (6.1)

where
rtlk =

∑

st

Ri(s
t,at) · ν(st, ~θ t), (6.2)

gives the expected immediate reward, weighted by ν(st, ~θ t), which is nature’s component of real-

izing state st and the joint action-observation history ~θ t =
〈

~θ t
1 ,

~θ t
2

〉

, specified by the sequences.

This probability is defined as:

ν(st, ~θ t) = ν(st, ~θ t | b0) =
∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1,ot

′+1|st
′
,at

′
), (6.3)

Definition 6.1 The immediate reward sequence form (IRSF) of a POSGs with horizon h is
given by h matrices for each agent. Let the matrices for agent 1 be R0, ...,Rh−1, then the
entries of a matrix Rt are given by equation 6.2.

Of course, it is also possible to merge the t different matrices into 1 larger one. Table 9
shows the IR sequence form for the deaf and the blind problem in 1 table.
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Example 6.1 As an example, we will again consider the optimal policy π1 = I0
1 : aRi, I

Le
1 :

∗, IRi
1 : aO, π2 = I0

2 : aF , IRo
2 : aQ, ISi2 : aO which we encountered before. Its expected value

according to equation 6.1 then is:

−0.1 + (−0.663 + 3.985) = +3.222,

which is exactly what we calculated before. ¤

6.2 JESP vs. IRSF

Here we will relate the best-response function used by JESP to calculating a best-response in
immediate reward sequence form. We start by noting that, in fact, a JESP belief is a conditional
probability distribution:

b(
〈

st, ~o t
6=i

〉

) = P (st, ~o t
6=i |

~θ t
i , π 6=i), (6.4)

because π 6=i is a tuple of pure policies, we only need to consider ~o t
6=i, the observation history of

other agents, and not ~θ t
6=i, their full action-observation history. This corresponds to the fact that

we can ignore certain columns (or rows) when calculating a best-response in sequence form. In
the light of equation 6.1 it means that the summation is only over particular k (or l) because
the ρπ2 (σ

t
2,k) is 0 for non-specified actions (thus sequences). In the light of equation 6.2 this

means that the joint action-observation history ~θ t =
〈

~θ t
1 ,

~θ t
2

〉

specified by the sequences within

this summation, is always consistent with π2. Therefore it would be possible to rewrite these
equation as follows, when calculating a best-response (for agent 1):

V1(π1 | π2) =
h−1
∑

t=0

∑

l

ρπ1
1 (σt

1,l)
∑

k s.t. ρ
π2
2 (σt2,k)=1

rtlk, (6.5)

where we now can write:

rtlk =
∑

st

R1(s
t,at) · ν(st, ~θ t

1 , ~o
t
2 | π2, b

0),

because we only need agent 2’s observation history to calculate the probability of the joint
sequence when we know the pure policy π2. More elaborately put:

ν(st, ~θ t) = ν(st, ~θ t
1 ,

~θ t
2 | b

0)

= ν(st, ~θ t
1 , ~o

t
2 | π2, b

0).

When restricting π1 also to be a pure policy, we can write ν(st, ~o t
1, ~o

t
2 | π1, π2, b

0). Which can be
decomposed further to:

ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0) = ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) · ν
~θ t(~o t

1 | π1, π2, b
0),

Here , we write ν
~θ t instead of ν to stress that it is nature’s probability component of joint

action-observation history ~θ t. The components are given by:

ν
~θ t(~o t′

1 | π1, π2, b
0) =

t−1
∏

t′=0

P (ot
′+1

1 |b
~θ t

′

1
π2 , π1(~o

t′

1 )),

where

P (ot+1
1 |b

~θ t1
π2 , π1(~o

t
1)) =

∑

st+1

∑

ot+1
2

∑

〈st,~o t2〉

P (st+1, ot+1
1 , ot+1

2 | st,
〈

π1(~o
t
1), π2(~o

t
2)
〉

)b
~θ t1
π2(s

t, ~o t
2),
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with b
~θ t1
π2 ∈ P(S × ~Ot

2) is the belief agent 1 has at time-step t induced by his action-observation
history and the knowledge he has about agent 2’s policy. I.e. a belief as is used in JESP and
defined in eq. 6.4.

Given the above definition of ν
~θ t(~o t

1 | π1, π2, b
0), ν

~θ t(st, ~o t
2 | ~o

t
1, π1, π2, b

0) is given by (proof
in appendix A.3):

ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) =
ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0)

ν
~θ t(~o t

1 | π1, π2, b0)

≡ b
~θ t

π2
(st, ~o t

2)

So by substitution in the equation for V1(π1 | π2) (eq. 6.5) we get:

V1(π1 | π2) =
h−1
∑

t=0

∑

l

ρπ1
1 (σt

1,l)
∑

k s.t.
ρ
π2
2 (σt2,k)

=1

∑

st

R1(s
t,at)ν

~θ t(st, ~o t
2 | ~o

t
1, π1, π2, b

0)ν
~θ t(~o t

1 | π1, π2, b
0).

(6.6)
Now we will relate this to JESP’s best-response calculation. Realizing that sequences corre-

spond to tuples: σt
1,l =

〈

~θ t
1 , a1

〉

, and that, for a deterministic policy π2, ρπ2
2 (σt

2,k) = 1↔ σt
2,k =

〈

~o t
2, π2(~o

t
2)
〉

, we can rewrite equation 6.6 to:

V1(π1 | π2) =
h−1
∑

t=0

∑

〈~θ t1 ,a1〉

ρπ1
1 (
〈

~θ t
1 , a1

〉

)
∑

~o t2

∑

st

R1(s
t,
〈

a1, π2(~o
t
2)
〉

)·

ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) · ν
~θ t(~o t

1 | π1, π2, b
0),

Here ν
~θ t(~o t

1 | π1, π2, b
0) can be moved to the front:

V1(π1 | π2) =
h−1
∑

t=0

∑

〈~θ t1 ,a1〉

ρπ1
1 (
〈

~θ t
1 , a1

〉

)ν
~θ t(~o t

1 | π1, π2, b
0)

∑

st

∑

~o t2

R1(s
t,
〈

a1, π2(~o
t
2)
〉

) · ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0).

Now combining this with equation 5.2 and substituting ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) with b
~θ t

π2
(st, ~o t

2)
gives a definition based on JESP beliefs:

V1(π1|π2) =
h−1
∑

t=0

∑

〈~θ t1 ,a1〉

ρπ1
1 (
〈

~θ t
1 , a1

〉

)ν
~θ t(~o t

1 | π1, π2, b
0)R1(b

~θ t1
π2 , a1),

with the expected immediate reward as defined in JESP (eq.5.2):

R1(b
~θ t1
π2 , a1) =

∑

st

∑

~o t2

R(st,
〈

a1, π2(~o
t
2)
〉

)b
~θ t1
π2(s

t, ~o t
2)

The calculation of a best-response is given by a maximization:

V BR
1 (π2) = max

π1

h−1
∑

t=0

∑

〈~θ t1 ,a1〉

ρπ1
1 (
〈

~θ t
1 , a1

〉

)ν
~θ t(~o t

1 | π1, π2, b
0)R1(b

~θ t1
π2 , a1).
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θ 〈θ1,1, θ2,1〉 〈θ1,1, θ2,2〉 〈θ1,2, θ2,1〉 〈θ1,2, θ2,2〉
P (θ) 0.3 0.2 0.2 0.3

ȧ2 ā2 ȧ2 ā2 ȧ2 ā2 ȧ2 ā2

ȧ1 3 2 2 1 3 2 0 1
ā1 1 0 2 3 1 2 3 4

Table 10: A Bayesian game with identical payoffs.

Because we are calculating a pure policy π1, for each observation history the realization weight
of one action is 1. Therefore this can be rewritten to:

V BR
1 (π2) = max

π1

h−1
∑

t=0

∑

~o t1

ν
~θ t(~o t

1 | π1, π2, b
0)R1(b

~θ t1
π2 , π1(~o

t
1)).

It is intuitively clear that this is a non-recursive definition of V 0 according to 5.1. (For proof
see appendix A.4.) Therefore we can conclude that the difference between alternating maxi-
mization using the immediate reward sequence form and JESP (and thus DCBRP) is that JESP
decomposes nature’s probability component in two parts, while IRSF doesn’t. We conjecture
that this is a minor difference and that the methods can be regarded as equivalent.

7 Bayesian Game approximation

In this section we will discuss the method for solving POSGs as outlined in [3, 4] and relate it
to methods encountered earlier.

7.1 Bayesian games and POSGs

The approach is based on dividing the POSG in Bayesian games; one for each time-step.
A Bayesian game (BG) is defined as a tuple 〈Θ,A, P, u〉, with:

• m agents.

• Θ = Θ1 × ... × Θm, is the type profile space or joint type space. Θi is the type space for
agent i. A type, θi ∈ Θi, defines the private information an agent i holds. θ ∈ Θ denotes
a type profile and θ 6=i denotes the type of all agents but agent i.

• A is the set of joint actions.

• P (Θ) is a probability distribution over the type profile space. P (θ) is the probability of a
specific type profile θ. The probabilities P (θi) and P (θ 6=i|θi) can also be extracted from
P (Θ).

• u = 〈u1, ..., un〉 is the collection of utility functions. ui(a, θ) gives the utility for agent i of
joint action a under type profile θ. We also write ui(〈ai,a 6=i〉 , 〈θi, θ 6=i〉).

Example 7.1 We will illustrate to concept of Bayesian games with a small example. Table 10
shows a Bayesian game with two agents. Both have two actions and two types, θ1,2 denotes
the second type of agent 1. This leads to 4 type profiles, indicated in the top row, and their
probabilities, shown in the bottom row.

For each type profile, the agents play a normal form game. In this example, we assume
identical payoffs, so there is only one value listed per type profile and joint action. ¤
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Now we can model a POSG as a sequence of Bayesian games (one for each time-step). We
will consider the game for the t-th time-step of the POSG. Let θt1 denote a type of agent 1 in this
game. Because the type of an agent in a Bayesian game corresponds to some private information
he is holding, this corresponds to the action-observation history of the agent in the POSG, i.e.:

θt1 ≡ ~θ t
1 .

In [3, 4] the BG approach for POSGs is actually only applied to Dec-POMDPs. At each
time-step t, starting with t = 0, the agents solve the BG which, for the identical payoff case10

(i.e. Dec-POMDPs) gives a conditional policy for time-step t, πt
i , mapping from types (thus

action-observation histories) to actions: πt
i : ~Θt

i → Ai. Next, each agent i performs action,

πt
i(
~θ t
i ), where ~θ t

i is agent i’s true action-observation history. Thus the agents execute joint

action πt(~θ t).
Clearly, this joint action πt(~θ t) is optimal when ut, the utility function of the t-th time-step

BG is optimal. I.e. when

ut(a, ~θ t) = Q∗(a, ~θ t),

which is the expected value of performing a and following the optimal joint policy thereafter.
Because Q∗ is not known11, [3, 4] employ heuristics such as QMDP to define the utility functions
ut.

The big advantage of assuming a heuristic utility function is available, is that this enables
making a single forward pass (from t = 0, ..., h − 1) solving the Bayesian games at each time-
step. Normally one would have to consider all time-steps simultaneously: The expected value
Q(a, ~θ t) of performing a when the joint observable history is ~θ t, depends on the actions you’re
taking at a later time, as well as on the actions taken earlier. This is why JESP and alternating
maximization in sequence form have to perform a maximization over all time-steps before the
agent is alternated.

An additional benefit is that performing a forward sweep through time allows the use of the
knowledge of the policy at time-step t when reasoning about the next time-step t+1: The BGs
will only have to include the action-observation histories that are consistent with the policies
calculated for previous time-steps.

7.2 BG vs. IRSF

In the previous section we mentioned that at each time-step t the BG is solved to find a joint
policy πt, but did not explain exactly how this is done. Here we will explain this, directly
relating this approach to the immediate reward sequence form.

In order to solve a Bayesian game it can be converted to normal form. The normal form is
the matrix giving the expected outcome of all pure joint policies π. For an identical payoff game,
this means that the optimal joint policy is simply the one with the highest payoff. However, a
pure policy is a mapping from types to actions and as each type corresponds with an action-
observation history, of which there are exponentially many, constructing this normal form is
intractable.

Another approach, as used in [3, 4], is to convert the BG to sequence form. In a standard
extensive form game, a sequence for an agent is defined as an information set of that agent plus
an action to take at that information set. In a Bayesian game this corresponds with a type and
an action to take for that type. In a Bayesian game used to approximate a time-step of a POSG
a type is an action-observation history, which corresponds to an information set in the extensive
form of the POSG. Therefore the notions coincide nicely.

10Formally, ∀i,jui = uj = u
11Calculating Q∗ would require optimally solving the Bayesian games for all future time-steps h− 1, h− 2, ..., t.
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θ2,1 θ2,2

ȧ2 ā2 ȧ2 ā2

θ1,1 ȧ1 0.9 0.6 0.4 0.2
ā1 0.3 0.0 0.4 0.6

θ1,2 ȧ1 0.6 0.4 0.0 0.3
ā1 0.2 0.4 0.9 1.2

Table 11: Sequence form for the Bayesian game of example 7.1.

Example 7.2 We will illustrate the sequence form representation using the Bayesian game of
example 7.1. Table 11 shows its sequence form. Here sequence 〈θ2,2, ȧ2〉 played against 〈θ1,1, ȧ1〉
corresponds with joint action 〈ȧ1, ȧ2〉 for type profile 〈θ1,1, θ2,2〉, which gives an outcome of 1
as can be seen in table 10. However as P (〈θ1,1, θ2,2〉) = 0.2, the outcome is weighted by this
probability, therefore the entry has value 0.2.

The payoff of a joint pure policy is the sum of all entries the joint policy specifies. E.g. for
the following joint policy:

θ1,1 → a1,1,

θ1,2 → a1,2,

θ2,1 → a2,1,

θ2,2 → a2,2,

is given by 0.9 + 0.2 + 0.2 + 1.2 = 2.5 ¤

However, because in the BG for a time-step of a POSG the types correspond with action-
observation histories, a sequence for such a BG (type and an action to take for that type) is
identical to a sequence for a POSG (an action-observation history and an action to take). This
leads to the following observation:

The time-step t Bayesian game, used to approximate a POSG has the same form as
Rt, the t-th payoff matrix of the immediate reward sequence form.

Meaning that the sequences are identical, but the entries differ. The entries of the IRSF are
expected immediate rewards:

rt(~θ t,a) = rt(
〈

~θ t
1 , a1

〉

,
〈

~θ t
2 , a2

〉

) =
∑

st

Ri(s
t,at) · ν(st, ~θ t)

In contrast, the entry of the BG is a heuristic representing the optimal action value:

u∗(
〈

~θ t
1 , a1

〉

,
〈

~θ t
2 , a2

〉

)
def.
≈ Q∗(

〈

~θ t
1 , a1

〉

,
〈

~θ t
1 , a2

〉

)

= rt(~θ t,a) +
∑

o

P (o|~θ t,a)V (~θ t+1, π∗(~θ t+1)).

However, to calculate this ‘optimal heuristic’, the optimal policy itself is needed.

A Proofs

A.1 Equivalence brute force and normal form solving

We will show that constructing and solving the normal form of a Dec-POMDP is equivalent to
brute force joint policy evaluation. In order to prove this, we will need the following lemmas:
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Lemma A.1 The expected cumulative reward (value) of a decision node nd
i in the extensive

form of a POSG for some agent i under deterministic joint policy π, is given by:

V
l,π
i (nd

i ) =
h−1
∑

t=l

∑

(sl+1,ol+1,...,sh−1,oh−1)

Ri(s
t, π(~o t)) ·

h−2
∏

t=l

P (st+1,ot+1|st, π(~o t)),

where l is the time-step of nd
i , i.e. tndi

= l and sl and ol are specified by nd
i .

Proof The node nd
i specifies a sub-game of the full extensive form game: it is the root of

a sub-tree of the full game-tree. Let N ′o ⊆ N o be the subset of outcome nodes within this
sub-game (the outcome nodes reachable from nd

i ). The expected future reward starting from
nd
i , is the cumulative reward over the time-steps l, ..., h− 1:

O′
i(n

′o) ≡ O′
i(σ(n

′o)) =
h−1
∑

t=l

Ri(s
t,at),

where σ(n′o) is the path from root (nd
i ) to outcome node n0 in the sub-game. Similarly, nature’s

component of the probability of a path in the sub-game is adapted:

ν ′(n′o) =
h−2
∏

t=l

P (st+1|st,at) · P (o|at, st+1).

Using equation 3.2, we can now specify the value of a joint policy starting at nd
i as

V
l,π
i (nd

i ) =
∑

σ(n′o)∈σ(N ′o)

O′
i(n

′o) · P (σ(n′o)|π) · ν ′(n′o).

Because the joint policy is fixed and the summation is only over paths that are consistent with
the joint policy, we can rewrite this as:

V
l,π
i (nd

i ) =
∑

(sl+1,ol+1,...,sh−1,oh−1)

O′
i(n

′o) · ν ′(n′o)

=
∑

(sl+1,ol+1,...,sh−1,oh−1)

h−1
∑

t=l

Ri(s
t, π(~o t))

h−2
∏

t=l

P (st+1|st, π(ot))

·P (ot+1|π(~o t), st+1)

By contracting the conditional probabilities and swapping the sum-operators, we get the
lemma. ¤

Lemma A.2 In the extensive form of a POSG, the expected cumulative reward (value) of a
decision node nd

i for some agent i under deterministic joint policy π, can be expressed as the
value V l

i,π(s, ~o ) of the state s and joint observation history ~o specified by nd
i . I.e., when nd

i is a
node for time-step t = l, then:

V
l,π
i (nd

i ) = V
l,π
i (sl, ~o l)

=
h−1
∑

t=l

∑

(sl+1,ol+1,...

,sh−1,oh−1)

Ri(s
t, π(~o t)) ·

h−2
∏

t=l

P (st+1,ot+1|st, π(~o t))
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Proof We start with V l
i,π(s

l, ~o l). At time l,
〈

sl, ~o l
〉

specifies a set Nsl,~o l of decision nodes nd
i :

all nd
i such that sl ∈ σ(nd

i ) and ~o l ∈ σ(nd
i ). Therefore we get:

V
l,π
i (sl, ~o l) =

∑

ndi∈Nsl,~o l

P (σ(nd
i )|s

l, ~o l)V l
i,π(n

d
i ), (A.1)

where Nsl,~o l = {ni| s
l ∈ σ(nd

i ) ∧ ~o l ∈ σ(nd
i ) ∧ tndi

= l}. Next we turn to V l
i,π(n

d
i ). Since nd

i

specifies a sub-tree with itself as the root, according to lemma A.1, the expected value is given
by:

V
l,π
i (nd

i ) =
h−1
∑

t=l

∑

(sl+1,ol+1,...

,sh−1,oh−1)

Ri(s
t, π(~o t)) ·

h−2
∏

t=l

P (st+1,ot+1|st, π(~o t)),

where sl,ol are specified by nd
i . However, as all nodes over which equation A.1 sums, specify

the same sl,ol, the value for these nodes is also equal. That is,

∀ni,n′i∈Nsl,~o l
V

l,π
i (ni) = V

l,π
i (n′

i).

Therefore, when selecting n′d
i as an arbitrary node from Nsl,~o l , equation A.1 reduces to:

V
l,π
i (sl, ~o l) = V

l,π
i (n′d

i )
∑

ndi∈Nsl,~o l

P (σ(nd
i )|s

l, ~o l)

= V
l,π
i (n′d

i ).

Proving this lemma. ¤

Another way to interpret at this lemma is by noting that the states are Markov and that,
because the joint action-observation history is identical, the actions executed by the agents must
be the same. Now, we are ready to prove the main theorem.

Theorem A.1 For a finite horizon Dec-POMDP, constructing and solving the normal form is
equivalent to brute force search for the optimal joint policy. I.e. for each joint policy calculating
the value using:

V (π) ≡ Vi(π) =
∑

σ(no)∈σ(N o)

Oi(n
o) · P (σ(no)|π) · ν(no)

is equivalent with calculating the value of each joint policy using:

V 0,π(b0) =
∑

s∈S

b0(s)V 0,π(s,~o 0),

where ~o 0 = 〈~o∅, ~o∅〉 and

V t
π(s,~o

t) = R(s, π(~o t)) +
∑

s′∈S

P (s′|s, π(~o t))
∑

o∈O

P (o|st+1, π(~o t)) · V t+1
π (st+1, ~o t+1). (A.2)

Proof Because ∀i,j∀no Oi(n
o) = Oj(n

o) in the extensive form of a Dec-POMDP, we immedi-
ately have ∀i,j∀π Vi(π) = Vj(π) which we define as V (π). So we can use Vi of an arbitrary agent
i. We start by splitting Vi(π) in the first nature step (representing the initial state distribution)
and the rest:

Vi(π) = V π
i (nroot) =

∑

nd1

P (nd
1|nroot)V

0,π
i (nd

1),
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which by lemma A.2 reduces to:

V
0,π
i (nroot) =

∑

s0

P (s0)
∑

~o 0

P (~o 0|s0)V 0,π
i (s0, ~o 0).

When there is no initial observation (meaning ~o 0 = 〈~o∅, ..., ~o∅〉), we can write this as:

V
0,π
i (nroot) =

∑

s0

P (s0)V 0,π
i (s0, ~o 0),

which we can also write as

V
0,π
i (b0) =

∑

s0∈S

b(s0)V 0,π
i (s0, ~o 0).

So now, the only thing we need to do is to show that the definition of V 0,π
i (s0, ~o 0) according to

lemma A.1 and A.2 coincide with equation A.2. From lemma A.1 and A.2 we get:

V
0,π
i (s0, ~o 0) =

h−1
∑

t=0

∑

(s1,o1,...,

sh−1,oh−1)

Ri(s
t, π(~o t)) ·

h−2
∏

t=0

P (st+1,ot+1|st, π(~o t)) (A.3)

Because the index i in this expression only binds Ri, and we know that ∀i,j∀s,a Ri(s,a) =
Rj(s,a), we can safely remove this index. When we also split the expression in a first step and
the rest we get:

V 0,π(s0, ~o 0) =
∑

(s1,o1,...,

sh−1,oh−1)

R(s0, π(~o 0))
h−2
∏

t=0

P (st+1,ot+1|st, π(~o t))+

h−1
∑

t=1

∑

(s1,o1,...,

sh−1,oh−1)

R(st, π(~o t)) ·
h−2
∏

t=0

P (st+1,ot+1|st, π(~o t))

Here, R(s0, π(~o 0)) is a constant as both s0, π(~o 0) are fixed for all paths over which is summed.
Also, the probabilities of continuations of s0, π(~o 0)sum to 1, i.e.

∑

(s1,o1,...,

sh−1,oh−1)

h−2
∏

t=0

P (st+1,ot+1|st, π(~o t)) = 1

Therefore we get:

V 0,π(s0, ~o 0) = R(s0, π(~o 0)) +
h−1
∑

t=1

∑

(s1,o1,...,

sh−1,oh−1)

R(st, π(~o t)) ·
h−2
∏

t=0

P (st+1,ot+1|st, π(~o t))

In this equation, we can also split the summation over paths into a summation over a first step
and the rest:

V 0,π(s0, ~o 0) = R(s0, π(~o 0)) +

h−1
∑

t=1

∑

(s1,o1)

∑

(s2,o2,...,

sh−1,oh−1)

R(st, π(~o t)) ·
h−2
∏

t=0

P (st+1,ot+1|st, π(~o t))
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which can be rewritten as

V 0,π(s0, ~o 0) = R(s0, π(~o 0)) +
h−1
∑

t=1

∑

s1,o1

P (s1,o1|s0, π(~o 0))

∑

(s2,o2,...,

sh−1,oh−1)

R(st, π(~o t)) ·
h−2
∏

t=1

P (st+1,ot+1|st, π(~o t))

and thus

V 0,π(s0, ~o 0) = R(s0, π(~o 0)) +
∑

s1,o1

P (s1,o1|s0, π(~o 0))

h−1
∑

t=1

∑

(s2,o2,...,

sh−1,oh−1)

R(st, π(~o t)) ·
h−2
∏

t=1

P (st+1,ot+1|st, π(~o t))

which finally, with lemma A.2, reduces to:

V 0,π(s0, ~o 0) = R(s0, π(~o 0)) +
∑

s1,o1

P (s1,o1|s0, π(~o 0)) · V 1,π(s1,o).

Realizing that the derivation of this equation from A.3 didn’t depend on the fact that the initial
value function (V 0,π) was considered, means that V 0,π and V 1,π can be replaced by V t,π and
V t+1,π respectively, giving the theorem. ¤

A.2 Equivalence of JESP and DCBRP

Here we prove the equivalence of JESP [11] and DCBRP applied to an extensive form repre-
sentation of a Dec-POMDP. We will assume that we are calculating a best-response policy for
agent i and that the fixed policy of the other agents is given by π 6=i. We first prove two lemmas
in order to prove the main theorem.

Lemma A.3 The functional form of the value function used by JESP and DCBRP are equiv-
alent. I.e.

V t,JESP ≡ V t,DCBRP ,

where V t,JESP is the JESP value function given by:

V t,JESP (bti) = max
ai∈Ai



R(bti, ai) +
∑

oi∈Oi

P (oi|b
t
i, ai)V

t+1(bt+1
i )



 , (A.4)

with
R(bti, ai) =

∑

〈st,~o t6=i〉

bti(
〈

st, ~o t
6=i

〉

)R(st,
〈

ai, π 6=i(~o
t
6=i)
〉

) (A.5)

and V t,DCBRP is the standard POMDP value function, given by:

V t,DCBRP (bt) = max
a∈A

[

R(bt, a) +
∑

o∈O

P (o|a, bt)V t+1(bt+1)

]

,
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with R(bt, a) =
∑

p R(p, a)bt(p), as the POMDP is defined over states p that correspond with
nodes for the protagonist agent.

Proof Because the states over which DCBRP defines the POMDP are denoted p, and the
actions, observations and beliefs belong to the protagonist agent i we can rewrite V t,DCBRP to:

V t,DCBRP (bti) = max
ai∈Ai



R(bti, ai) +
∑

oi∈Oi

P (oi|ai, b
t
i)V

t+1(bt+1
i )



 ,

with R(bti, ai) =
∑

p R(p, ai)b(p). This equation is identical to eq. A.4, therefore we only need
to show equivalence of the two definitions of immediate reward.

The states p are defined as either the decision nodes for agent i or outcome nodes. At
time-step t, the set of nodes ni (with tni = t) that correspond with the states pt is given by
all paths (nroot, s

0,o0,a0, ..., st,ot). Therefore a belief over states b(p) actually corresponds to a
belief over paths b(nroot, s

0,o0,a0, ..., st,ot). As the policy of the other agents are deterministic
policies and agent i knows his own action-observation history, this reduces to a belief over states

and observation histories of other agents, b(
〈

(

s0, ..., st
)

, ~o t
6=i

〉

).12 So we get:

R(bti, ai) =
∑

〈(s0,...,st),~o t6=i〉

bti(
〈(

s0, ..., st
)

, ~o t
6=i

〉

)R(st,
〈

ai, π 6=i(~o
t
6=i)
〉

)

which, because R is a function of the current state st only, reduces to:

R(bti, ai) =
∑

〈st,~o t6=i〉

bti(
〈

st, ~o t
6=i

〉

)R(st,
〈

ai, π 6=i(~o
t
6=i)
〉

) (A.6)

with bti(
〈

st, ~o t
6=i

〉

) =
∑

(s0,...,st−1) b
t
i(
〈

(

s0, ..., st−1, st
)

, ~o t
6=i

〉

). Equation A.6 is identical to the

expected reward of a belief in JESP (eq. A.5). ¤

Lemma A.4 The belief update performed by JESP is the same as performed by DCBRP for the
extensive form of a Dec-POMDP. I.e., when bt+1

i , is the updated belief resulting from bti after
action ai and observing oi:

b
t+1,JESP
i ≡ bt+1,DCBRP ,

where the JESP belief update is given by

b
t+1,JESP
i (

〈

st+1, (~o t
6=i,o 6=i)

〉

) =
1

P (oi|ai, bti)

∑

st

bti(
〈

st, ~o t
6=i

〉

)P (st+1, 〈oi,o 6=i〉 | s
t,
〈

ai, π 6=i(~o
t
6=i)
〉

),

(A.7)
with P (oi|b

t
i, ai) is a normalizing constant. The DCBRP belief update, is the standard POMDP

belief updates given by:

bt+1,DCBRP (p′) =
P (o|p′, a)

∑

p P (p′|p, a)bt(p)

P (o|a, bt)
,

with P (o|a, b) =
∑

p′ P (o|p′, a)
∑

p P (p′|p, a)b(p) is the normalizing constant.

12As mentioned in a footnote in section 4.2 it is possible to specify p as the POMDP state representing the group
of |S|t−1 nodes that specify the same ~θ and state st. In this case the belief immediately reduced to b(

˙

st, ~o t6=i
¸

),
a belief over the current state and observation histories of other agents.
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Proof Again, we start by realizing that in DCBRP all actions, observations and beliefs are
for agent i, we get by substitution:

bt+1
i (p′) =

P (oi|p
′, ai)

∑

p P (p′|p, ai)b
t(p)

P (oi|ai, bti)
.

As in lemma A.3, a belief bt(p) reduces to a belief over states and observation histories of other

agents, bt(
〈

(

s0, ..., st
)

, ~o t
6=i

〉

):

bt+1
i (

〈

(

s0, ..., st+1
)

, ~o t+1
6=i

〉

) =
1

P (oi|ai, bti)
P (oi|

〈

(

s0, ..., st+1
)

, ~o t+1
6=i

〉

, ai)

∑

〈(s0,...,st),~o t6=i〉

P (
〈

(

s0, ..., st+1
)

, ~o t+1
6=i

〉

|
〈(

s0, ..., st
)

, ~o t
6=i

〉

, ai) · b
t
i(
〈(

s0, ..., st
)

, ~o t
6=i

〉

),

which because of the Markov property reduces to:

bt+1
i (

〈

st+1, ~o t+1
6=i

〉

) =
1

P (oi|ai, bti)
P (oi|

〈

st+1, ~o t+1
6=i

〉

, ai)

∑

〈st,~o t6=i〉

P (
〈

st+1, ~o t+1
6=i

〉

|
〈

st, ~o t
6=i

〉

, ai) · b
t
i(
〈

st, ~o t
6=i

〉

),

with bti(
〈

st, ~o t
6=i

〉

) =
∑

(s0,...,st−1) b
t
i(
〈

(

s0, ..., st−1, st
)

, ~o t
6=i

〉

).13

Because P (
〈

st+1, ~o t+1
6=i

〉

|
〈

st, ~o t
6=i

〉

, ai) > 0 only when ~o t+1
6=i = (~o t

6=i,o 6=i) for some joint

observation other agents o 6=i. (~o
t+1
6=i and ~o t

6=i need to specify the same action-observation history
for the first t time-steps) we can write this as:

bt+1
i (

〈

st+1, (~o t
6=i,o 6=i)

〉

) =
1

P (oi|ai, bti)
P (oi|

〈

st+1, (~o t
6=i,o 6=i)

〉

, ai)

∑

st

P (
〈

st+1, (~o t
6=i,o 6=i)

〉

| st, ~o t
6=i, ai) · b

t
i(
〈

st, ~o t
6=i

〉

)

=
1

P (oi|ai, bti)
P (oi|s

t+1,o 6=i,
〈

ai, π 6=i(~o
t
6=i)
〉

)

∑

st

P (st+1,o 6=i | s
t,
〈

ai, π 6=i(~o
t
6=i)
〉

) · bti(
〈

st, ~o t
6=i

〉

)

=
1

P (oi|ai, bti)

∑

st

P (oi|s
t+1,o 6=i,

〈

ai, π 6=i(~o
t
6=i)
〉

)

P (st+1,o 6=i | s
t,
〈

ai, π 6=i(~o
t
6=i)
〉

) · bti(
〈

st, ~o t
6=i

〉

),

which reduces to:

bt+1
i (

〈

st+1, (~o t
6=i,o 6=i)

〉

) =
1

P (oi|ai, bti)

∑

st

P (st+1, 〈oi,o 6=i〉 | s
t,
〈

ai, π 6=i(~o
t
6=i)
〉

) · bti(
〈

st, ~o t
6=i

〉

),

which equals, bt+1,JESP
i , the belief update in JESP (eq. A.7). ¤

13When p is specified as the POMDP state representing the group of |S|t−1 nodes that specify the same ~θ and
state st, i.e. when b(p) = b(

˙

st, ~o t6=i
¸

), this is immediately given by Bayes rule.
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Theorem A.2 The function ‘OptimalPolicyDP’ used in JESP for Dec-POMDPs is equivalent
to direct calculation of best-response policies for extensive form games when applied to the ex-
tensive form representation of the same Dec-POMDP.

Proof The belief update performed by both methods is identical (lemma A.4). Also the func-
tional form of the value function defined by both methods is equivalent (lemma A.3). Therefore,
for a given Dec-POMDP, the value function calculated by OptimalPolicyDP is identical to the
value function calculated by DCBRP. ¤

A.3 Decomposition of nature’s prob. component in IRSF

Here we show how the nature probability component ν(st, ~θ t) can be split up in two parts

ν
~θ t(~o t

1 | π1, π2, b
0) and ν

~θ t(st, ~o t
2 | ~o

t
1, π1, π2, b

0), that directly correspond to JESP’s dynamic

program. We start with the definition for ν
~θ t(~o t

1 | π1, π2, b
0) and then show that under that

definition, ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) corresponds to a belief as defined in JESP.

Definition A.1 Let nature’s probability component ν
~θ t(~o t

1 | π1, π2, b
0) of realizing ~o t

1 be defined
as

ν
~θ t

′

(~o t′

1 | π1, π2, b
0) =

t′−1
∏

t=0

P (ot+1
1 |b

~θ t1
π2 , π1(~o

t
1)),

where

P (ot+1
1 |b

~θ t1
π2 , π1(~o

t
1)) =

∑

st+1

∑

ot+1
2

∑

〈st,~o t2〉

P (st+1, ot+1
1 , ot+1

2 | st,
〈

π1(~o
t
1), π2(~o

t
2)
〉

)b
~θ t1
π2(s

t, ~o t
2),

with b
~θ t1
π2 is the belief agent 1 has at time-step t induced by his action-observation history and

the knowledge he has about agent 2’s policy.

Now, let ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0) be defined as in equation 6.3, i.e.:

ν(st, ~θ t|b0) = ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0) =
∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1,ot

′+1|st
′
,at

′
),

as was deduced in appendix B.2.

Lemma A.5 When ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0) and ν
~θ t(~o t

1 | π1, π2, b
0) are defined as in equation

6.3 and definition A.1, then:

ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) ≡ b
~θ t

π2
(st, ~o t

2)

Proof Per definition of condition probability we have

ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) =
ν
~θ t(st, ~o t

1, ~o
t
2 | π1, π2, b

0)

ν
~θ t(~o t

1 | π1, π2, b0)
.

So by substitution we immediately get:
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ν
~θ t(st, ~o t

2 | ~o
t
1, π1, π2, b

0) =
∑

(s0,...,st−1) b
0(s0)

∏t−1
t′=0 P (st

′+1,ot
′+1|st

′
, π(~o t′))

∏t−1
t′=0 P (ot

′+1
1 | b

~θ t1
π2 , π1(~o t

1))
=

∑

(s0,...,st−1) b
0(s0)

∏t−1
t′=0 P (st

′+1,ot
′+1|st

′
, ~o t′ , π)

∏t−1
t′=0

[

∑

st+1

∑

ot+1
2

∑

〈st,~o t2〉
P (st+1, ot+1

1 , ot+1
2 | st, π(~o t))b

~θ t1
π2(s

t, ~o t
2)

] =

∑

(s0,...,st−1)

b0(s0)

∏t−1
t′=0 P (st

′+1,ot
′+1|st

′
, ~o t′ , π)

∏t−1
t′=0

[

∑

st+1

∑

ot+1
2

∑

〈st,~o t2〉
P (st+1, ot+1

1 , ot+1
2 | st, π(~o t))b

~θ t1
π2(s

t, ~o t
2)

] =

∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1,ot

′+1|st
′
, ~o t′ , π)

∑

st+1

∑

ot+1
2

∑

〈st,~o t2〉
P (st+1, ot+1

1 , ot+1
2 | st, π(~o t))b

~θ t1
π2(s

t, ~o t
2)

=

∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1, ot

′+1
1 , ot

′+1
2 | st

′
, ~o t′

1 , ~o t′

2 , π)
∑

st
′

∑

st
′+1

∑

~o t
′

2

∑

ot
′+1

2
P (st′+1, ot

′+1
1 , ot

′+1
2 | st′ , ~o t′

1 , ~o t′
2 , π)P (st′ , ~o t′

2 | π,~o
t′
1 )

=

∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1, ot

′+1
1 , ot

′+1
2 | st

′
, ~o t′

1 , ~o t′

2 , π)
∑

st
′+1

∑

ot
′+1

2
P (st′+1, ot

′+1
1 , ot

′+1
2 | π,~o t′

1 )
=

∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1, ot

′+1
1 , ot

′+1
2 | st

′
, ~o t′

1 , ~o t′

2 , π)

P (ot
′+1

1 | π,~o t′
1 )

=

∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1, ot

′+1
2 | st

′
, ~o t′

1 , ot
′+1

1 , ~o t′

2 , π) =

∑

(s0,...,st−1)

b0(s0)
[

P (st, ot2 | s
t−1,

(

o0
1, ..., o

t
1

)

,
(

o0
2, ..., o

t−1
2

)

, π) · ... · P (s1, o1
2 | s

0,
(

o0
1, o

1
1

)

,
(

o0
2

)

, π)
]

=

∑

s0

b0(s0)
∑

(s1,...,st−1)

P (s1, ..., st, o1
2, ..., o

t
2|s

0,
(

o0
1, ..., o

t
1

)

, π) =

∑

s0

b0(s0)P (st, o1
2, ..., o

t
2|s

0, ~o t
1, π) =

P (st, ~o t
2|~o

t
1, π) = P (st, ~o t

2|~θ
t
1 , π2) ≡ b

~θ t1
π2(s

t, ~o t
2)

Which proves the lemma. ¤

A.4 JESP recursive vs. iterative formulation of V

Lemma A.6 The iterative formulation of JESP’s value function is given by:

V BR
1 (π2) = max

π1

h−1
∑

t=0

∑

~o t1

ν
~θ t(~o t

1 | π1, π2, b
0)R1(b

~θ t1
π2 , π1(~o

t
1)).

and therefore is equivalent to V
0,∗
1 (b01) given by:

V
t,∗
1 (bt1) = max

a1∈A1



R1(b
t
1, a1) +

∑

o1∈O1

P (o1|b
t
1, a1)V

t+1(bt+1
1 )



 .
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Proof We will simply expand V
0,∗
1 (b01):

V
0,∗
1 (b01) = max

a0
1∈A1



R(b01, a
0
1) +

∑

o1
1∈O1

P (o1
1|b

0
1, a

0
1) max

a1
1∈A1



R(b11, a
1
1) +

∑

o2
1∈O1

P (o2
1|b

1
1, a

1
1)



...



...
∑

o2
1∈O1

P (oh−1
1 |bh−2

1 , ah−2
1 ) max

ah−1
1 ∈A1

[

R(bh−1
1 , ah−1

1 )
]



 ...













= max
π1



R(b
~θ 0
1

π2 , π1(~θ
0
1 )) +

∑

o1
1∈O1

P (o1
1|b

~θ 0
1

π2 , π1(~θ
0
1 ))



R(b
~θ 1
1

π2 , π1(~θ
1
1 )) +

∑

o2
1∈O1

P (o2
1|b

~θ 1
1

π2 , π1(~θ
1
1 ))






...






...

∑

oh−1
1 ∈O1

P (oh−1
1 |b

~θ h−2
1

π2 , π1(~θ
h−2
1 ))

[

R(b
~θ h−1
1

π2 , π1(~θ
h−1
1 )

]



 ...











 ,

where b
~θ t1
π2 is the belief corresponding to the action-observation history ~θ t

1 .

We now write a bit shorter: R0, ..., Rh−1and p(o0), ..., p(oh−1). Note they still depend on the
beliefs and therefore differ within each time-step. We now write:

V
0,∗
1 (b01) = max

π1

[

R0 +
∑

o1

p(o1)

(

R1 +
∑

o2

p(o2)

[

...
∑

oh−1

p(oh−1)
(

Rh−1
)

...

])]

= max
π1

[

R0 +
∑

o1

(

p(o1)R1 + p(o1)
∑

o2

p(o2)

[

...p(oh−1)
∑

oh−1

p(oh−1)Rh−1

])]

= max
π1

[

R0 +
∑

o1

p(o1)R1 +
∑

o1

∑

o2

p(o1)p(o2)R2 + ...+

∑

o1

∑

o2

...
∑

oh−1

p(o1)p(o2)....p(oh−1)Rh−1

]

.

Here

∑

o1

∑

o2

p(o1)p(o2) =
∑

o1
1∈O1

∑

o2
1∈O1

P (o1
1|b

~θ 0
1

π2 , π1(~θ
0
1 ))P (o2

1|b
~θ 1
1

π2 , π1(~θ
1
1 ))

=
∑

〈o1
1,o

2
1〉

P (
(

o1
1, o

2
1

)

|b
~θ 0
1

π2 , b
~θ 1
1

π2 , π1)

and more general

∑

o1
1,...,o

t
1

p(o1
1)...p(o

t
1)R

t =
∑

~o t1

t−1
∏

t′=0

P (ot+1
1 |b

~θ t1
π2 , π1(~θ

t
1)).
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So we can write

V
0,∗
1 (b01) = max

π1

h−1
∑

t=0





∑

~o t1

(

t−1
∏

t′=0

P (ot+1
1 |b

~θ t1
π2 , π1(~θ

t
1))

)

R(b
~θ t1
π2 , π1(~θ

t
1))





= max
π1

h−1
∑

t=0





∑

~o t1

(

t−1
∏

t′=0

P (ot+1
1 |b

~θ t1
π2 , π1(~o

t
1))

)

R(b
~θ t1
π2 , π1(~o

t
1))



 ,

if we want to find a deterministic best-response policy.
As the nature probability component is defined as

ν
~θ t(~o t

1 | π1, π2, b
0) =

t−1
∏

t′=0

P (ot+1
1 |b

~θ t1
π2 , π1(~o

t
1)),

substitution gives

V
0,∗
1 (b01) = max

π1

h−1
∑

t=0

∑

~o t1

ν
~θ t(~o t

1 | π1, π2, b
0)R(b

~θ t1
π2 , π1(~o

t
1)),

proving the lemma. ¤

B Calculations and derivations

B.1 Calculation of normal form

Table 12 shows the normal form of the deaf and the blind problem. In non-trivial cases, the
performed calculation is shown using some new abbreviations (to fit it on the page). The
abbreviations have the following meaning: l = P (sl) and r = P (sr) are the state probabilities
(given by b0), RlL, SlL, RlR, etc are observation probabilities with the following meaning:
SlL = P (oSi|s = slL), RlR = P (oRo|s = slR), etc.

B.2 Deduction of IR sequence form

Here we show the deduction of the immediate reward sequence form from the regular sequence
form. In sequence form the value for agent i, Vi(π), of a joint policy π is given by:

Vi(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) · rlk

where
rlk =

∑

no∈N o s.t. σ1(no)=σ1,l ∧ σ2(no)=σ2,k

ν(no) ·Oi(n
o).

where

Oi(n
o) ≡ Oi(σ(n

o)) =
h−1
∑

t=0

Ri(s
t,at),

Let no ∈ N o : σ1(n
o) = σ1,l ∧ σ2(n

o) = σ2,k the set of paths consistent with sequence l and
k, be denoted by Cjk. This means that the value is given by :

Vi(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) ·
∑

σ(no)∈Cjk

ν(no) ·Oi(n
o). (B.1)
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I0
2 : aF

IRo
2 : aO
ISi2 : aO

I0
2 : aF

IRo
2 : aQ
ISi2 : aO

I0
2 : aF

IRo
2 : aO
ISi2 : aQ

I0
2 : aF

IRo
2 : aQ
ISi2 : aQ

I0
2 : aQ
IRo
2 : ∗
ISi2 : ∗

I0
1 : aLe

ILe
1 : aO
IRi
1 : ∗

−10.1l RlL+
−10.1l SlL+
9.9r RrL+
9.9r SrL =
−1.100

−2.1l RlL+
−10.1l SlL+
−2.2r RrL+
9.9r SrL =
+2.478

−10.1l RlL+
−2.1l SlL+
9.9r RrL+
−2.1r SrL =
−5.678

−2.1 −2

I0
1 : aLe

ILe
1 : aQ
IRi
1 : ∗

−2.1

−1.1l RlL+
−2.1l SlL+
−1.1r RrL+
−2.1r SrL =
−1.619

−2.1l RlL+
−1.1l SlL+
−2.1r RrL+
−1.1r SrL =
−1.581

−1.1 −2

I0
1 : aRi

ILe
1 : ∗

IRi
1 : aO

9.9l RlR+
9.9l SlR+

−10.1r RrR+
−10.1r SrR =

+0.900

−2.1l RlR+
9.9l SlR+
−2.1r RrR+
−10.1r SrR =

+3.222

9.9l RlR+
−2.1l SlR+
−10.1r RrR+
−2.1r SrR =
−4.422

−2.1 −2

I0
1 : aRi

ILe
1 : ∗

IRi
1 : aQ

−2.1

−1.1l RlR+
−2.1l SlR+
−1.1r RrR+
−2.1r SrR =
−1.769

−2.1l RlR+
−1.1l SlR+
−2.1r RrR+
−1.1r SrR =
−1.431

−1.1 −2

Table 12: Normal form representation of the deaf and the blind problem. In order to fit the table
to the page (the full normal form would be 8× 8), pure strategies specifying the same behavior
have been collapsed. The actions where these collapsed policies differ are indicated with a *,
which therefore can be interpreted as a wild-card.
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Now, as we know that the outcomes of the extensive form of a POSG are in fact the sum
of the rewards at each time-step, we want to rewrite this to express the value as a sum over
time-steps.

The summations over sequences in equation B.1 are in fact summations over sequences of

different lengths: some sequences specify 1 action, e.g. a sequence
〈

~θ 0
1 , a1

〉

=
〈

(o0
1), a

0
1

〉

, some

specify h actions, e.g.
〈

~θ h−1
1 , a1

〉

=
〈

(o0
1, a

0
1, ..., o

h−1
1 ), ah−1

1

〉

. However, only the paths leading

to an outcome node that are consistent with a choice of two sequences (one for each agent)
specify an outcome. We will assume here that this is the case for h-step sequences (sequences
that specify h actions). When our goal — expressing the value of the policy as a sum over
time-steps — is achieved, generalization follows trivially.

First make the obvious substitutions in equation B.1, starting with the outcome Oi(n
o):

Vi(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) ·
∑

σ(no)∈Cjk

ν(no) ·
h−1
∑

t=0

Ri(s
t,at).

Also as nature’s probability component ν(no) = ν(σ(no)) is given by:

ν(σ(no)) = b0(s0)
h−2
∏

t=0

P (st+1|st,at) · P (ot+1|at, st+1)

= b0(s0)

h−2
∏

t=0

P (st+1,ot+1|st,at),

where the states, joint actions and observations, st,at,ot are specified by the path σ(no). There-
fore we get:

Vi(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k) ·
∑

σ(no)∈Cjk

h−1
∑

t=0

Ri(s
t,at) · b0(s0)

h−2
∏

t=0

P (st+1,ot+1|st,at).

Because the two chosen sequences fully specify the joint observable history, the set of consistent
paths Cjk can only vary on the actual states that are chosen, so we can write:

Vi(π) =
∑

l

ρπ1 (σ1,l)
∑

k

ρπ2 (σ2,k)
∑

(s0,...,sh−1)

h−1
∑

t=0

Ri(s
t,at) · b0(s0)

h−2
∏

t=0

P (st+1,ot+1|st,at),

here the reward
∑h−1

t=0 Ri(s
t,at) is 0 when either σ1,l or σ2,k is not a h-step sequence.14 (If one

of the sequences contains less steps, oh−1and ah−1 are not specified.)
Let the joint realization weight for a horizon t joint sequence be given by:

ρπ(
〈

(o0,a0, ...,ot−1),at−1
〉

) = ρπ(
〈

~θ t−1,at−1
〉

)

= ρπ1 (
〈

(o0
1, a

0
1, ..., o

t−1
1 ), at−1

1

〉

) · ρπ2 (
〈

(o0
2, a

0
2, ..., o

t−1
2 ), at−1

2

〉

)

This allows us to write the summation over sequences as a summation over joint horizon h

sequences:

Vi(π) =
∑

〈~θ h−1,ah−1〉

ρπ(
〈

~θ h−1,ah−1
〉

)
∑

(s0,...,sh−1)

h−1
∑

t=0

Ri(s
t,at) · b0(s0)

h−2
∏

t=0

P (st+1ot+1|st,at).

14Remember we assumed that only h-step paths and thus joint sequences specify an outcome.
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Bringing the summation over time to the front gives:

Vi(π) =
h−1
∑

t=0

∑

〈~θ h−1,ah−1〉

ρπ(
〈

~θ h−1,ah−1
〉

)
∑

(s0,...,sh−1)

Ri(s
t,at) · b0(s0)

h−2
∏

t=0

P (st+1,ot+1|st,at).

Then noting that the reward at time step t, Ri(s
t,at), is independent from the exact con-

tinuation (st+1,ot+1,at+1, ..., sh−1,oh−1,ah−1) gives:

Vi(π) =
h−1
∑

t=0

∑

〈~θ t,at〉

∑

〈ot+1,at+1,...,oh−1,ah−1〉

ρπ(
〈

~θ h−1,ah−1
〉

)

∑

(s0,...,st)

∑

(st+1,...,sh−1)

Ri(s
t,at) · b0(s0)

t−1
∏

t′=0

P (st
′+1,ot

′+1|st
′
,at

′
)
h−2
∏

t′=t

P (st
′+1,ot

′+1|st
′
,at

′
),

which becomes:

Vi(π) =
h−1
∑

t=0

∑

〈~θ t,at〉

∑

(s0,...,st)

Ri(s
t,at)

[

b0(s0)
t−1
∏

t′=0

P (st
′+1,ot

′+1|st
′
,at

′
)

]

∑

(ot+1,at+1,...,oh−1,ah−1)

ρπ(
〈

~θ h−1,ah−1
〉

)
∑

(st+1,...,sh−1)

h−2
∏

t′=t

P (st
′+1,ot

′+1|st
′
,at

′
).

Because a realization weight is a product over time-steps (as in equation 3.5), we can express
the realization weight of a h-step joint sequence as follows:

ρπ(
〈

~θ h−1,ah−1
〉

= ρπ(
〈

~θ t,at
〉

·
h−2
∏

t′=t

P (at
′+1|~θ t′+1, π)

This allows us to further rewrite to:

Vi(π) =
h−1
∑

t=0

∑

〈~θ t,at〉

ρπ(
〈

~θ t,at
〉

∑

(s0,...,st)

[

b0(s0)
t−1
∏

t′=0

P (st
′+1ot

′+1|st
′
,at

′
)

]

Ri(s
t,at)

∑

(ot+1,at+1,

...,oh−1,ah−1)

[

h−2
∏

t′=t

P (at
′+1|~θ t′+1, π)

]

∑

(st+1,

...,sh−1)

h−2
∏

t′=t

P (st
′+1,ot

′+1|st
′
,at

′
),

where the last part

∑

(ot+1,at+1,

...,oh−1,ah−1)

[

h−2
∏

t′=t

P (at
′+1|~θ t′+1, π)

]

∑

(st+1,

...,sh−1)

h−2
∏

t′=t

P (st
′+1,ot

′+1|st
′
,at

′
)

=
∑

(st+1,ot+1,at+1,

...,sh−1,oh−1,ah−1)

[

h−2
∏

t′=t

P (at
′+1|~θ t′+1, π)

]

h−2
∏

t′=t

P (st
′+1,ot

′+1|st
′
,at

′
)

=
∑

(st+1,ot+1,at+1,

...,sh−1,oh−1,ah−1)

h−2
∏

t′=t

P (st
′+1,ot

′+1,at
′+1|st

′
,at

′
, ~θ t′+1, π)

= 1.
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So we get:

Vi(π) =
h−1
∑

t=0

∑

〈~θ t,at〉

ρπ(
〈

~θ t,at
〉

∑

(s0,...,st)

[

b0(s0)
t−1
∏

t′=0

P (st
′+1ot

′+1|st
′
,at

′
)

]

Ri(s
t,at).

Finally, we more conveniently notate this as:

Vi(π) =
h−1
∑

t=0

∑

〈~θ t,at〉

ρπ(
〈

~θ t,at
〉

∑

st

Ri(s
t,at) · ν(st, ~θ t),

where

ν(st, ~θ t) =
∑

(s0,...,st−1)

b0(s0)
t−1
∏

t′=0

P (st
′+1ot

′+1|st
′
,at

′
),

is nature’s component of realizing ~θ t and st.
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