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1 POSGs

In this report we will treat methods and models for sequential multi-agent decision making under
uncertainty. The problem in this setting is that there are multiple decision makers, or agents,
who can only observe a part of the world they are located in and have to select their actions at
different time-steps in order to either reach some goal, minimize some cost or to optimize some
payoff.

In this section we treat two models for sequential multi-agent decision making under uncer-
tainty: the Decentralized partially observable Markov decision process (Dec-POMDP) model and
its generalization the partially observable stochastic game (POSG). Both models do not allow
for explicit communication, but there are extensions for the Dec-POMDP that do [5, 6, 17, 22].

1.1 Formal model

The partially observable stochastic game (POSG) is the most general framework for partially
observable multi-agent systems (MASs) without explicit communication.

Definition 1.1 A POSG is defined as a tuple <S,A, T,R,0,0,h, bt:0> where:
e There is a finite set of m agents.
e S is a finite set of states.

e The set A = x;A; is the set of joint actions, where A; is the set of actions available to
agent i. Every time-step, one joint action a = (aj, ..., a,,) is taken. Agents do not observe
each other’s actions.

e T is the transition function, a mapping from states and joint actions to probability distri-
butions over states: T': S x A — P(S).!

e R=(Ry,...,R;,) where R; is the individual reward function for agent i, a mapping from
states, joint actions and successor states to real numbers: R; : § X A X § — R. Thus the
joint reward function, R, specifies a vector of m real numbers: R:S x A x S — R™.

e O = x;0; is the set of joint observations, where O; is a finite set of observations available
to agent i. Every time-step, a joint observation o = (01, ..., 05,) is from O is emitted, each
agent ¢ only observes his own component o; of this joint observation.

e O is the observation function, a mapping from states, joint actions and successor states to
probability distributions over joint observations: O : S x A x § — P(O).

e h is the horizon of the problem.
o b'=0 ¢ P(S), also denoted b°, is the initial state distribution and is optional.

In a POSG, the goal of an agent is to maximize the expected (discounted) future reward.
Therefore the planning problem is to find a conditional plan or policy for each agent as to
maximize its expected (discounted) future reward.

When all the payoff functions are identical, V; j s a Ri(s,a) = R;(s,a), we refer to the model
as a partially observable identical payoff stochastic game (POIPSG) or a decentralized POMDP
(Dec-POMDP). In this case we simply write R(s,a).?

We use the notation a; = (ay, ..., 4i—1, @ix1, .-, @) and 0 = (01, ..., 041, 011, .-, Opy) tO
denote a tuple of respectively actions and observations for all agents but .

"We use P(X) to denote the infinite set of probability distributions over the finite set X.
230 in this case each agent receives a payoff of R(s,a). However, one can also think of one reward R(s,a) that
is split equally.
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1.2 Histories, sequences and policies

As mentioned above, the goal of an agent in a POSG or Dec-POMDP is to maximize its expected
discounted future reward and to do that he has to select a good or optimal policy. This is a
conditional plan of what action to perform in what circumstances. Clearly an agent can only
condition his plan on what he knows or observes, i.e. on the history. Here we will first formalize
two different notions of history.

Definition 1.2 We define the action-observation history for agent i, 0_;, as the sequence of
actions taken by and observations received by agent i. At a specific time-step ¢, this is:

ot _ (0 0 1 1 t t
0; = (oi,ai,oi,aij...,ai,ol-).

The joint action-observation history, é; is the action-observation history for all agents:
gt = <§f, ...,ej;>.

The set of possible action-observation histories for agent ¢ at time ¢ is @; = x4(0; x A;). The
set of all possible action-observation histories for agent i is ©; = U?;OI O!. Finally the set of all
possible joint action-observation histories is given by © = U?;&(@’i X ... x O ).

The action-observation history of an agent corresponds to everything the agent knows. The
joint action-observation history corresponds to everything the agents know together. In a POSG,
each time-step consists of a state, a joint observation and joint action. So a joint action-
observation history specifies the full history of the process except for the states.

We will now look at the second notion of history. This second notion doesn’t include the
agents’ actions.

Definition 1.3 Formally, we define the observation history for agent i, 0;, as the sequence of
observations an agent has received. At a specific time-step ¢, this is:

of = (0?,01-1, e OF)

The joint observation history, &, is the action-observation history for all agents:

&' = (5},....1)
The set of observation histories for agent ¢ at time ¢ is denoted @f = x4O;. Similar to above we

also use (51 and O.

Now we can formalize the notion of policy. We will start with the simplest case.

Definition 1.4 A pure- or deterministic policy, m;, for agent i is a mapping from action-
observation histories to actions, m; : ©; — A,.

Note that when an agent takes its action deterministically, he will be able to infer what action
he took from only the observation history. I.e. when an agent takes its actions according to a
pure policy, there are other actions he will never take. This means that most of the observation-
action histories will never be realized. Therefore it is possible to replace a pure policy by a
mapping from observation histories to actions: m; : O; — A;. We will describe this in more
detail in section 3.3.

It is also possible for agents to use randomized policies that allow taking an action in some
situation with some probability. There are two types of randomized policies:
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Definition 1.5 A stochastic policy, w;, for agent i is a mapping from action-observation histories
to probability distributions over actions, 7; : ©; — P(A;).

Definition 1.6 A mized policy, u;, for agent i is a non-empty set of policies, II;, together with
a probability distribution over it: p; : P(II;). In general the set II; can contain any type of
policies, but unless stated otherwise we will assume it contains only pure policies.

Similar to previous notation we use m = (my, ..., ) to denote a joint policy. Also we use
T4i, 044, etc. to denote a tuple of policies, action-observation histories, etc. for all agents except
i.

1.3 The 1 agent case: POMDPs

When there is only one agent, a POSG or Dec-POMDP reduces to a regular POMDP. Regular
POMDPs have received quite some attention and as a consequence there are some well-known
results.

In particular, in a POMDP it is possible to maintain a probability distribution over states,
called a belief b € P(S), instead of remembering the full action-observation history, because
such a belief is a sufficient statistic with respect to future rewards. After taking an action and
receiving an observation the belief is updated using Bayes rule.

A consequence of this is that a policy is no longer defined as a mapping from action-
observation histories to actions, but instead as a mapping from beliefs to actions. Effectively
this means that a POMDP can be converted to an MDP over belief states, as we summarize
here. Let 7 = h —t denote the number of time-steps-to-go, then the standard POMDP Bellman
backup is:

V(b)) = R(b P VT (b°
(b) max (,a)+v§9 (ola,b)V7(bg)| »

or P(ols',a) Y cs P(s']s,a)b(s)
b (S ) - P(O“S(‘Z,b) ’

(1.1)

where

P(ola,b) = > P(o|s,a) > P(s'|s,a)b(s). (1.2)

s'eS SES

Writing this in time-steps ¢ (vs. ‘time-to-go’) as used in most places in this report, this is:

Vi) = R(b P HYVEL(5Y ] .
(b) max (,a)+70§ (ola,b) (ba)

The expected immediate reward for a belief R(b,a) is given by:

R(b,a) = Z R(s,a)b(s).

seS

Clearly, this is very similar to the definition of a value function of a regular MDP. The problem
here is that one can not directly apply value iteration over the continuous belief space, therefore
specialized techniques are required [7, 2]. Moreover, this is intractable for all but the smallest
problems and therefore approximating methods are required [19, 12].
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a SI = SIR | SL = SIL | S = SrR | Sy = SrL | Si/Sr = SE | SIR/SIL/SrR/SrL —
SE
(are,ar) 0 1.0 0 1.0 0 n/a
(agi,ar) 1.0 0 1.0 0 0 n/a
. ag) 0 0 0 0 1.0 1.0
(ag,™) n/a n/a n/a n/a n/a 1.0
(aop,a0) n/a n/a n/a n/a n/a 1.0

Table 1: Transition model for the deaf, the blind and the tiger problem. Not all actions are
available at all both time-steps, indicated with n/a. * is a wild-card denoting any action.

2 The deaf, the blind and the tiger

We will introduce a very small problem to illustrate different methods for finding good or optimal
policies for Dec-POMDPs. Because we will also show the extensive form of this problem, it has
been constrained to make it representable on one page, as a consequence the problem looks
slightly artificial. We emphasize that the analysis also holds for more natural (thus larger)
problems.

Example 2.1 The deaf, the blind and the tiger. This is a variation on the Dec-tiger problem
[11]. There are two agents, one deaf and one blind, who can’t observe each other’s actions. They
are located in a labyrinth in which there are two doors. We will call these door ‘left’ (1) and
‘right’ (r), but they are assumed to be located in arbitrary places. The doors are heavy and
can only be opened by the two agents simultaneously. Behind one of these is a treasure, behind
the other a tiger. Agent 1 is good in navigating but deaf, the agent 2 has good ears, but can’t
navigate as he’s blind. The goal of the agents is to open to door to the treasure. To accomplish
this goal both agents can select an action at two time-steps.

In the first time-step, agent 1 has the choice to go to door ‘left’ or to door ‘right’. At the
same time agent 2 will have to decide if he wants to ‘follow’ agent 1 or ‘quit’. If he leaves, the
problem ends, as they will not be able to achieve their goal. Because they wasted their time and
split up, leading to a quarrel, they receive a payoff of —2. If agent 2 follows, they will arrive at
the door selected by agent 1 with certainty. The cost of this travel is —0.1. On arrival at the
selected door agent 1 will knock on the door to provoke the tiger that is potentially behind this
door to roar.

In the second time-step, again both have to select an action, however, agent 2 now can also
make an observation: either he hears a tiger roaring or not, but this observation is noisy. So
at this point, agent 2 knows whether he heard a roar and agent 1 knows which door they are
standing in front of. Both have to decide whether they ‘open’ or ‘quit’. The door can only be
opened if both agent select ‘open’, in which case they receive a reward of +10 or —10 depending
on whether they found the tiger or the treasure. O

The formal Dec-POMDP model of consists of six states plus an end-state sg. s;, s, are
the initial states in which the tiger is behind the left and right door and the agents have not
navigated to either door yet. Their probabilities (b° — the initial belief) are P(s;) = 0.55 and
P(s;) = 0.45. In these states the first agent’s actions are to navigate to the left door (ar.) or
the right door (ag;), leading to four possible successor states s;1, sir, srr and s,r, where the
capital letter denotes the door at which the agents are located and the lowercase letter denotes
the door behind which the tiger is located. Agent 2’s ‘follow’ action is denoted a g, other actions
are ‘quit’ (ag) and ‘open’ (ap). Table 1 shows the transition model.
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s ‘ a ‘ s' H (09, ORo) ‘ (0g, 0si) ‘ (0g, 0p)
| R s 0.85 0.15 0
*1 ¥ s 0.7 0.3 0
*1* | siR 0.03 0.97 0
| X s 0.03 0.97 0
FE R 0 0 I

Table 2: The deaf, the blind and the tiger observation model. * is a wild-card denoting any
state or action, such that there is no overlap with an earlier specified s, a, s triple.

a H Si ‘ Sr ‘ SIL ‘ SrR ‘ SIR ‘ SrL
(ap,a0) || n/a | n/a | =10 | =10 | 410 | +10
ag,a n/a | n/a -1 -1 —1 -1

Q> 4Q

aQ, ao n/a | n/a | =2 | =2 | =2 | =2
{ag,a0) || n/ /

Fag) || —2 | —2 | —2 | —2 | =2 | —2
(*,ap) || =0.1 | =0.1 | n/a | n/a | n/a | n/a

Table 3: The reward function for the deaf, the blind and the tiger. * is a wild-card denoting any
action, such that there is no overlap with any earlier specified joint action.

Apart from states and transitions we also need to specify the observation and reward model.
Only agent 2 can make an actual observation in the second time-step, he either hears a roar
(oRo) or silence (o0g;). In all other cases the agents receive no-observation (og). The two doors
and rooms have different isolating properties, so the probability of P(og, | srr) is different from
P(oRro | si1,). We assume that observing a roar when the tiger is behind the other door is entirely
due to mental pressure and therefore P(og, | Sir) = P(0Ro | sr1,). The observation and reward
model are shown in table 2 and table 3.

3 Extensive form representation

We will now introduce the extensive form representation of a POSG and illustrate it for the
deaf and the blind problem. We start with this, because it gives a good intuition of the problem
and because it allows for the most straightforward solution methods: normal form and sequence
form solving, which we will also discuss here.

3.1 Extensive form games

An extensive form game is given by a tree, in which nodes represent what (chance) moves have
been taken and whose root is the start of the game. There are two types of non-terminal nodes:
decision nodes for agents, that represent points at which agents can make a move, and chance
nodes which represent stochastic transitions. The latter are modeled as decision nodes for the
special player ‘nature’. Terminal nodes, or outcome nodes are the leaves of the game-tree. These
specify the payoff for each agent.

In a partial information game, an agent may be uncertain about the true state of the game.
This is reflected by the fact that an agent may not be able to discriminate between some nodes
in the tree. Such groups of nodes in which the agent has the same information regarding the
state are called information sets. Formally we define an extensive form as follows:
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Definition 3.1 An extensive form game is a tuple G, . = <N,E,I, 1, O,n0>, where:

e There is a set of m players or agents. We use ¢ with 1 <4 < m to index these. The special
agent ‘nature’ is indexed with ¢ = 0.

o N =L, N UNC is the set of all nodes. N¢ is the set of decision nodes for agent i. We
also write N = UL, N as the set of all decision nodes. N° is the set of outcome nodes.

e £ C N% x N is the edges relation specifying transitions from decision nodes to other
(decision or outcome) nodes.

o 7 = U~y Z is the set of all information sets. Z; is the set of information sets of agent ¢
and I; is one of these information sets. The special player nature can always discriminate
the node he is in, implying that |Zo| = [N

e K : N — T is the knowledge or information function that maps decision nodes for an
agent to information sets. Le., V; K : N¢ — I,.

e O: N° — R™ is the outcome function, specifying a payoff of an outcome node for each
agent.

e N0t € N is the start node.

Strictly speaking, an extensive form game does not define actions; instead an agent ¢ at node
nd € N¢ selects an edge and thus a successor node from the set {z|E(n¢, z)}. However, we will
assume that there is an action associated with the selection of each edge. As for POSGs we will
denote the set of actions for agent i as A;.

A policy in an extensive form game is very similar to a policy in a POSG or Dec-POMDP
as defined in section 1.2. Only now there are no explicit sequences of actions and observations
(the action-observation histories), but information sets. Therefore a pure policy is a mapping
from information sets to actions and a stochastic policy a mapping from information sets to
probabilities over actions. The notion of mixed policies remains the same.

3.2 Extensive form of POSGs

Definition 3.2 The extensive form of a POSGs is an extensive form game and thus a tree.
Every trace from root to leaf has the following structure:

h—1
nOa(nla‘”anmanO) 7n17"'7n’n’L7n0

where ng are decision nodes of nature, n; with ¢ > 1 are decision nodes of the agents and n° are

outcome nodes. The root n...q is the first ng node. Because of this structure, each node n has

an associated time-step in the POSG, we denote this time-step as t,,.

The structure of an extensive form POSG is illustrated in figure 1. Shown in the figure is
that nature’s nodes can be split in transition probability nodes, nOT, and observation probability
nodes, nOO, so the structure of a trace becomes ng,ng),(nl,...,nm,ng,ng),)hfl,nl,...,nm,n",

where the first ng) corresponds with an initial observation, which is usually omitted in POSGs.

Definition 3.3 A path, o(n), in an extensive form of a POSG is the path from the root n,e
to node n. This path determines all the actions taken by the agents and nature and therefore
corresponds with a sequence of joint actions, joint observations and states. For a particular
decision node n; for agent 1 with ¢,, = k, this sequence has the following form:

_ 0. 0.0 1 1.1 E _k
a(nl):(nmot,s,o,a,s,o,a,...,s,0).
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Figure 1: General illustration of the structure of an extensive form of a POSG. Also indicated
are two different paths in the tree that specify the same joint action-observation history.
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We write st € o(n) if the path specifies state s at time-step t. Similarly we also write a’ €

o(n),al € o(n),o" € a(n),ol € a(n) if t, > ¢ (such that the path consists of at least ¢ time-
steps) and the path o(n) specifies the particular (joint) action/observation at time-step ¢. As a
consequence we also write 8 € o(n) and &' € o(n) if the path specifies the particular (joint)
action-observation history or (joint) observation history.

Definition 3.4 The outcomes in an extensive form of a POSG correspond to the sums of
rewards obtainable in the POSG. The sum of rewards for agent ¢ specified by a full path o(n?)
from root to an outcome node n°, which stretches over h time-steps, is:

0;(n°) = O(c(n’)) = R;(st,a"), (3.1)

t

where s', al are the state and joint action specified by the path o(n°) at time ¢.

Example 3.1 The extensive form of the deaf and the blind problem is shown in figure 2. The
figure clearly illustrates the complexity of even this very small problem. Because the problem is
a Dec-POMDP the outcome nodes specify only one outcome. In accordance with equation 3.1,
the outcomes shown are the sum of rewards received along a path. E.g. the outcome for the
‘good door opened’ is —0.1 for the first time-step plus +10 for the second time-step.

Also clearly shown is, how information sets correspond to action-observation histories. In
the deaf and the blind problem, both agents have three information sets. Agent one has the
initial information set I{ which corresponds to an empty action-observation history 51 =,

Le «
1

the information set I{¢ ‘left’ corresponding to 6, = (are,0p) and I ‘vight’ corresponding to

0, = (ari,0p). Likewise, for agent 2, we have I9 (6 = 0)), IF° ‘voar’ (05 = (ar,0r.)) and IS

‘silence’ (62 = (ar,05:)). O

3.3 Normal form solving

The normal (or strategic-) form of a game is a representation in terms of pure policies and
expected outcomes for combinations of these pure policies for different players. The expected
utility of a joint pure policy is given by the payoffs of the outcome nodes the joint pure policy
can realize, weighted by their probabilities (induced by nature). Formally:

Definition 3.5 The expected payoff V;(7) for agent i of a joint policy 7 in an extensive form
game, is the sum of the outcomes of all full paths it can realize, weighted by their probability.
Le., the value for agent ¢ is given by [9]:

Vilm) = Y 0i(n®) -v(n°) - P(a(n®)|7) (3.2)

neeN©°

where v(n°) = v(o(n°)) is nature’s component of the probability that o(n°) is realized (the
product of the probabilities of the chance moves specified along the path) and P(o(n?)|r) is the
agents’ component of this probability, specified by the joint policy. In case of a pure joint policy,
this component is given by:

1 , 7 is consistent with o(n?)

P(o(n®)|m) = {

0 , otherwise.

Consistent means that when the path is given by o(n°) = (so,oo,ao, st ol,al, ..., sk,ok), the
joint policy specifies all the joint actions in the path. Le.: 71'((00)) =a’ 7 (00,01)) = al, etc.
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— —p chance: tiger left or right

———3p  Gotoleft door

_____ p  Go to right door t=1

—_—) Quit
_____ p  Follow

1 leaves

——5  Quit

_____ p»  Open
> Quit
_____ »  Open

-1.1 2.1 +9.9 -10.1 -1.1 -2.1 +9.9 -10.1

both 1 leaves good tiger both 1 leaves good tiger

leave door door leave door door
opened opened opened opened

State descriptions

] agent 1 decision node chance node for a stochastic transition

r - tiger is right
o agent 2 decision node 1 - tiger is left

0] outcome node chance node for a stochastic observation for agent 2 L - agents at left door

R - agents at right door

agent 1 information set agent 2 information set

Figure 2: Extensive form for the deaf, the blind and the tiger problem. The nodes are annotated
with their states. Agent 1 never receives an observation and therefore has no chance nodes for
his observations. Except for the start node, the transitions are also deterministic, therefore there

is no chance nodes for these transitions. The ovals show which nodes are grouped together in
information sets.
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ISZCLF IS:@F IS:GF IS:aF IS:GQ
If" L aop If‘o tag I2R° L ao Ifo fag If‘o Dk
Iégi T ap IQ% taop Igi fag I2Si fag IQ% S
I? cAle
e ap -1.1 +2.478 —5.678 -2.1 -2
I %
I? Qe
IFe:aq -2.1 —1.619 —1.581 -1.1 —2
I %
I? L aR;
IFe : x +0.9 +3.222 —4.422 —2.1 -2
IlRi taop
I? L AR
IlLe Dk —2.1 —1.702 —1.298 —1.1 -2
IlRi Lag

Table 4: The (reduced) normal form representation of the deaf, the blind and the tiger problem.
In reduced normal form pure strategies specifying the same behavior are been merged. (the ‘full’
normal form would be 8 x 8). The actions on which these merged policies differ are indicated
with a * which therefore can be interpreted as a wild-card.

Definition 3.6 In an extensive form of a POSG, nature’s component of the probability o(n?)
is realized, is given by:

h—2
v(n®) = (s'=0) [ P(s"!s',a") - P(o'H!]al, s'*1), (3.3)
t=0
where s',a’, o' are the state and joint action, observation specified by the path o(n°), i.e.,
v, st al, ol € o(n?).

In general, the normal form gives the expected outcome for every joint policy for each player.
In the two agent case, this can be represented as a matrix R showing the outcome for both agents
for each joint policy (for identical payoffs; Dec-POMDPs) or by two separate ‘payoff matrices’ R;
for each agent i (general payoffs; POSGs). This generalizes to multi-dimensional arrays for more
than 2 agents. The entries r; of the payoff matrix R; for agent i are given by V;(m) according
to equation 3.2.

Table 4 shows the normal form of the deaf, the blind and the tiger. Again, because we
are dealing with a Dec-POMDP, there is only 1 outcome specified. To calculate the expected
outcome of a joint policy, the outcome nodes that are realizable under the joint policy are taken,
weighted by their probability, induced by the nature transitions along the path.

Example 3.2 As an example, the policy pair w1 = I) : ag;, I¥¢ : %, If" 1 ap, 7o = I3 : ap, IF°:
agQ, IQ% : ap can reach 4 outcome nodes: when both agents select ap, they can receive +9.9 or
—10.1, depending on whether the state was s;g or s,g. When agent 2 hears a roar, he will select
a@, leading to —2.1 for both s;g and s,g. This leads to the following expected outcome of the
joint policy:

P(s;)P(osi|sir) - 9.9 + P(s;)P(0si|srr) - (—10.1) + ...
P(SZ)P(ORO‘SZR) . (—21) + P(ST)P(ORO‘ST‘R) . (—21) = +3.222

Calculation of other entries is illustrated in appendix B.1. O
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How the normal form is solved to select a policy for each agent depends on the type of
outcomes (zero-sum, general- or identical payoff) and the number of agents (m = 2 or m > 2).
For 2-agent zero-sum games, the normal form can be converted to a linear program (LP) of
the same size [21] and solved by linear programming [18, 20]. 2-Agent general sum games can
be converted to a linearly complementary problem (LCP) [8] and solved with, for example,
the Lemke-Howson algorithm [10]. When the number of agents is higher than two, any of the
methods mentioned in [16] can be used for general payoff cases.

For identical payoff normal forms, such as the normal form of a Dec-POMDP, the solution is
given by simply selecting the joint policy with the highest expected outcome. This means that
for every Dec-POMDP there is at least one optimal pure joint policy:

Theorem 3.1 For every finite horizon Dec-POMDP there is at least one optimal pure joint
policy.

Proof The entries of the normal form for the Dec-POMDP specify the expected cumulative
rewards for all pure joint policies. At least one of these entries will be maximal. Assume that 7
is a policy specifying such an entry. As all agents receive the same payoff, no agent will have an
incentive to deviate from m. Also 7 gives the maximal expected cumulative reward, therefore 7
is an optimal joint policy. O

In non-reduced normal form, policies are specified as mappings from information sets, i.e.
action-observation histories to actions. At time-step ¢, there are (|.A4;] - |O;|)" of these sequences
for agent 7. As a consequence there are a total of

h—1
(A0
2 (A1o' = e

of such sequences for agent . When we let |A,|and |O,| denote the largest individual action
and observation sets, the space complexity of the normal form which is equal to the number of

joint policies is given by:
(<|A*\-|O*|)h—1) " m[( Al 0x P —1]
O( ‘A*| (IAx]-]0x)—1 ] ) <|A*|W> )

This representation, however, suffers from two types of ‘redundancies’ as we illustrate using
figure 3. The first redundancy occurs in pure policies and was briefly discussed in section 1.2.
When a policy 7; deterministically specifies an action say a; for a particular action-observation
history é;-, this means that some parts of the tree of will not be reached. Clearly, it is unnecessary
to specify actions for these unreached parts. E.g., in figure 3, if agent 1 selects a policy 71 that
specifies a1 at decision point 1, this policy will not have to specify an action at decision point 2.
This redundancy can be exploited by defining a pure policy 7; as mapping from the observation
history 0;, the sequence of all observations received by the agent, to actions.

This is exactly what is done in the reduced normal form, which reduces the size of the

representation to:
m[(\o*oh 1]
A, | D

Clearly, constructing the reduced normal form corresponds with brute-force joint policy evalua-
tion as mentioned in [11], as it simply calculates the expected outcome of all pure joint policies.
(For a detailed proof of this correspondence see appendix A.1.) This means that reduced normal
form solving, like brute-force policy evaluation, is intractable for all but the smallest problems,
as the complexity of brute-force policy evaluation is:
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Figure 3: Partial trees of action-observation histories for two agents. Left: tree of agent 1’s
action-observation histories. Right: the same for agent 2. The squares represent points at which
the agents can take decisions.

m[\O*|h71} \
o ((IA*! o1 ) (IS 10.™) > (3.4)

Here, (S| - |O,|™)" is the cost of evaluating one joint policy.

The second redundancy arises when reasoning about all pure policies, in this case different
policies share sub-trees. E.g. in figure 3, if 71 is a policy that specifies a; at decision point 3
and 4 and 7] is a policy that specifies a; at those decision points, then both policies specify a;
for decision point 1. Intuitively, this means that it should be possible to represent the policies
more compactly. This is indeed possible, as we will discuss in the next section.

3.4 Sequence form

In [8, 9] a representation called sequence form for solving extensive form games is introduced.
The sequence form essentially translates the above intuitions into an appropriate data structure
for representing policies: Since policies are essentially trees, sequence form represents sets of
policies using their common sub-trees. As the name implies, sequence form is based on ‘se-
quences’. These are very much related to the paths and histories which we already discussed.
Formally:

Definition 3.7 A sequence for agent i, o, is the portion of a path that is under agents i’s control
and observation. More specific, agents i’s sequence to a particular node n, o;(n), consists of:

e All agent ¢’s actions and observations up to npe., agent i’s decision node preceding n in
path o(n).

e The action specified at npyec.

Therefore a sequence can be summarized as a tuple (I;, a;), where K(nprec) = I; is agent i’s
information set preceding n in o(n) and a; is the action specified for I; by o(n). When we need
to refer to the k-th sequence of agent i we will write o .

Because a sequence o;(n) specifies the components of a path o(n) that agent ¢ can observe
and control, this can be used to express agent ¢’s contribution to the realization of a path
P(o(n)|m) by defining realization weights over these sequences:

Definition 3.8 The realization weight of a sequence o;, denoted p;(0;), is the probability that
agent 7 will take the moves specified by o;, given that the appropriate information sets are
reached.
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Of course not all arbitrary assignments of realization weights to an agent’s sequences repre-
sent a valid (possibly randomized) policy. In particular, the realization weights of continuations
of a sequence must sum up to the probability of that sequence. Let o;(I;) be a sequence for
player i that can lead to a particular information set I;. Let o;([;)oay, ..., 0;(1;) oa, be sequences
that are continuations of o;(I;), that specify taking action ag, ..., a,, at information set I;. The
constraints for realization weights tell us that:

pi(0i(1i)) = pi(oi(L;) 0 ar) + ... + pi(oi(Li) © an).

When the realization weights of o;(I;) and o;(1;) o a; are known, the probability of taking action
a; at information set I; is:

pi(oi(li) © a;)
So in this way, a set of realization weights satisfying the proper constraints corresponds to a
stochastic policy.

The other way around, it is also possible to find the realization weights, given a particular
stochastic (joint) policy. We write p7(0;) = p;"(0;) for the realization weight of o; as specified
by joint policy m = (m;, m4;). For the extensive form of a POSG, in which an information set
corresponds with an action-observation history, we can write the realization weight of a sequence
as follows:

pr(o0) = pf((Li,af)) = pF({(0],af, ... 0f), ai))
= P"(al|(6},a),...,0 ", at

PT(al (), ad, ..., 07 )) - - P(a]0D)

t
= ] P16, (3.5)
t'=0

NS
I
Jan
QS
NCS
~—
~—

where P™ denotes the probability according to m = (m;, 7;).
In sequence form, the expected outcome of a joint policy is defined as follow:

Definition 3.9 The expected value for agent i of a joint policy in sequence form is

Vitm) = Y 0i(n®)-v(n%) - ] o (0i(n%)), (3.6)
1=1

ne ENO
where v(n?) is the product of probabilities of nature’s moves along the path as before (eq. 3.3).

This is the equivalent of equation 3.2 that was used for the normal form, generalized to stochastic
policies specified by realization weights. As before, in the two agent case, this can be rewritten to
matrix form, similar to the normal form,? but with rows and columns corresponding to sequences
of the agents rather than pure policies. Let R be the sequence form payoff matrix for agent
1, then an entry ry, corresponds with the expected value of agent 1’s [-th sequence o1 ; against
o2k, and is given by:

Tk = Z v(n?) - O1(n°).

neeN® s.t. o1(n°)=01, A o2(n°)=02 i

Here, the summation is over outcome nodes consistent with the sequences [ and k. As these
sequences completely specify the joint action-observation history, the consistent outcome nodes
n® specify paths o(n°) that only differ on the actual states. Other nodes will not have to be
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19 Ik I3

agQ ar agQ ao agQ ao

o e |2 0 0 0 0 0

V' api | -2 0 0 0 0 0
qre aQ | 0 0 [ -0365 —0.696 | —0.735 —1.404
' ap | 0 0 |—-0696 —3.018 | —1.404 +3.918
e aQ | 0 0 [—0529 —1010 [ —0.571 —1.090
' ap | 0 0 |-1.010 —4.588 | —1.090 +3.488

Table 5: Sequence form of the deaf and the blind problem. The rows are sequences for the deaf
(agent 1), columns for the blind (agent 2). The sequences are grouped per action-observation
history or, equivalently, information set.

pl(groot)
1 0 0 0000 ”1(<I}]’aRi>) 1
_1 1 1 0 0 0 0 p1(<Il7.aLe>) 0
Ri
0 -1 0 1100 p((Iaq)) | = |
Ri
0 0 -100 11 p1(<IIL’aO>) 0
p1((I{€,aq))
p1(<IlLe>aO>)

Table 6: Sequence form constraint matrix and equation for the deaf (agent 1).

considered and, as a consequence, many of the matrix entries are zero. The complete sequence
form of the deaf and the blind problem is shown in table 5.

Example 3.3 As an example, the entry for the sequences <(If%i, ao), (I, ao)> is the summa-
tion over all the outcome nodes n° that are consistent with these sequences weighted by their
probability induced by nature v(n®). Which for this specific combination of sequences gives:

P(Sl) . P(ORo‘SlR) -9.9 + P(S,«) . P(ORO‘ST’R) . (—10.1) =
0.55-0.03-9.9 + 0.45- 0.7 (~10.1) = —3.018.

Note that for all the combinations of the information sets I+¢, I 15" and 14, there is
a symmetry between sequences that specify a1 = ap, a2 = ag and sequences that specify
a1 = ag, az = ao . This is because the payoffs specified by all the outcome nodes that are
consistent with these sequences are the same (namely —2.1) and the probabilities induced by
nature are also the same. O

The agents will have to choose the realization weights of their sequences in agreement with
the relevant constraints, as illustrated by table 6 and 7 that shows the constraint matrix for
respectively agent 1 and 2. When both agents have selected such realization weights, this
specifies a joint policy. When R is the payoff matrix for agent 1, this agent’s value (given by eq.
3.6) can be written as:

Vi(m) = pT(o10) Y p5(02k) - ik (3.7)
l k

3 Again, this representation generalizes to a multi-dimensional array in the case of more than 2 agents.
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pQ(UOToot)
1 0 0 0000 p2(<[%’aQ>) 1
11 1 0000 p2({I3,ar)) 0
Ro
0 0 =1 1100 (1% aq) | = |
Ro
00 -100 11 p2(<[25’a0>) 0
p2(<IQZ7QQ>)
( ))

Table 7: Sequence form constraint matrix and equation for the blind (agent 2).

Example 3.4 As an example, if 7 specifies p((I{,ap)) = 1 and m specifies p(<[§qi,ao>) =
p(<IQRO, aQ>) = 1,% this corresponds with the optimal joint policy 71 = I? D GRi, IlLe HE I{Ri 1 ap,
mo = I3 ap, I : ag, I : ap which we encountered before. Its expected value according to
equation 3.7 is:

—0.696 + 3.918 = +3.222,

which is exactly what we calculated before. O

Solving the sequence form means finding optimal realization weights for all agents. As for
normal form games, the question of how to solve this sequence form, depends on the number
of players and the type of outcomes it specifies. Research has mainly addressed the two agent
case. We will focus on identical payoff games here.

For identical payoff games (e.g. Dec-POMDPs), optimally solving the sequence form takes
worst-case exponential time, assuming EXP % NEXP. This can be seen as follows. The size
of the sequence form payoff matrix is the number of joint action-observation histories times the

number of joint actions:
m (AL -1O0)" — 1
(‘ | <<1A*|-ro*|>—1

which is exponential in the size of the Dec-POMDP. Would there be a polynomial algorithm,
then solving a Dec-POMDP is in EXP. However, solving a Dec-POMDP is NEXP-complete [1].
Therefore, assuming EXP # NEXP, there can be no polynomial time algorithm for optimally
solving an identical payoff game in sequence form. This means that, although sequence form is
exponentially smaller than normal form and thus offers exponential space savings, the worst-case
time complexity is equal to that of constructing the full normal form (and thus to brute force
policy evaluation®). Currently, the only known algorithm for optimally solving the sequence
form of an identical payoff game is evaluating all combinations of pure policies, yielding all pure
joint policies, but there might be methods with better lower-bounds.

Another possibility for solving the sequence form of identical payoff games is to apply alter-
nating maximization. In this procedure, an arbitrary joint policy is used as initialization. Then
one agent is selected whose policy is improved, while keeping the policies of the other agents
fixed. The agent improves his policy by calculating a best-response: it assigns a realization
weight of 1 to those sequences that maximize the sum specified by equation 3.7, respecting the
constraints for the realization weights. E.g. in the two player case where R is the common
payoff matrix, agent 1 will perform the following maximization:

T = argrr;raltlejpir(al,l)zk:ﬁg(02,k) Tk (3.8)

“Note that, because of the constraints, this also implies that p(IY,ar;) = 1 and that p(I3,ar) = 1.
5In fact, brute-force policy evaluation has the best space complexity, as it requires storing only the best policy
found so far.



16 Dec-POMDPs and extensive form games: equivalence of models and algorithms

19 ke I3

ag af agQ ao agQ ao

[0 GLe -2 0 0 0 0 0

' api =2 0 0 0 0 0
R 0Q 0 0 [ —-0.365 —0.696 | —0.735 —1.404
1 ao | 0 0 | —0.696 | —3.018 | —1.404 +3.918
e 0Q 0 0 [ —-0.529 —=1.010 | —0.571 —1.090
L' a0l 0 0 | —1.010 | —4.588 | —1.090 +3.488

Table 8: Illustration of the calculation of a best-response for the agent 1 (the deaf) against the
policy mo = I3 : ap, IF° : ag, 15" : ap of the second agent (the deaf). The dark columns can
not be realized under 7.

The procedure of this maximization is illustrated in table 8. Next, another agent is selected to
improve its policy, etc. This will lead to a Nash-equilibrium, but it might not be the best one.
Le., it is only guaranteed to find a locally optimal solution.

4 Direct calculation of best-response policies (DCBRP)

In section 3.4 we showed how an agent could select a best-response policy using sequence form. It
is also possible to calculate a best-response for an extensive form game more directly, as is shown
for poker games in [13, 14]. We will refer to this method as direct calculation of best-response
policies (DCBRP) for extensive form games.

The approach is to transform the extensive form game to a POMDP for a protagonist
agent. The solution of this POMDP gives an optimal (deterministic) best-response policy for
the protagonist agent with regards to the policies of the other agents. The transformation
to a POMDP is accomplished by converting all decision nodes for the protagonist agent and
all outcome nodes to states for the POMDP. The deterministic transitions from the game-tree
are converted to stochastic transitions in the POMDP, where the transition probabilities are
defined through the fixed policies of the other agents, and any observations that are implicit in
the extensive form are made explicit in the observation model. Figure 4 shows a POMDP model
for the first agent in ‘the deaf and the blind’. Comparing it to figure 2 gives an intuition behind
this transformation.

Now we will further formalize the transformation to a POMDP model. First we will discuss
the transformation for arbitrary extensive form games, then for extensive forms of POSGs. We
will denote the states in the POMDP model as p in order not to confuse them with states for
POSGs (notated as s).

4.1 General extensive form games

We will now discuss DCBRP for general extensive form games in which there are m agents, but
in which these do not necessarily take actions simultaneously each time-step (or even in a fixed
order). For such a game, the probability of reaching a particular next decision node n/ of the
protagonist agent ¢ from a decision node n; after action a;, is determined by all other decision
nodes that are between them. E.g. suppose action a; leads to a node n; for agent j and that
the latter’s action a; leads to n}, then the probability is given by:

P(nj|n;, a;) = P(aj|n;),
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— p Goto left door
p  Go to right door

-1.1 2.1 +9.9 -10.1 -1.1 -2.1 +9.9 -10.1

both 1 leaves  good tiger both 1 leaves good tiger

leave door door leave door door
opened opened opened opened

State descriptions
r - tiger is right

‘ state

(@) end-state

non discriminable states 1 - tiger is left

(corr. to information sets) L - agents at left door

R - agents at right door

Figure 4: A POMDP model for the deaf and the blind for first agent (the deaf). For clarity, the
transitions from states s;;, and s;p are omitted.
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where P(a;|nj) is 0 or 1 if agent j has a deterministic policy. So in this case, the POMDP model
would specify P(p'|p,a;) = P(aj|n;), where p/,p are the POMDP states that correspond with
n},n;. In general, however, there can be any number of nodes. In this case the probability can
be expressed by sequences in the sub-tree induced by n;: 6

v(ng) Il P (0 (7)) af € o(nf)
Py La;) = i j#i P \Y I\ » i 4.1
Wi, ai) {0 , otherwise (4-1)

where a? € o(n]

(2
Equation 4.1 is also valid when n/ is an outcome node and the initial state distribution,
b0(p), is given by the probability that the first decision nodes of agent i are reached. E.g. the
initial transitions in figure 2 determine the initial belief over POMDP states (which are shown
in figure 4). As a result the transition model is completely specified.
The observation and reward model for a general extensive form game are trivial. The obser-
vation the protagonist agent receives is the information set of the new node and he receives this

observation with probability 1:

) indicates that action a; must be the first action in o(n}), the path from n; to

P(I(ng)lai,p") = P(I(ng)|p') =1

where p’ is the state representing node n.
The reward of reaching state p’ is non-zero only when the corresponding node is an outcome
node:

RY) = {O(n;) . nl € N°

0 , otherwise

as is illustrated in figure 4. The more commonly used reward function form R(s,a) can be found
by applying one backup step.

4.2 DCBRP for extensive form POSGs

In the previous subsection we specified the transition probabilities for the POMDP formed from
a general extensive form game. Because a general extensive form game can have any structure,
P(p'|p,a;) could only be defined by paths. Now, however, we consider extensive form POSGs
which have a well-defined and fixed structure. Therefore this probability can be defined more
explicitly.

Let p be the POMDP state that represents node n;, and let s and 0 be the state and joint
action-observation history that n; specifies. The path o(n;) differs from g in that it also assigns
states for each time-step, so there are maximally |S|* (where t = t,,, the time-step of the n;)
nodes (and thus as much POMDP states p) that specify the same action-observation history 9.
7

Similarly, p’ represents n), the descendant decision node for agent 7 in the next time-step that
specifies state s’ and joint action-observation history <67, a, 0). Also the joint action a = (a;, a;)
specifies action a; for the protagonist agent i. Now we can define the probability of the transition
from p to p’ as: .

P(p'lp,ai) = P(ols’, (axi, ai)) P(s'|s, (azi, a;)) P(ax|0).

®T.e., the sub-tree with n; as its root. Therefore the path o(n}) = (ni,...,n}) and a sequence o;(n}) represents
agent j’ s components of that path.
7 Alternatively, it is also possible to specify p as the POMDP state representing the group of |S|t71 nodes that

specify the same @ and state s'. Here, for ease of explanation, we will assume the former and more straightforward
specification in which there is a one to one correspondence to nodes in the game-tree.
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The observation agent i receives in such a transition is specified to be one of the observations
0; € O; from the POSG model. Therefore we can directly use these observations instead of
‘observing the information set’ as in section 4.1. Let n/ specify joint observation o = (0., 0;),
then:

P(oilp) =
Other observations o, have probability 0.
The reward model can also be simplified.®We can specify the reward function as:

R(pl) = R(Sa a),

where s is the POSG state specified by (n; and thus by ) p, the predecessor POMDP state of
p/. ais the joint action that leads to p/, i.e., a is the last joint action in o(n}). Effectively, this
means that in each state p the rewards of the preceding transition are received. I.e. the rewards
are delayed one time-step. This is not uncommon though and additionally allows rewards that
are dependent on the next state: R(s,a,s’).

Alternatively, we can also specify:

R(p,a;) = R(s, (m£i(04i), i),

where d_; is specified by p, or when the other agents