
A Cross-Entropy Approach to Solving

Dec-POMDPs

Frans A. Oliehoek1, Julian F.P. Kooij1, and Nikos Vlassis2

1 Intelligent Systems Lab, University of Amsterdam, Kruislaan 403, 1098 SJ
Amsterdam, The Netherlands ({faolieho,jkooij}@science.uva.nl)

2 Dept. of Production Engineering and Management, Technical University of
Crete, Kounoupidiana 73100 Chania, Greece (vlassis@dpem.tuc.gr)

1 Introduction

In this paper we focus on distributed multiagent planning under uncertainty.
For single-agent planning under uncertainty, the partially observable Markov
decision process (POMDP) is the dominant model (see [Spaan and Vlas-
sis, 2005] and references therein). Recently, several generalizations of the
POMDP to multiagent settings have been proposed. Here we focus on the
decentralized POMDP (Dec-POMDP) model for multiagent planning under
uncertainty [Bernstein et al., 2002, Goldman and Zilberstein, 2004]. Solving a
Dec-POMDP amounts to finding a set of optimal policies for the agents that
maximize the expected shared reward. However, solving a Dec-POMDP has
proven to be hard (NEXP-complete): The number of possible deterministic
policies for a single agent grows doubly exponentially with the planning hori-
zon, and exponentially with the number of actions and observations available.
As a result, the focus has shifted to approximate solution techniques [Nair
et al., 2003, Emery-Montemerlo et al., 2005, Oliehoek and Vlassis, 2007].

In this paper we propose a novel approach for approximately solving Dec-
POMDPs. We apply the Cross-Entropy (CE) method [de Boer et al., 2005], a
sampling-based method for solving combinatorial problems, to policy search
in Dec-POMDPs. [Mannor, Rubinstein, and Gat, 2003] applied CE for policy
search in Markov Decision Processes (MDPs). This work proposes solutions
for the problems encountered when going to a multiagent setting with state
uncertainty, thereby extending work by [Mannor et al., 2003]. We show exper-
imental results from a toy problem and a standard benchmark, from which
encouraging conclusions can be drawn.

2 Frans A. Oliehoek, Julian F.P. Kooij, and Nikos Vlassis

2 The DEC-POMDP Model

The decentralized partially observable Markov decision process (Dec-POMDP)
describes a stochastic, partially observable environment for a set of cooperat-
ing agents. A Dec-POMDP for m agents can formally be defined as a tuple
〈S,A, T,R,O, O〉 where:

• S is a finite set of states.
• The set A = ×iAi is the set of joint actions, where Ai is the set of actions

available to agent i. Every time step one joint action a = 〈a1, ..., am〉 is
taken.

• T is the transition function, a mapping from states and joint actions to
probability distributions over next states: T : S ×A → P(S).

• R is the reward function, a mapping from states and joint actions to real
numbers: R : S ×A → R.

• O = ×iOi is the set of joint observations, with Oi the set of observations
available to agent i. Every time step one joint observation o = 〈o1, ..., om〉
is received. We will denote ot the joint observation at time t.

• O is the observation function, a mapping from joint actions and successor
states to probability distributions over joint observations: O : A × S →
P(O).

In this paper we assume a finite planning horizon of h time steps, and an
initial ‘belief’ b0 ∈ P(S); this is the initial state distribution at t = 0. In
a Dec-POMDP, an agent only knows its own actions ai and observations
oi. The action-observation history for agent i, ~θ t

i =
(

a0
i , o

1
i , a

1
i , ..., a

t−1
i , ot

i

)

,

is the sequence of actions taken and observations received by agent i until
time step t. The joint action-observation history is a tuple with the action-
observation history for all agents ~θt = 〈~θ t

1 , ..., ~θ t
m〉. The set of all action-

observation histories for agent i at time t is denoted ~Θi. The observation
history for agent i, ~o t

i =
(

o1
i , ..., o

t
i

)

, is the sequence of observations an agent

has received. ~o t denotes a joint observation history and ~Oi denotes the set of
all observation histories for agent i.

A pure or deterministic policy πi for agent i in a Dec-POMDP is a mapping
from observation histories to actions, πi : ~Oi → Ai. A pure joint policy π is a
tuple containing a pure policy for each agent. Solving a Dec-POMDP amounts
to finding π∗, the joint policy that yields the highest expected cumulative
reward: π∗ = arg maxπ Eπ

(
∑h−1

t=0 R(t)
)

. Bernstein et al. [2002] have shown
that optimally solving a Dec-POMDP is NEXP-complete, implying that any
optimal algorithm will most likely be doubly exponential in the horizon.

The naive way of going about is to enumerate all joint policies and evaluate
their expected cumulative reward, or value. The value of a specific (state, joint
observation history) pair under a joint policy π is given by:

A Cross-Entropy Approach to Solving Dec-POMDPs 3

Vπ(st, ~o t) = R(st, π(~o t)) +
∑

st+1

P (st+1|st, π(~o t))

∑

ot+1

P (o(t+1)|st+1, π(~o t))Vπ(st+1, ~o t+1). (1)

The total expected reward V (π), with respect to the initial state distribution
b0 is then given by V (π) =

∑

s Vπ(s,~o 0)b0(s), where ~o 0 is the initial (empty)
joint observation history. For one joint policy this calculation requires evalu-

ation of (1) for each of the
∑h−1

t=0 |O|t = |O|h−1
|O|−1 observation histories and |S|

states, leading to a total cost of O(|S| · |O|h−1
|O|−1).

3 Cross-Entropy Optimization

De Boer, Kroese, Mannor, and Rubinstein [2005] described the Cross-Entropy
(CE) method as a general framework to both rare event estimation and combi-
natorial optimization. We will focus here only on the application to optimiza-
tion. The cross entropy method can be used for optimization in cases where
we want to find a (typically large) vector x from a hypothesis space X , that
maximizes some performance function V : X → R. That is, we are looking
for x∗ = arg maxx∈X V (x). The CE method maintains a probability density
function fξ over the hypothesis space, parametrized by a vector ξ. The core
of the CE method for optimization is an iterative two-phase process:

1. Generate a set of samples X according to fξ.
2. For some 0 ≤ ρ ≤ 1, select the best ρ-fraction of samples Xρ, and use

those to update the parameter vector ξ.

The first step is rather trivial. The second step, however, deserves some more
explanation. Let γ(j) be defined as the minimum performance within the best
ρ-fraction of samples of the j-th iteration. I.e., γ(j) ≡ minx∈Xρ

V (x). The
CE method requires that this lower bound performance is not allowed to
decrease over time: γ(j+1) ≥ γ(j). This implies that Xρ can contain less than
a ρ-fraction of all samples X. The set Xρ is then used to create ξ(j+1), a
maximum-likelihood estimate of the parameters. These new parameters can
be smoothed using a parameter 0 ≤ α ≤ 1 by interpolating with ξ(j) the
parameter vector of the previous iteration: ξ(j+1) = αξ(j+1) + (1 − α)ξ(j).

This reduces the probability that some components of the parameter vector
will be 0 or 1 early in the CE process, which could cause the method to get
stuck in local optima. Usually, the iterative process is stopped when γ(j) has
not improved over some predefined number of steps. But other conditions
could be used such as a time limit or a fixed number of iterations. When the
stop condition is finally met, the best sample x found in the entire process is
returned as an approximation of x∗.

Mannor et al. [2003] showed how the CE method can be applied to MDPs
for which the optimal value function is stationary, that is, the expected value

4 Frans A. Oliehoek, Julian F.P. Kooij, and Nikos Vlassis

of taking a particular action in a particular state does not depend on the time
step. The optimal policy for such a MDP is a mapping from states to actions
πMDP : S → A, which can be represented as an |S|-vector. As above, we want
to find the vector that maximizes a performance function, in this case the
expected total reward. So we are looking for π∗

MDP = arg maxπMDP
V (πMDP),

where the performance function now is the value of the MDP-policy πMDP. This
problem is tackled by maintaining a parameter vector ξ = 〈ξs0

, ..., ξs|S|
〉, where

each ξs is a probability distribution over actions. Using these probabilities it
is possible to sample N trajectories: starting from some state actions are
randomly selected according to the probabilities as described by ξ until the
goal state is reached. Now using the ρ-fraction of best (highest total reward)
trajectories Xρ, the parameter vector can be updated as follows:

P (a|s) =

∑

x∈Xρ
I(x, s, a)

∑

x∈Xρ
I(x, s)

, (2)

where I(x, s, a) is an indicator function that indicates that action a was per-
formed at state s in trajectory x, and I(x, s) indicates whether s was visited
in trajectory x. After updating the parameter vector ξ, a new set X of tra-
jectories can be sampled, etc. Empirical evaluation shows that this process
converges to near-optimal policies in only a few iterations.

4 CE for DEC-POMDPs

In this section we propose an adaptation of the CE method for Dec-POMDP
policy optimization. Overall, the approach we describe here follows the al-
gorithm described in the previous section. Unfortunately we cannot apply
the above approach directly to Dec-POMDPs. The reason is that, since we
consider finite-horizon Dec-POMDPs, there is no stationary value function.
Moreover, the policies of the agents are not defined over states but over their
individual observation histories ~o t

i . In the Dec-POMDP case, the hypothesis
space is the space of joint policies; we need to define a parametrized distribu-
tion over this space and an evaluation function for sampled policies. Also we
need to show how the parameters can be updated.

4.1 POLICY DISTRIBUTIONS

In the case of Dec-POMDPs, fξ denotes a probability distribution over pure
joint policies. We will represent this probability as the product of probability
distributions over individual pure joint policies: fξ(π) =

∏m
i=1 fξi

(πi). Here ξi

is the vector of parameters for agent i, i.e., ξ = 〈ξ1, ..., ξm〉. The question is how
to represent the probability distributions over individual pure policies. One
option is to use a mixed policy [Osborne and Rubinstein, 1994] representation:
a distribution over all agent i’s pure policies. However, this approach suffers

A Cross-Entropy Approach to Solving Dec-POMDPs 5

from two drawbacks: the number of pure individual policies πi might be huge
and this representation is hard to parametrize in a meaningful way using some
vector ξi. That is, it gives no access to the internals of the policies: parameters
would specify probabilities for entire pure policies, rather than specifying be-
havior for particular observation histories. Rather then using a mixed policy
representation, we will use a behavioral- [Osborne and Rubinstein, 1994] or
stochastic policy [Koller and Pfeffer, 1997] description: a mapping from de-
cision points to probability distributions over actions. We consider two such
representations: observation- and action-observation history based.

Observation history based: The decision points in an MDP are the
states. In a Dec-POMDP the decision points for an agent are its observa-
tion histories. Therefore, the simplest way to represent a policy distribu-
tion is as a probability distribution over actions for each observation history.
In particular, for each ~o t

i we maintain a ξ~o t
i
, that specifies the distribution

∀ai
ξ~o t

i
(ai) ≡ P (ai|~o

t
i). Consequently, ξi is defined as ξi ≡ 〈ξ~o t

i
〉
~o t

i ∈
~Oi

, and

the probability of a policy πi for agent i as fξi
(πi) =

∏

~o t
i ∈

~Oi
ξ~o t

i
(πi(~o

t
i)). We

refer to this policy distribution representation as the OH-based representation.
Action-observation history based: Defining the parameters as above

might be the most straightforward approach, because it is very closely re-
lated to the approach for MDPs. Nevertheless, this representation fails to
take into account the action history: The choice for action πi(~o

t
i) has no

influence on the choice for the action at the next time step πi(~o
t+1
i). To

overcome this problem, we propose to make the probability of actions con-
ditional on the entire action-observation history ~θ t

i . So now the parameter
vector for agent i is defined as ξi ≡ 〈ξ~θ t

i
〉~θ t

i ∈
~Θi

and ξ~θ t
i

is a probability distri-

bution over actions: ∀ai
ξ~θ t

i
(ai) ≡ P (ai|~θ

t
i). An action-observation history

consists of an action- and an observation history ~θ t
i = (~a t

i , ~o t
i). Therefore, in

this new representation, which we refer to as AOH-based, the probability of
agent i’s pure policy πi becomes fξi

(πi) =
∏

~o t
i ∈

~Oi
ξ~θ t

i =(~o t
i ,~a t

πi
)(πi(~o

t
i)), where

~a t
πi

is the action history as specified by πi for observation history ~o t
i , i.e.,

~a t
πi

= 〈πi(~o
0
i), πi(~o

1
i), · · · , πi(~o

t−1
i)〉. Put differently, for each ~o t

i , the param-

eter ξ~θ t
i

used is that of the action-observation history ~θ t
i that is consistent

with ~o t
i and πi: it specifies the observations from ~o t

i and the actions that
πi specifies for those observations. Drawing a sample from this distribution
is performed in a root-to-leaf fashion: first an action a0

i is sampled for the

empty action-observation history ~θ 0
i according to ξ~θ 0

i
, then, for all possible

action-observation histories ~θ 1
i = (~a 1

i , ~o 1
i) at time t = 1 that are consistent

with the actions sampled so far, new actions are sampled according to ξ~θ 1
i
,

etc.

6 Frans A. Oliehoek, Julian F.P. Kooij, and Nikos Vlassis

4.2 PARAMETER ESTIMATION

The previous section described two ways to represent the probability distri-
bution over policies. This section describes how the set of best policies Xρ

sampled from the previous distribution fξ(j) , can be used to find new param-

eters ξ(j+1).
OH-based distribution: Let I(πi, ~o

t
i , a) be an indicator function that

indicates whether πi(~o
t
i) = a. In the OH-based distribution the probability of

agent i taking action at ∈ Ai after having observed ~o t
i can be updated using:

ξ
(j+1)

~o t
i

(at) = 1
|Xρ|

∑

π∈Xρ
I(πi, ~o

t
i , at), where |Xρ| normalizes the distribution.

AOH-based distribution: Estimating the parameters for the AOH-
based distribution is more involved. The indicator function I(πi, ~θ

t
i , at

i) in-
dicates now whether (i) πi(~o

t
i) = at

i, and (ii) the action-observation history
~θ t
i is consistent with the policy, that is, whether ~θ t

i = (~o t
i ,~a t

πi
) and ~a t

πi
is the

sequence of actions specified by πi up to time step t for observation history
~o t

i . The new distribution parameters can be estimated by

ξ
(j+1)
~θ t

i

(at) =

∑

π∈Xρ
I(πi, ~θ

t
i , at)

∑

a∈Ai

∑

π∈Xρ
I(πi, ~θ

t
i , a)

. (3)

However, it may happen that certain action-observation histories ~θ t
i are not

consistent with any policy in Xρ, in which case both the nominator and de-
nominator in (3) are 0. In such a case, one can simply keep the previous

parameters, thus take ξ
(j+1)
~θ t

i

= ξ
(j)
~θ t

i

. We used another approach that defines

the next distribution over actions as uniform, indicating that we are indiffer-
ent to which action to take since we have no reason to prefer one action above
another based on Xρ.

4.3 APPROXIMATE EVALUATION

Section 2 explained how the value of a pure joint policy can be calculated.
Unfortunately, the complexity of this calculation for a single pure joint policy
scales exponentially with the planning horizon. Therefore we examine approx-
imate evaluation by simulating a number of episodes, or traces, and using the
average of outcomes as an estimate for the actual value V (π). Although this
approximation might introduce errors, notice that the CE method does not
discriminate between policies within the set Xρ of best samples. Therefore,
as long as the relative ordering is preserved, the same policies are used to up-
date the policy distribution, yielding the same results. In fact, only when the
ranking of policies is disturbed near the cut-off threshold ρ, will approximate
evaluation influence the distribution updating process. There is a second po-
tential source of error, though. When the fraction of best samples Xρ is used
to update γ, the new γ might in fact be an over-estimation. This could make
it very difficult to sample new instances with a higher (approximate) value.

A Cross-Entropy Approach to Solving Dec-POMDPs 7

5 Experiments

In this section we present some experimental results. First we describe a single-
agent experiment performed in order to determine the influence of using dif-
ferent representations for policy distributions. Next, we show results on the
multiagent Dec-Tiger problem, introduced by Nair et al. [2003]. We compare
against dynamic programming JESP, a method introduced in the same paper,
that works by alternatingly optimizing the policy of a single agent.

To determine the influence of the two policy representations, we devised
the test problem illustrated in figure 1. In an effort to isolate the action his-
tory’s influence as much as possible, the problem includes only one agent.
Starting from s0, the world changes (with equal probability) to either s1 or
s2 if the agent takes action a1, and to s3 or s4 if it takes action ā1. When
arriving in states s1 and s3, the agent (deterministically) receives observation
o1, in s2 and s4 this is ō1. The difficulty in this problem is that the agent has
to learn that performing action ā1 after observation ō1 is the best thing to
do, but only after performing the optimal action a1 at time step t = 0. This
is hard because, as long as the distribution over the initial action ξ() has not
converged, performing action ā1 after ō1 can result in a penalty of −1000. We
tested the performance of the CE method for Dec-POMDPs on this problem,
sampling four joint policies in each iteration, with ρ = 0.5. We used α = 0.2,
higher values resulted in faster learning, but also in more local optima. When
using the CE method for policy search, the goal is to find (i.e., sample) good
deterministic policies fast. Instead, here we are interested in the convergence
behavior. A good indication of this convergence behavior is given by V (fξ),
the value of the induced stochastic policy throughout the CE process.

Figure 2(left) shows the mean and standard deviation of 100 runs of the
CE method on the toy problem, for both OH- and AOH policy distributions
(and each of those runs consists of 60 iterations). Upon convergence of fξ

3, the
mean V (fξ) using OH policy distributions is slightly lower (97.2 vs 103.5), and
the standard deviation is greater (21.1 vs 9.12), both of which indicate that it
gets stuck in sub-optimal local maxima more often. Also, the learning curve
of the AOH based policy distributions grows faster. Even though the AOH
representation seems to perform slightly better, the OH representation is still
very useful; the latter requires less memory to store and has fewer parameters
to update in each iteration, which means that it is faster. Experiments on
enlarged versions of this problem showed similar results.

We also tested CE using exact and approximate evaluation on the 2-agent
Dec-Tiger problem [Nair et al., 2003], including a variant that involves approx-
imate evaluation without γ. This variant does not require that γ(j+1) ≥ γ(j),
but always uses the best ρ-fraction to update the parameters, even if some of
the policies have an approximate value worse than γ. Because we found little

3 Note that the optimal policy always was discovered much earlier than that the
distribution fξ converged.

8 Frans A. Oliehoek, Julian F.P. Kooij, and Nikos Vlassis

s0(o1)

s1(o1) s2(ō1) s3(o1) s4(ō1)

a1 a1

ā1ā1

a1 a1 a1a1ā1 ā1 ā1ā1

+0 +0+10 +40+40+40+200 −1000

Fig. 1. The 1-agent test problem used to establish the influence of maintaining the
action history.

Mean of 100 runs

m
e
a
n

V
(f

ξ
)

iteration

OH-based
AOH-based

optimal value

0

10 20 30 40

50

50

−50

100

Stand. dev. of 100 runs

st
d

V
(f

ξ
)

iteration

OH-based
AOH-based

0

5

10

10

15

20

20

25

30

30

35

40

40

45

50

h CE CE-A CE-AW JESP

2 max −4.0 −4.0 −4.0 −4.0
mean −4.0 −4.0 −4.0 −18.30
std 0.0 0.0 0.0 7.18

3 max 5.19 5.19 5.19 5.19
mean 4.48 5.19 5.19 −19.35
std 3.17 0.0 0.0 13.78

4 max 4.80 4.80 4.80 3.99
mean 4.33 2.84 4.16 −20.49
std 0.84 4.05 0.67 13.92

5 max 7.03 6.68 7.03 2.93
mean 4.50 3.36 3.55 −26.73
std 1.78 2.13 3.68 14.72

6 max 5.08 5.98 8.32 2.39
mean 2.45 −2.63 1.66 −24.06
std 1.28 4.51 3.11 11.86

7 max - −5.55 0.81 -
mean - −22.28 −4.19 -
std - 14.00 3.12 -

8 max - −32.89 −14.22 -
mean - −47.72 −20.79 -
std - 12.00 3.66 -

Fig. 2. Results for the toy problem of figure 1 (left), and results on the Dec-Tiger
problem (right).

difference between the AOH- and OH-based representation, and the OH-based
version is faster, we only used the latter representation in the experiments de-
scribed here. All the CE variants run for a fixed number of 300 iterations and
sampled 50 joint policies in each iteration of which they used a fraction of
ρ = 0.2 to update the parameters. As before we set α = 0.2. The approx-
imate evaluation CE variants used 250 traces to estimate the value of the
sampled policies (which was found to be roughly as good as using 1000 traces
for h = 4).

Figure 2(right) shows the results of CE on the Dec-Tiger problem, using
exact evaluation (CE), approximate evaluation (CE-A), approximate evalu-

A Cross-Entropy Approach to Solving Dec-POMDPs 9

ation without γ (CE-AW) and dynamic programming JESP. Shown are the
maximum, mean and standard deviation of the value of the best pure policy
sampled (out of all 300 iterations) over 20 runs. In case of approximate eval-
uation, the figure reports statistics over the exact values for the best ranked
policies (found by an exact evaluation at the end). Empty entries indicate that
the method was not able to complete all 20 runs within reasonable time. This
immediately illustrates one of the advantages of the approximate evaluation
CE methods: they were able to yield results up to horizon 8. For the hori-
zons it did complete, exact evaluation CE performed very well. For horizon
2–5, it achieved the highest maximum, and for h = 2, 4–6, it has the high-
est mean and lowest variance, which indicates it reaches good solutions most
frequently. JESP runs into problems for horizons greater than 6, especially
memory requirements seem to be the bottleneck here. It is more striking,
however, that its mean performance is significantly lower, which implies that
it often gets stuck in worse local optima than the CE methods. Finally, the
results show that CE-AW outperforms CE-A, implying that overestimating
the lower bound γ indeed does negatively influence the search process. Closer
analysis of the results confirms this: after an initial period of learning, CE-A
has trouble sampling any policies with an (approximate) value higher than γ.
This causes the set Xρ to be empty, which in turn means there is no updating
of the distribution, thus stalling the process.

6 Conclusions

In this paper we have shown how Dec-POMDPs can be approximately solved
using an extension of the CE method. We discussed two different represen-
tations of probability distribution over joint policies, one based on the full
action-observation history and one based only on the observation history, and
how their parameters can be updated. Also we introduced an approximate,
rather than exact evaluation of the policies sampled in each iteration.

An empirical evaluation showed that the CE approach to solving Dec-
POMDPs is competitive with JESP, one of the state-of-the-art methods for
approximately solving Dec-POMDPs. Moreover, this evaluation shows that
the CE approach using the OH-based policy distributions performed nearly
as good as with the AOH-based representation, and that good results can
be obtained using approximate evaluation with relatively few traces. A last
conclusion that can be drawn is that this approximate evaluation CE performs
better when not enforcing a lower bound γ for the set Xρ used to update the
parameters.

There are a couple of directions for future research. More investigation is
required regarding the influence of the action history. There might be problems
where the effect of maintaining OH- rather than AOH-based policy distribu-
tions are more dramatic. Also the difference between OH- and AOH-based
representations can be generalized by making the action distribution condi-

10 Frans A. Oliehoek, Julian F.P. Kooij, and Nikos Vlassis

tional on the last k actions taken. Exact evaluation can most likely be accel-
erated by caching (intermediate) evaluation results of (parts of) joint policies.
Finally, and somewhat related, the success of approximate evaluation raises
the question whether it is necessary to sample complete joint policies if they
are only partially inspected during approximate evaluation. The CE approach
could greatly benefit from a construction that samples parts of (joint) policies.

Acknowledgments The research reported here is part of the Inter-
active Collaborative Information Systems (ICIS) project, supported by the
Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

References

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity
of decentralized control of Markov decision processes. Math. Oper. Res., 27
(4):819–840, 2002.

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial
on the cross-entropy method. Annals of Operations Research, 134(1):19–67,
2005.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game the-
oretic control for robot teams. In Proceedings of the IEEE International
Conference on Robotics and Automation, pages 1175–1181, 2005.

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative sys-
tems: Categorization and complexity analysis. Journal of Artificial Intelli-
gence Research (JAIR), 22:143–174, 2004.

D. Koller and A. Pfeffer. Representations and solutions for game-theoretic
problems. Artificial Intelligence, 94(1-2):167–215, 1997.

S. Mannor, R. Rubinstein, and Y. Gat. The cross entropy method for fast
policy search. In International Conference on Machine Learning, pages
512–519, 2003.

R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming de-
centralized POMDPs: Towards efficient policy computation for multiagent
settings. In Proc. Int. Joint Conf. on Artificial Intelligence, pages 705–711,
2003.

F. A. Oliehoek and N. Vlassis. Q-value functions for decentralized POMDPs.
In Proc. of Int. Joint Conf. on Autonomous Agents and Multi Agent Sys-
tems, Honolulu, Hawai’i, 2007.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT
Press, July 1994.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value itera-
tion for POMDPs. Journal of Artificial Intelligence Research, 24:195–220,
2005.

