Properties of the Q_{BG}-value function

Frans A. Oliehoek ${ }^{1}$, Nikos Vlassis ${ }^{2}$, and Matthijs T.J. Spaan ${ }^{3}$
${ }^{1}$ ISLA, University of Amsterdam, The Netherlands
${ }^{2}$ Dept. of Production Engineering and Management, Technical University of Crete, Greece
${ }^{3}$ Institute for Systems and Robotics, Instituto Superior Técnico, Lisbon, Portugal

In this technical report we treat some properties of the recently introduced $\mathrm{Q}_{\mathrm{BG}^{-}}$ value function. In particular we show that it is a piecewise linear and convex function over the space of joint beliefs. Furthermore, we show that there exists an optimal infinite-horizon Q_{BG}-value function, as the Q_{BG} backup operator is a contraction mapping. We conclude by noting that the optimal Dec-POMDP Q-value function cannot be defined over joint beliefs.

Keywords: Multiagent systems, Dec-POMDPs, planning, value functions.

IAS

intelligent autonomous systems

Contents

1 Introduction 1
2 Model and definitions 1
3 Finite horizon 3
3.1 Q_{BG} is a function over the joint belief space 3
$3.2 \mathrm{Q}_{\mathrm{BG}}$ is PWLC over the joint belief space 4
4 Infinite horizon Q_{BG} 7
4.1 Sufficient statistic 8
4.2 Contraction mapping 9
4.3 Infinite horizon Q_{BG} 10
5 The optimal Dec-POMDP value function Q^{*} 10
A Sub-proof of PWLC property 11

[^0]
1 Introduction

The decentralized partially observable Markov decision process (Dec-POMDP) [1] is a generic framework for multiagent planning in a partially observable environment. It considers settings where a team of agents have to cooperate as to maximize some performance measure, which describes the task. The agents, however, cannot fully observe the environment, i.e., there is state uncertainty: each agent receives its own observations which provide a clue regarding the true state of the environment.

Emery-Montemerlo et al. [3] proposed to use a series of Bayesian games (BG) [6] to find an approximate solution for Dec-POMDPs, by employing a heuristic payoff function for the BGs. In previous work [5], we extended this modeling to the exact setting by showing that there exist an optimal Q-value function Q^{*} that, when used as the payoff function for the BGs, yields the optimal policy. We also argued that computing Q^{*} is hard and introduce Q_{BG} as a new approximate Q -value function that is a tighter upper bound to Q^{*} than previous approximate Q-value functions. Apart from its use as an approximate Q-value function for (noncommunicative) Dec-POMDPs [5], the Q_{BG}-value function can also be used in communicative Dec-POMDPs: when assuming the agents in a Dec-POMDP can communicate freely, but that this communication is delayed by one time step, the Q_{BG}-value function is optimal.

In this report we treat several properties of the Q_{BG}-value function. We show that for a finite horizon, the $\mathrm{Q}_{\mathrm{BG}} \mathrm{Q}$-value function $Q_{\mathrm{B}}\left(\vec{\theta}^{t}, \mathbf{a}\right)$, corresponds with a value function over the joint belief space $Q_{\mathrm{B}}\left(b^{\theta^{t}}, \mathbf{a}\right)$ and that it is piecewise linear and convex ($P W L C$).

For the infinite-horizon case, we also show that we can define a $Q_{B G}$ backup operator, and that the operator is a contraction mapping. As a result we can conclude the existence of an optimal $\mathrm{Q}_{\mathrm{BG}}^{*}$ for the infinite horizon.

First, we further formalize Dec-POMDPs and relevant notions, then section 3 treats the finite horizon: 3.1 shows that Q_{BG} is a function over the belief space and section 3.2 we prove that this function is PWLC. In section 4 we treat the infinite-horizon case: section 4.1 shows that in this case joint beliefs are also a sufficient statistic. Section 4.2 shows how the Q_{BG} functions can be altered to form a backup operator for the infinite-horizon case and that this operator is a contraction mapping. Finally, in Section 5 we prove that the optimal Dec-POMDP Q-value function cannot be defined over joint beliefs.

2 Model and definitions

As mentioned, we adopt the Dec-POMDP framework [1].
Definition 2.1 A decentralized partially observable Markov decision process (Dec-POMDP) with m agents is defined as a tuple $\langle\mathcal{S}, \mathcal{A}, T, R, \mathcal{O}, O\rangle$ where:

- \mathcal{S} is a finite set of states.
- The set $\mathcal{A}=\times_{i} \mathcal{A}_{i}$ is the set of joint actions, where \mathcal{A}_{i} is the set of actions available to agent i. Every time step one joint action $\mathbf{a}=\left\langle a_{1}, \ldots, a_{m}\right\rangle$ is taken. ${ }^{1}$
- T is the transition function, a mapping from states and joint actions to probability distributions over next states: $T: \mathcal{S} \times \mathcal{A} \rightarrow \mathcal{P}(\mathcal{S}) .{ }^{2}$
- R is the reward function, a mapping from states and joint actions to real numbers: R : $\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}$.

[^1]- $\mathcal{O}=\times_{i} \mathcal{O}_{i}$ is the set of joint observations, with \mathcal{O}_{i} the set of observations available to agent i. Every time step one joint observation $\mathbf{o}=\left\langle o_{1}, \ldots, o_{m}\right\rangle$ is received.
- O is the observation function, a mapping from joint actions and successor states to probability distributions over joint observations: $O: \mathcal{A} \times \mathcal{S} \rightarrow \mathcal{P}(\mathcal{O})$.

Additionally, we assume that $b^{0} \in \mathcal{P}(\mathcal{S})$ is the initial state distribution at time $t=0$.
The planning problem is to compute a plan, or policy, for each agent that is optimal for a particular number of time-steps h, also referred to as the horizon of the problem. A common optimality criterion is the expected cumulative (discounted) future reward:

$$
\begin{equation*}
E\left(\sum_{t=0}^{h-1} \gamma^{t} R(t)\right) \tag{2.1}
\end{equation*}
$$

The horizon h can be assumed to be finite, in which case the discount factor γ is generally set to 1 , or one can optimize over an infinite horizon, in which case $h=\infty$ and $0<\gamma<1$ to ensure that the above sum is bounded.

In a Dec-POMDP, policies are mappings from a particular history to actions. Here we introduce a very general form of history.

Definition 2.2 The action-observation history for agent $i, \vec{\theta}_{i}^{t}$, is the sequence of actions taken and observations received by agent i until time step t :

$$
\begin{equation*}
\vec{\theta}_{i}^{t}=\left(a_{i}^{0}, o_{i}^{1}, a_{i}^{1}, \ldots, a_{i}^{t-1}, o_{i}^{t}\right) . \tag{2.2}
\end{equation*}
$$

The joint action-observation history is a tuple with the action-observation history for all agents $\vec{\theta}^{t}=\left\langle\vec{\theta}_{1}^{t}, \ldots, \vec{\theta}_{m}^{t}\right\rangle$. The set of all action-observation histories for agent i at time t is denoted $\vec{\Theta}_{i}$.

In the Q_{BG} setting, at a time step t the previous joint action-observation history $\vec{\theta}^{t-1}$ is assumed common knowledge, as the one-step-delayed communication of \mathbf{o}^{t-1} has arrived. When planning is performed off-line, the agents know each others policies and \mathbf{a}^{t-1} can be deduced from $\vec{\theta}^{t-1}$. The remaining uncertainty is regarding the last joint observation \mathbf{o}^{t}. This situation can be modeled using a Bayesian game $(B G)[6]$. In this case the type of agent i corresponds to its last observation $\theta_{i} \equiv o_{i}^{t}$. $\Theta=\times_{i} \Theta_{i}$ is the set of joint types, here corresponding with the set of joint observations \mathcal{O}, over which a probability function $P(\Theta)$ is specified, in this case $P(\theta) \equiv P\left(\mathbf{o}^{t} \mid \vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right)$. Finally, the BG also specifies a payoff function $u(\theta, \mathbf{a})$ that maps joint types and actions to rewards.

A joint BG-policy is a tuple $\beta=\left\langle\beta_{1}, \ldots, \beta_{m}\right\rangle$, where the individual policies are mappings from types to actions: $\beta_{i}: \Theta_{i} \rightarrow \mathcal{A}_{i}$. The solution of a BG with identical payoffs for all agents is given by the optimal joint BG-policy β^{*} :

$$
\begin{equation*}
\beta^{*}=\underset{\beta}{\arg \max } \sum_{\theta \in \Theta} P(\theta) u(\theta, \beta(\theta)), \tag{2.3}
\end{equation*}
$$

where $\beta(\theta)=\left\langle\beta_{1}\left(\theta_{1}\right), \ldots, \beta_{m}\left(\theta_{m}\right)\right\rangle$ is the joint action specified by β for joint type θ. In this case, for a particular joint action-observation history $\vec{\theta}^{t}$, the agents know $\vec{\theta}^{t-1}$ and \mathbf{a}^{t-1} and they solve the corresponding BG:

$$
\begin{equation*}
\beta_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle}^{*}=\underset{\beta_{\left\langle\vec{\theta} t-1, \mathbf{a}^{t-1}\right\rangle}}{\arg \max } \sum_{\mathbf{o}^{t}} P\left(\mathbf{o}^{t} \mid \vec{\theta}^{\vec{\theta}^{t-1}}, \mathbf{a}^{t-1}\right) u_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle}\left(\mathbf{o}^{t}, \beta_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle}\left(\mathbf{o}^{t}\right)\right), \tag{2.4}
\end{equation*}
$$

When defining $u_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle}\left(\mathbf{o}^{t}, \mathbf{a}^{t}\right) \equiv Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t}, \mathbf{a}^{t}\right)$, the Q_{BG}-value function is the optimal payoff function [5]. It is given by:

$$
\begin{equation*}
Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t}, \mathbf{a}\right)=R\left(\vec{\theta}^{t}, \mathbf{a}\right)+\max _{\beta_{\left\langle\overrightarrow{\theta^{t}}, \mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t}, \mathbf{a}\right) Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)\right), \tag{2.5}
\end{equation*}
$$

where $\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}=\left\langle\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle, 1}\left(o_{1}^{t+1}\right), \ldots, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle, m}\left(o_{m}^{t+1}\right)\right\rangle$ is a tuple of individual policies $\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle, i}$: $\mathcal{O}_{i} \rightarrow \mathcal{A}_{i}$ for the BG played for $\vec{\theta}^{t}, \mathbf{a}$, and where $R\left(\vec{\theta}^{t}, \mathbf{a}\right)=\sum_{s} R(s, \mathbf{a}) P\left(s \mid \vec{\theta}^{t}\right)$ is the expected immediate reward.

Note that the Q_{BG}-setting is quite different from the standard Dec-POMDP setting, as shown in [5]. In this latter case, rather than solving a BG for each $\vec{\theta}^{t-1}$ and \mathbf{a}^{t-1} (i.e., (2.4)) the agents solve a BG for each time step $0,1, \ldots, h-1$:

$$
\begin{equation*}
\beta^{t, *}=\underset{\beta^{t}}{\arg \max } \sum_{\vec{\theta}^{t} \in \vec{\Theta}_{\pi^{*}}^{t}} P\left(\vec{\theta}^{t}\right) Q^{*}\left(\vec{\theta}^{t}, \beta^{t}\left(\vec{\theta}^{t}\right)\right) . \tag{2.6}
\end{equation*}
$$

When the the summation is over $\vec{\Theta}_{\pi^{*}}^{t}$: all joint action-observation histories that are consistent with the optimal joint policy $\pi^{* 3}$, and when the BGs use the optimal Q-value function:

$$
\begin{equation*}
Q^{*}\left(\vec{\theta}^{t}, \mathbf{a}\right)=R\left(\vec{\theta}^{t}, \mathbf{a}\right)+\sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t}, \mathbf{a}\right) Q^{*}\left(\vec{\theta}^{t+1}, \pi^{*}\left(\vec{\theta}^{t+1}\right)\right), \tag{2.7}
\end{equation*}
$$

then, solving the BGs for time step $0,1, \ldots, h-1$ will yield the optimal policy π^{*}, i.e., $\pi^{t, *} \equiv \beta^{t, *}$.

3 Finite horizon

In this section we will consider several properties of the finite-horizon $\mathrm{Q}_{\mathrm{BG}^{-} \text {-value function. }}$

3.1 Q_{BG} is a function over the joint belief space

In a single agent POMDP, a belief b is a probability distribution over states that forms a sufficient statistic for the decision process. In a Dec-POMDP we use the term joint belief and write $b^{\vec{\theta}^{t}} \in \mathcal{P}(\mathcal{S})$ for the probability distribution over states induced by joint action-observation history $\vec{\theta}^{t}$. Here we show that the Q_{BG} value function $Q_{\mathrm{B}}\left(\vec{\theta}^{t}, \mathbf{a}\right)$ corresponds with a Q -value function over the space of joint beliefs $b^{\vec{\theta}^{t}}$.

Lemma 3.1 The $Q_{B G}$-value function (2.5) is a function over the joint belief space, I.e., it is possible convert (2.5) to a Q-value function over this joint belief space by substituting the action-observation histories by their induced joint beliefs:

$$
\begin{equation*}
Q_{B}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=R\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)+\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right) Q_{B}^{*}\left(b^{\vec{\theta}^{t+1}}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)\right), \tag{3.1}
\end{equation*}
$$

where $b^{\vec{\theta}^{t}}$ denotes the joint belief induced by $\vec{\theta}^{t}$.
Proof First we need to show that there exists exactly one joint belief over states $b^{\vec{\theta}^{t}} \in \mathcal{P}(\mathcal{S})$ for each joint-action observation history $\vec{\theta}^{t}$. This is almost trivial: using Bayes' rule we can calculate the joint belief $b^{\vec{\theta}^{t+1}}$ resulting from $b^{\vec{\theta}^{t}}$ by a and \mathbf{o}^{t+1} by:

$$
\begin{equation*}
\forall_{s^{t+1}} \quad b^{\vec{\theta}^{t+1}}\left(s^{t+1}\right)=\frac{P\left(s^{t+1}, \mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right)}{P\left(\mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right)} . \tag{3.2}
\end{equation*}
$$

Because we assume only one initial belief, there is exactly one joint belief $b^{\vec{\theta}^{t}}$ for each $\vec{\theta}^{t}$.

[^2]Of course the converse is not necessarily true: a particular distribution over states can correspond to multiple joint action-observation histories. Therefore, to show that the conversion from $Q_{\mathrm{B}}\left(\vec{\theta}^{t}, \mathbf{a}\right)$ to $Q_{\mathrm{B}}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)$ is possible we will need to show that it is impossible that two different joint action-observation histories $\vec{\theta}^{t, a}, \vec{\theta}^{t, b}$ corresponds to the same belief, but have different Q_{BG} values. I.e., we have to show that if $b^{\vec{\theta}, a}=b^{\vec{\theta}^{t, b}}$ then

$$
\begin{equation*}
\forall_{\mathbf{a}} \quad Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t, a}, \mathbf{a}\right)=Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t, b}, \mathbf{a}\right) \tag{3.3}
\end{equation*}
$$

holds.
We give a proof by induction, the base case is given by the last time step $t=h-1$. In this case (2.5) reduces to:

$$
\begin{equation*}
Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t}, \mathbf{a}\right)=R\left(\vec{\theta}^{t}, \mathbf{a}\right)=\sum_{s} R(s, \mathbf{a}) b^{\vec{\theta}^{t}}(s) \tag{3.4}
\end{equation*}
$$

Clearly, if $b^{\overrightarrow{\theta^{t, a}}}=b^{\vec{\theta}^{t, b}}$ then (3.3) holds. Therefore the base case holds. Now we need to show that if $b^{\vec{\theta}^{t+1, a}}=b^{\vec{\theta}^{t+1, b}}$ implies $Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, a}, \mathbf{a}\right)=Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, b}, \mathbf{a}\right)$, then it should also hold that $b^{\vec{\theta}^{t, a}}=b^{\vec{\theta}^{t, b}}$ implies $Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t, a}, \mathbf{a}\right)=Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t, b}, \mathbf{a}\right)$.

In the base case, the immediate rewards $R\left(\vec{\theta}^{t, a}, \mathbf{a}\right)$ and $R\left(\vec{\theta}^{t, b}, \mathbf{a}\right)$ are equal when $b^{\vec{\theta}^{t, a}}=b^{\vec{\theta}^{t, b}}$. Therefore we only need to show that the future reward is also equal. I.e., we need to show that, if $b^{\vec{\theta}^{t, a}}=b^{\vec{\theta}, b}$, it holds that

$$
\begin{align*}
& \max _{\beta_{\left\langle\vec{\theta}^{t}, a, \mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, a}, \mathbf{a}\right) Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, a}, \beta_{\left\langle\vec{\theta}^{t, a}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)\right)= \\
& \max _{\langle\langle\vec{\theta}, b, \mathbf{a}\rangle} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, b}, \mathbf{a}\right) Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, b}, \beta_{\langle\vec{\theta} t, b, \mathbf{a}\rangle}\left(\mathbf{o}^{t+1}\right)\right), \tag{3.5}
\end{align*}
$$

given that $b^{\vec{\theta}^{t+1, a}}=b^{\vec{\theta}^{t+1, b}}$ implies $Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, a}, \mathbf{a}\right)=Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, b}, \mathbf{a}\right)$.
Because $b^{\vec{\theta}, a}=b^{\vec{\theta}, b}$, we know that for each $\mathbf{a}, \mathbf{o}^{t+1}$ the resulting beliefs will be the same $b^{\vec{\theta}^{t+1, a}}=b^{\vec{\theta}^{t+1, b}}$. The induction hypothesis says that the Q_{BG}-values of the resulting joint beliefs are also equal in that case, i.e., $\forall_{\mathbf{a}} Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, a}, \mathbf{a}\right)=Q_{\mathrm{B}}^{*}\left(\vec{\theta}^{t+1, b}, \mathbf{a}\right)$. Also it is clear that the probabilities of joint observations are equal $\forall_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, a}, \mathbf{a}\right)=P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, b}, \mathbf{a}\right)$.

Therefore, the future rewards for $\vec{\theta}^{t, a}$ and $\vec{\theta}^{t, b}$ as shown by (3.5) must be equal: they are defined as the value of the optimal solution to identical Bayesian games (meaning BGs with the same probabilities and payoff function).

3.2 Q_{BG} is PWLC over the joint belief space

Here we prove that the Q_{BG}-value function is PWLC. The proof is a variant of the proof that the value function for a POMDP is PWLC [7].

Theorem 3.1 The $Q_{B G}$-value function for a finite horizon Dec-POMDP with 1 time step delayed, free and noiseless communication, as defined in (3.1) is piecewise-linear and convex ($P W L C$) over the joint belief space.
Proof The proof is by induction. The base case is the last time step $t=h-1$. For the last time step (3.1) reduces to:

$$
\begin{equation*}
Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{h-1}}, \mathbf{a}\right)=R\left(b^{\vec{\theta}^{h-1}}, \mathbf{a}\right)=\sum_{s} R(s, \mathbf{a}) b^{\vec{\theta}^{h-1}}(s)=R_{\mathbf{a}} \cdot b^{\vec{\theta}^{h-1}}, \tag{3.6}
\end{equation*}
$$

where $R_{\mathbf{a}}$ is the immediate reward vector for joint action a, directly given by the immediate reward function R, and where (\cdot) denotes the inner product. $Q_{\mathrm{B}}^{*}\left(\vec{b}^{\vec{\theta}^{t}}, \mathbf{a}\right)$ is defined by a single vector R_{a} and therefore trivially PWLC.

The induction hypothesis is that for some time step $t+1$ we can represent the Q_{BG} value function as the maximum of the inner product of a belief and a set of vectors \mathcal{V}_{a}^{t+1} associated with joint action a.

$$
\begin{equation*}
\forall_{b^{\vec{\theta}}} \overrightarrow{t+1} \quad Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t+1}}, \mathbf{a}\right)=\max _{v_{\mathbf{a}}^{t+1} \in \mathcal{V}_{\mathbf{a}}^{t+1}} b^{\vec{\theta}^{t+1}} \cdot v_{\mathbf{a}}^{t+1} \tag{3.7}
\end{equation*}
$$

Now we have to prove that, given the induction hypothesis, Q_{BG} is also PWLC for t. I.e., we have to prove:

$$
\begin{equation*}
\forall_{b^{\vec{\theta} t}} \quad Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=\max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}}^{t}} b^{\vec{\theta}^{t}} \cdot v_{\mathbf{a}}^{t} \tag{3.8}
\end{equation*}
$$

This is shown by picking up an arbitrary $b^{\vec{\theta}^{t}}$, for which the value of joint action a is given by (3.1), which we can rewrite as follows:

$$
\begin{align*}
& Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=R\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)+\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right) Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t+1}}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)\right) \tag{3.9}\\
& =b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}}+\max _{\left.\beta_{\langle\vec{\theta}}{ }^{t}, \mathbf{a}\right\rangle} \sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right) \max _{\substack{v_{\mathbf{a}^{t}}^{t+1} \in \mathcal{V}_{\mathbf{a}}^{t+1} \\
\beta_{\left\langle\overrightarrow{a^{t}}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)=\mathbf{a}^{\prime}}} b^{\vec{\theta}^{t+1}} \cdot v_{\mathbf{a}^{\prime}}^{t+1} \tag{3.10}
\end{align*}
$$

where R_{a} is the immediate reward vector for joint action \mathbf{a}. In the second part $b^{\vec{\theta}^{t+1}}$ is the belief resulting from $b^{\vec{\theta}^{t}}$ by \mathbf{a} and \mathbf{o}^{t+1} and is given by:

$$
\begin{equation*}
\forall_{s^{t+1}} \quad b^{\vec{\theta}^{t+1}}\left(s^{t+1}\right)=\frac{P\left(s^{t+1}, \mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right)}{P\left(\mathbf{o}^{t+1} \mid b^{\vec{\theta} t}, \mathbf{a}\right)}, \tag{3.11}
\end{equation*}
$$

with

$$
\begin{equation*}
P\left(s^{t+1}, \mathbf{o}^{t+1} \mid b^{\vec{\theta}^{t}}, \mathbf{a}\right)=\sum_{s^{t}} P\left(\mathbf{o}^{t+1} \mid \mathbf{a}, s^{t+1}\right) P\left(s^{t+1} \mid s^{t}, \mathbf{a}\right) b^{\vec{\theta}^{t}}\left(s^{t}\right) \tag{3.12}
\end{equation*}
$$

Therefore we can write the second part of (3.10) as

Note that for a particular a, \mathbf{o}^{t+1} and $v_{\mathbf{a}^{\prime}}^{t+1} \in \mathcal{V}_{\mathbf{a}^{\prime}}^{t+1}$ we can define a function:

$$
\begin{equation*}
g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{o}}^{t+1}}\left(s^{t}\right)=\sum_{s^{t+1} \in \mathcal{S}} P\left(\mathbf{o} \mid \mathbf{a}, s^{t+1}\right) P\left(s^{t+1} \mid s^{t}, \mathbf{a}\right) v_{\mathbf{a}^{\prime}}^{t+1}\left(s^{t+1}\right) \tag{3.14}
\end{equation*}
$$

This function defines a gamma-vector $\begin{aligned} & v_{\mathrm{a}, \mathrm{o}}^{t+1} \\ & \mathrm{a}^{t+1}\end{aligned}$. For a particular $\mathbf{a}, \mathbf{o}^{t+1}$ we can define the set of gamma vectors that are consistent with a BG-policy $\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}$ for time step $t+1$ as

$$
\begin{equation*}
\mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta} \vec{\theta}_{\overrightarrow{\theta^{t} t, \mathbf{a}},} \equiv\left\{y_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}}^{t+1}} \mid v_{\mathbf{a}^{\prime}}^{t+1} \in \mathcal{V}_{\mathbf{a}^{\prime}}^{t+1} \wedge \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(\mathbf{o}^{t+1}\right)=\mathbf{a}^{\prime}\right\} \tag{3.15}
\end{equation*}
$$

Combining the gamma vector definition with (3.10) and (3.13) yields

Now let $g_{b^{\theta^{t}}, \mathbf{a}, \mathbf{o}, \beta_{\left\langle\overrightarrow{\theta^{t}}, \mathbf{a}\right\rangle}^{*}}$ denote the maximizing gamma-vector, i.e.:

This allows to rewrite (3.16) to:

$$
\begin{align*}
Q_{\mathbf{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right) & =b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}}+\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{\mathbf{o}^{t+1}} \sum_{s^{t}} g_{b^{\left(\vec{\theta}^{t}, \mathbf{a}, \mathbf{o}, \beta\right.}\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(s^{t}\right) b^{\vec{\theta}^{t}}\left(s^{t}\right) \\
& =b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}}+\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{s^{t}}\left[\sum_{\mathbf{o}^{t+1}} g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \mathbf{o}, \beta\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}^{*}\left(s^{t}\right)\right] b^{\vec{\theta}^{t}}\left(s^{t}\right) . \tag{3.18}
\end{align*}
$$

The vectors for the different possible joint observations are now combined:

$$
\begin{equation*}
g_{b^{\vec{\theta}} t, \mathbf{a}, \beta\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}^{*}\left(s^{t}\right) \equiv \sum_{\mathbf{o}^{t+1}} g_{b^{\vec{\theta}^{t}}, \mathbf{a}, \mathbf{o}, \beta\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\left(s^{t}\right), \tag{3.19}
\end{equation*}
$$

which allows us to rewrite (3.18) as follows:

$$
\begin{align*}
& Q_{\mathbf{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=b^{\vec{\theta}^{t}} \cdot R_{\mathbf{a}}+\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{s^{t}} g_{b^{\theta^{t}}, \mathbf{a}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right.}}^{*}\left(s^{t}\right) \vec{\theta}^{\vec{\theta}^{t}}\left(s^{t}\right) \\
&=\max _{\beta_{\left\langle\vec{\theta}^{t} t \mathbf{a}\right.}}\left(R_{\mathbf{a}}+g_{b^{t}}^{*}, \mathbf{a}, \vec{\beta}_{\langle\overrightarrow{\mid \vec{~}} t, \mathbf{a}\rangle}\right) \cdot b^{\vec{\theta}^{t}} \tag{3.20}\\
&=\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} v_{b^{*}, t}^{\left.*, t, \beta^{t}, \vec{\theta}^{t}, \mathbf{a}\right\rangle} \tag{3.21}\\
& \cdot b^{\vec{\theta}^{t}}
\end{align*}
$$

with

$$
\begin{equation*}
v_{b^{\theta^{t}}, \mathbf{a}, \beta_{\left\langle\overrightarrow{\theta^{\prime}} t, \mathbf{a}\right\rangle}^{*, t}}^{*}=R_{\mathbf{a}}+\sum_{\mathbf{o}^{t+1}}\left[\sum_{\substack{v_{\mathbf{a}}^{t+1}+\mathcal{a}^{t} \\ g_{\mathbf{a}, 0} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta}\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}}^{\arg \max } \sum_{s^{t}} g_{\mathbf{a}, \mathbf{o}}^{v_{\mathbf{a}}^{t+1}}\left(s^{t}\right) b^{\vec{\theta}^{t}}\left(s^{t}\right)\right] \tag{3.22}
\end{equation*}
$$

By defining
we can write

$$
\begin{equation*}
Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=\max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}, b^{t}}{ }^{\overrightarrow{\theta^{t}}}} v_{\mathrm{a}}^{t} \cdot \vec{\theta}^{\vec{\theta}^{t}}, \tag{3.24}
\end{equation*}
$$

which almost is what had to be proven. Although, for each $b^{\vec{\theta}^{t}}$, the set $\mathcal{V}_{\mathbf{a}, b^{\theta^{t}}}^{t}$ can contain different vectors. However, it is clear that

$$
\begin{equation*}
\forall_{b^{\vec{\theta}^{t}}} \max _{\substack{t \mathbf{a} \in \mathcal{V}_{\mathbf{a}, b^{t}} t}} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}}=\max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}}^{t}} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}} \tag{3.25}
\end{equation*}
$$

where

$$
\begin{equation*}
\mathcal{V}_{\mathbf{a}}^{t} \equiv \bigcup_{b^{\vec{\theta} t} \in \mathcal{P}(\mathcal{S})} \mathcal{V}_{\mathbf{a}, b^{b^{t}}}^{t} . \tag{3.26}
\end{equation*}
$$

I.e., there is no vector in a different set $\mathcal{V}_{\mathbf{a}, b^{b^{t}}}^{t}$, that yields a higher value at $b^{\vec{\theta}^{t}}$ than the maximizing vector in $\mathcal{V}_{\mathbf{a}, b^{\theta^{*}}}^{t}$. This can be easily seen as $\mathcal{V}_{\mathbf{a}, b^{\theta^{\theta}}}^{t}$ is defined as the maximizing set of vectors at each belief point, and the different sets $\mathcal{V}_{\mathbf{a}, b^{\vec{\theta} t}}^{t}$ are all constructed using the same next time step policies and vectors, i.e., $v_{\mathbf{a}^{\prime}}^{t+1} \in \mathcal{V}_{\mathbf{a}^{\prime}}^{t+1}$ s.t. $\beta_{\langle\vec{\theta} t, \mathbf{a}\rangle}^{a,}\left(\mathrm{o}^{t+1}\right)=\mathbf{a}^{\prime}$ are the same. For a more formal proof see appendix A.

As a result we can write

$$
\begin{equation*}
Q_{\mathrm{B}}^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)=\max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}}^{t}} v_{\mathrm{a}}^{t} \cdot b^{\vec{\theta}^{t}}, \tag{3.27}
\end{equation*}
$$

which is what had to be proven for $b^{\vec{\theta}^{t}}$. Realizing that we took no special assumption on $b^{\vec{\theta}^{t}}$, we can conclude this holds for all joint beliefs.

4 Infinite horizon Q_{BG}

Here we discuss how Q_{BG} can be extended to the infinite horizon. A naive translation of (3.1) to the infinite horizon would be given by:

$$
\begin{equation*}
Q_{\mathrm{B}}\left(b^{\vec{\theta}}, \mathbf{a}\right)=R\left(b^{\vec{\theta}}, \mathbf{a}\right)+\gamma \max _{\beta\left\langle b^{\vec{\theta}}, \mathbf{a}\right\rangle} \sum_{\mathbf{o}} P\left(\mathbf{o} \mid b^{\vec{\theta}}, \mathbf{a}\right) Q_{\mathrm{B}}\left(b^{(\vec{\theta}, \mathbf{a}, \mathbf{o})}, \beta\left\langle b_{\left.b^{\vec{\theta}}, \mathbf{a}\right\rangle}(\mathbf{o})\right) .\right. \tag{4.1}
\end{equation*}
$$

However, in the infinite-horizon case, the length of the joint action-observation histories is infinite, the set of all joint action-observation histories is infinite and there generally is an infinite number of corresponding joint beliefs. This means that it is not possible to convert a Q_{BG} function over joint action-observation histories to one over joint beliefs for the infinite horizon. ${ }^{4}$

Rather, we define a backup operator H_{B} for the infinite horizon that is directly making use of joint beliefs:

$$
\begin{equation*}
H_{\mathrm{B}} Q_{\mathrm{B}}(b, \mathbf{a})=R(b, \mathbf{a})+\gamma \max _{\beta_{\langle b, \mathbf{a}\rangle}} \sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) Q_{\mathrm{B}}\left(b^{\mathbf{a o}}, \beta_{\langle b, \mathbf{a}\rangle}(\mathbf{o})\right) . \tag{4.2}
\end{equation*}
$$

This is possible, because joint beliefs are still a sufficient statistic in the infinite-horizon case, as we will show next. After that, in section 4.2, we show that this backup operator is a contraction mapping.

[^3]
4.1 Sufficient statistic

The fact that $Q_{B G}^{*}$ is a function over the joint belief space in the finite horizon case implies that a joint belief is a sufficient statistic of the history of the process. I.e., a joint belief contains enough information to uniquely predict the maximal achievable cumulative reward from this point on.

We will show that, also in the infinite-horizon case, a joint belief is a sufficient statistic for a Dec-POMDP with 1-step delayed communication. Let I^{t} denote the total information at some time step. Then we can write

$$
\begin{equation*}
I^{t}=\left(I^{t-1}, o_{\neq i}^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right) \tag{4.3}
\end{equation*}
$$

with $I^{0}=\left(b^{0}\right)$. I.e., the agent doesn't forget what he knew, he receives the observations of the other agents of the previous time step $o_{\neq i}^{t-1}$, and using this the agent is able to deduce \mathbf{a}^{t-1}, moreover he receives its own current observation. Effectively this means that $I^{t}=\left(b^{0}, \vec{\theta}^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right)$.

Now we want to show that rather than using $I^{t}=\left(b^{0}, \vec{\theta}^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right)$ we can also use $I_{b}^{t}=$ $\left(b^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right)$, without lowering the obtainable value. Following [7], we notice that the belief update 3.2 implies that b^{t-1} is a sufficient statistic for the next joint belief b^{t}. Therefore, the rest of this proof focuses on showing that joint beliefs are also a sufficient statistic for the obtainable value.

When using I^{t}, an individual policy has the form $\pi_{i}^{t}: \vec{\Theta}^{t-1} \times \mathcal{A}^{t-1} \times \mathcal{O}_{i} \rightarrow \mathcal{A}_{i}$. Alternatively, we write such a policy as a set of policies for BGs $\pi_{i}^{t}=\left\{\beta_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}\right\rangle, i}\right\}_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}\right\rangle}$ where $\beta_{\left\langle\vec{\theta}^{t-1, \mathbf{a}}\right\rangle_{i}}$: $\mathcal{O}_{i} \rightarrow \mathcal{A}_{i}$. When we write π^{*} for the optimal joint policy with such a form, the expected optimal payoff of a particular time step t is given by:

$$
\begin{equation*}
E_{\pi^{*}}\{R(t)\}=\sum_{\vec{\theta}^{t-1}} \underbrace{\left[\sum_{\mathbf{o}^{t}}\left[\sum_{s} R\left(s, \beta_{\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle}^{*}\left(\mathbf{o}^{t}\right)\right) P\left(s \mid \vec{\theta}^{t}\right)\right] P\left(\mathbf{o}^{t} \mid \vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right)\right]}_{\text {Expectation of the BG for }\left\langle\vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right\rangle} P\left(\vec{\theta}^{t-1}\right) . \tag{4.4}
\end{equation*}
$$

When using $I_{b}^{t}=\left(b^{t-1}, \mathbf{a}^{t-1}, o_{i}^{t}\right)$ as a statistic, the form of policies becomes $\pi_{b, i}^{t}: \mathcal{B} \times \mathcal{A}^{t-1} \times \mathcal{O}_{i} \rightarrow$ \mathcal{A}_{i}, where $\mathcal{B}=\mathcal{P}(\mathcal{S})$ is the set of possible joint beliefs. Again, we also write $\beta_{\left\langle b^{t-1}, \mathbf{a}\right\rangle, i}$.

Now, we need to show that for all t^{\prime} :

$$
\begin{equation*}
v^{t^{\prime}}\left(I^{t^{\prime}}\right)=E_{\pi^{*}}\left\{\sum_{t=t^{\prime}}^{\infty} \gamma^{t-t^{\prime}} R(t)\right\}=E_{\pi_{b}^{*}}\left\{\sum_{t=t^{\prime}}^{\infty} \gamma^{t-t^{\prime}} R(t)\right\}=v^{t^{\prime}}\left(I_{b}^{t^{\prime}}\right) \tag{4.5}
\end{equation*}
$$

Note that

$$
\begin{equation*}
E_{\pi^{*}}\left\{\sum_{t=t^{\prime}}^{\infty} \gamma^{t-t^{\prime}} R(t)\right\}=\sum_{t=t^{\prime}}^{\infty} \gamma^{t-t^{\prime}} E_{\pi^{*}}\{R(t)\} \tag{4.6}
\end{equation*}
$$

and similar for π_{b}^{*}. Therefore we only need to show that

$$
\begin{equation*}
\forall_{t=0,1,2, \ldots} \quad E_{\pi^{*}}\{R(t)\}=E_{\pi_{b}^{*}}\{R(t)\} . \tag{4.7}
\end{equation*}
$$

If we assume that for an arbitrary time step $t-1$ the different possible joint beliefs b^{t-1} corresponding to all $\vec{\theta}^{t-1} \in \vec{\Theta}^{t-1}$ are a sufficient statistic for the expected reward for time steps $0, \ldots, t-1$, we can write:

$$
\begin{equation*}
E_{\pi_{b}^{*}}\{R(t)\}=\sum_{b^{t-1}} \underbrace{\left[\sum_{\mathbf{o}^{t}}\left[\sum_{s} R\left(s, \beta_{\left\langle b^{t-1}, \mathbf{a}^{t-1}\right\rangle}^{*}\left(\mathbf{o}^{t}\right)\right) b_{\mathbf{a o}}^{t}(s)\right] P\left(\mathbf{o}^{t} \mid b_{\mathbf{a o}}^{t}(s), \mathbf{a}^{t-1}\right)\right]}_{\text {Expectation of the BG for }\left\langle b^{t-1}, \mathbf{a}^{t-1}\right\rangle} P\left(b^{t-1}\right) . \tag{4.8}
\end{equation*}
$$

Because $P\left(s \mid \vec{\theta}^{t}\right) \equiv P\left(s \mid b^{\vec{\theta}^{t}}\right)=b_{\overrightarrow{\mathbf{a} \mathbf{o}}}^{t}(s)$, where $b_{\mathbf{a o}}^{t}(s)$ is the belief resulting from $b^{\vec{\theta}^{t-1}}$ via \mathbf{a}, \mathbf{o}, and $P\left(\mathbf{o}^{t} \mid \vec{\theta}^{t-1}, \mathbf{a}^{t-1}\right) \equiv P\left(\mathbf{o}^{t} \mid b^{\vec{\theta}^{t-1}}, \mathbf{a}^{t-1}\right)$, we can conclude that also for this time step $E_{\pi^{*}}\{R(t)\}=E_{\pi_{b}^{*}}\{R(t)\}$, meaning that maintaining joint beliefs is a sufficient statistic for time step t as well. A base case is given at time step 0 , because $I^{0}=I_{b}^{0}=\left(b^{0}\right)$. By induction it follows that joint beliefs are a sufficient statistic for all time steps.

4.2 Contraction mapping

To improve the readability of the formulas, in this section Q_{B} is written as simply Q.

Theorem 4.1 The infinite-horizon $Q_{B G}$-backup operator (4.2) is a contraction mapping under the following supreme norm:

$$
\begin{equation*}
\left\|Q-Q^{\prime}\right\|=\sup _{b} \max _{\mathbf{a}}\left|\sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a})\left[Q\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)-Q^{\prime}\left(b^{\mathbf{a o}}, \beta_{\max }\left(Q^{\prime}\right)(\mathbf{o})\right)\right]\right| \tag{4.9}
\end{equation*}
$$

where

$$
\begin{equation*}
\beta_{\max }(Q)=\underset{\beta_{\langle b, \mathbf{a}\rangle}}{\arg \max } \sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) Q\left(b^{\mathbf{a o}}, \beta_{\langle b, \mathbf{a}\rangle}(\mathbf{o})\right) \tag{4.10}
\end{equation*}
$$

is the maximizing $B G$ policy according to Q.
Proof We have to prove that

$$
\begin{equation*}
\left\|H_{\mathrm{B}} Q-H_{\mathrm{B}} Q^{\prime}\right\| \leq \gamma\left\|Q-Q^{\prime}\right\| \tag{4.11}
\end{equation*}
$$

When applying the backup we get:

$$
\begin{align*}
\left\|H_{\mathrm{B}} Q-H_{\mathrm{B}} Q^{\prime}\right\|= & \sup _{b} \max _{\mathbf{a}}\left|\sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a})\left[H_{\mathrm{B}} Q\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)-H_{\mathrm{B}} Q^{\prime}\left(b^{\mathbf{a o}}, \beta_{\max }\left(Q^{\prime}\right)(\mathbf{o})\right)\right]\right| \\
= & \sup _{b} \max _{\mathbf{a}} \mid\left[\sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) H_{\mathrm{B}} Q\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)\right] \\
& -\left[\sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) H_{\mathrm{B}} Q^{\prime}\left(b^{\mathbf{a o}}, \beta_{\max }\left(Q^{\prime}\right)(\mathbf{o})\right)\right] \mid \tag{4.12}
\end{align*}
$$

When, without loss of generality, we assume that b, a are the maximizing arguments, and if we assume that the first part (the summation over $H Q$) is larger then the second part (that over $H Q^{\prime}$, we can write

$$
\begin{equation*}
\left\|H_{\mathrm{B}} Q-H_{\mathrm{B}} Q^{\prime}\right\|=\sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a})\left[H_{\mathrm{B}} Q\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)-H_{\mathrm{B}} Q^{\prime}\left(b^{\mathbf{a o}}, \beta_{\max }\left(Q^{\prime}\right)(\mathbf{o})\right)\right] \tag{4.13}
\end{equation*}
$$

If we use $\beta_{\max }(Q)$ instead of $\beta_{\max }\left(Q^{\prime}\right)$ in the last term, we are subtracting less, so we can write

$$
\begin{equation*}
\left\|H_{\mathrm{B}} Q-H_{\mathrm{B}} Q^{\prime}\right\| \leq \sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a})\left[H_{\mathrm{B}} Q\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)-H_{\mathrm{B}} Q^{\prime}\left(b^{\mathbf{a o}}, \beta_{\max }(Q)(\mathbf{o})\right)\right] \tag{4.14}
\end{equation*}
$$

Now let $\beta_{\text {max }}(Q)(\mathbf{o})=\mathbf{a}^{\prime}$, then we get

$$
\begin{align*}
& =\gamma \sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) \sum_{\mathbf{o}^{\prime}} P\left(\mathbf{o}^{\prime} \mid b^{\mathbf{a o}}, \mathbf{a}^{\prime}\right)\left[Q\left(b^{\mathbf{a o a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }(Q)\left(\mathbf{o}^{\prime}\right)\right)-Q^{\prime}\left(b^{\mathbf{a o a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }\left(Q^{\prime}\right)\left(\mathbf{o}^{\prime}\right)\right)\right] \\
& \leq \gamma \sum_{\mathbf{o}} P(\mathbf{o} \mid b, \mathbf{a}) \sup _{b^{\prime}} \max _{\mathbf{a}^{\prime}}\left|\sum_{\mathbf{o}^{\prime}} P\left(\mathbf{o}^{\prime} \mid b^{\prime}, \mathbf{a}^{\prime}\right)\left[Q\left(b^{\prime \mathbf{a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }(Q)\left(\mathbf{o}^{\prime}\right)\right)-Q^{\prime}\left(b^{\prime \mathbf{a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }\left(Q^{\prime}\right)\left(\mathbf{o}^{\prime}\right)\right)\right]\right| \\
& =\gamma \sup _{b^{\prime}} \max _{\mathbf{a}^{\prime}} \mid \sum_{\mathbf{o}^{\prime}} P\left(\mathbf{o}^{\prime} \mid b^{\prime}, \mathbf{a}^{\prime}\right)\left[Q\left(b^{\prime \mathbf{a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }(Q)\left(\mathbf{o}^{\prime}\right)\right)-Q^{\prime}\left(b^{\prime \mathbf{a}^{\prime} \mathbf{o}^{\prime}}, \beta_{\max }\left(Q^{\prime}\right)\left(\mathbf{o}^{\prime}\right)\right)\right] \\
& =\gamma\left\|Q-Q^{\prime}\right\| \tag{4.15}
\end{align*}
$$

For $\gamma \in(0,1)$ this is a contraction mapping.

4.3 Infinite horizon Q_{BG}

The fact that (4.2) is a contraction mapping means that there is a fixed point, which is the optimal infinite horizon Q_{BG}-value function $Q_{\mathrm{B}}^{*, \infty}(b, \mathbf{a})$ [2]. Together with the fact that Q_{B}^{*} for the finite horizon is PWLC, this means we can approximate $Q_{\mathrm{B}}^{*, \infty}(b, \mathbf{a})$ with arbitrary accuracy using a PWLC value function.

5 The optimal Dec-POMDP value function Q^{*}

Here we show that it is not possible to convert the optimal Dec-POMDP Q-value function, $Q^{*}\left(\vec{\theta}^{t}, \mathbf{a}\right)$, to $Q^{*}\left(b^{\vec{\theta}^{t}}, \mathbf{a}\right)$ a similar function over joint beliefs.

Lemma 5.1 The optimal Q^{*} value function for a Dec-POMDP, given by:

$$
\begin{equation*}
Q^{*}\left(\vec{\theta}^{t}, \mathbf{a}\right)=R\left(\vec{\theta}^{t}, \mathbf{a}\right)+\sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t}, \mathbf{a}\right) Q^{*}\left(\vec{\theta}^{t+1}, \pi^{*}\left(\vec{\theta}^{t+1}\right)\right) \tag{5.1}
\end{equation*}
$$

generally is not a function over the belief space.
Proof If Q^{*} would be a function over the belief space, as in section 3.1, it should hold that it is not possible that different joint action-observation histories specify different values, while the underlying joint belief is the same. Following the same argumentation as in section 3.1, it should hold that if $b^{\vec{\theta}^{t, a}}=b^{\vec{\theta}^{t, b}}$, it holds that

$$
\begin{equation*}
\sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, a}, \mathbf{a}\right) Q^{*}\left(\vec{\theta}^{t+1, a}, \pi^{*}\left(\vec{\theta}^{t+1, a}\right)\right)=\sum_{\mathbf{o}^{t+1}} P\left(\mathbf{o}^{t+1} \mid \vec{\theta}^{t, b}, \mathbf{a}\right) Q^{*}\left(\vec{\theta}^{t+1, b}, \pi^{*}\left(\vec{\theta}^{t+1, b}\right)\right) \tag{5.2}
\end{equation*}
$$

given that $b^{\vec{\theta}^{t+1, a}}=b^{\vec{\theta}^{t+1, b}}$ implies $Q^{*}\left(\vec{\theta}^{t+1, a}, \mathbf{a}\right)=Q^{*}\left(\vec{\theta}^{t+1, b}, \mathbf{a}\right)$. Again, the observation probabilities, resulting joint beliefs and thus $Q^{*}\left(\vec{\theta}^{t+1}, \mathbf{a}\right)$-values are equal. However now, it might be possible that the optimal policy π^{*} specifies different actions at the next time step which would lead to different future rewards. I.e., for Q^{*} to be convertible to a function over joint beliefs,

$$
\begin{equation*}
\forall_{\mathbf{o}^{t+1}} \quad \pi^{*}\left(\vec{\theta}^{t+1, a}\right)=\pi^{*}\left(\vec{\theta}^{t+1, b}\right) \tag{5.3}
\end{equation*}
$$

should hold if $b^{\vec{\theta} t, a}=b^{\vec{\theta}^{t, b}}$. This, however, is not provable and we will provide a counter example using the the horizon 3 dec-tiger problem [4] here. The observations are denoted $L=$ hear tiger left and $R=$ hear tiger right, the actions are written $L i=$ listen, $O L=$ open left and $O R=$ open right.

Consider the following two joint action-observation histories for time step $t=1: \vec{\theta}^{1, a}=$ $\langle(L i, L),(L i, R)\rangle$ and $\vec{\theta}^{1, b}=\langle(L i, R),(L i, L)\rangle$. For these histories we $b^{\vec{\theta}^{1, a}}=b^{\vec{\theta}^{1, b}}=\langle 0.5,0.5\rangle$. Now we consider the future reward for $\mathbf{a}=\langle L i, L i\rangle$ and $\mathbf{o}=\langle L, R\rangle$. For this case, the observation probabilities are equal $P\left(\langle L, R\rangle \mid \vec{\theta}^{1, a}, L i\right)=P\left(\langle L, R\rangle \mid \vec{\theta}^{1, b}, L i\right)$ and the successor joint actionobservation histories $\vec{\theta}^{2, a}=\langle(L i, L, L i, L),(L i, R, L i, R)\rangle$ and $\vec{\theta}^{2, b}=\langle(L i, R, L i, L),(L i, L, L i, R)\rangle$ both specify the same joint belief: $b^{\vec{\theta}^{2}, a}=b^{\vec{\theta}^{2}, b}=\langle 0.5,0.5\rangle$. However,

$$
\begin{equation*}
\pi^{*}\left(\vec{\theta}^{2, a}\right)=\langle O L, O R\rangle \neq\langle L i, L i\rangle=\pi^{*}\left(\vec{\theta}^{2, b}\right) . \tag{5.4}
\end{equation*}
$$

So even though the induction hypothesis says that

$$
\begin{equation*}
\forall \mathbf{a} \quad Q^{*}\left(\vec{\theta}^{t+1, a}, \mathbf{a}\right)=Q^{*}\left(\vec{\theta}^{t+1, b}, \mathbf{a}\right), \tag{5.5}
\end{equation*}
$$

different actions may be selected by π^{*} for $\vec{\theta}^{t+1, a}$ and $\vec{\theta}^{t+2, a}$ and therefore (5.3) and thus (5.2) are not guaranteed to hold.

References

[1] Daniel S. Bernstein, Robert Givan, Neil Immerman, and Shlomo Zilberstein. The complexity of decentralized control of Markov decision processes. Math. Oper. Res., 27(4):819-840, 2002.
[2] Dimitri P. Bertsekas. Dynamic Programming and Optimal Control, volume II. Athena Scientific, 2nd edition, 2001.
[3] Rosemary Emery-Montemerlo, Geoff Gordon, Jeff Schneider, and Sebastian Thrun. Approximate solutions for partially observable stochastic games with common payoffs. In AAMAS '04: Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, pages 136-143, Washington, DC, USA, 2004. IEEE Computer Society.
[4] Ranjit Nair, Milind Tambe, Makoto Yokoo, David V. Pynadath, and Stacy Marsella. Taming decentralized POMDPs: Towards efficient policy computation for multiagent settings. In IJCAI-03, Proceedings of the Eighteenth International Joint Conference on Artificial Intelligence, pages 705-711, 2003.
[5] Frans A. Oliehoek and Nikos Vlassis. Q-value functions for decentralized POMDPs. In Proc. of Int. Joint Conference on Autonomous Agents and Multi Agent Systems, pages 833-840, May 2007.
[6] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. The MIT Press, July 1994.
[7] Richard D. Smallwood and Edward J. Sondik. The optimal control of partially observable Markov processes over a finite horizon. Operations Research, 21(5):1071-1088, September 1973.

A Sub-proof of PWLC property

We have to show that the maximizing vector given b is the maximizing vector at b , i.e., that the following holds:

$$
\forall_{b^{\vec{\theta}}} \max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}, \vec{\theta}^{t} t}} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}}=\max _{v_{\mathbf{a}}^{t} \in \mathrm{U}_{b^{\theta}} \in \mathcal{P}(\mathcal{S})} \mathcal{V}_{\mathbf{a}, b^{t} \vec{\theta}^{t}} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}} .
$$

Proof (By contradiction): For an arbitrary $b^{\vec{\theta}^{t}}$, suppose there is a different joint belief $b^{\vec{\theta}^{t}}$, such that

$$
\max _{\substack{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}, b^{t}}}} v_{\mathrm{a}}^{t} \cdot b^{\vec{\theta}^{t}}<\max _{v_{\mathbf{a}}^{t} \in \mathcal{V}_{\mathbf{a}, b^{t}} \vec{\theta}^{t} t} v_{\mathbf{a}}^{t} \cdot b^{\vec{\theta}^{t}} .
$$

According to (3.23) and (3.21), this would mean that

$$
\max _{\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}} v_{b^{\theta^{t}}, \mathbf{a}, \beta_{\left\langle\overrightarrow{\theta^{t}}, \mathbf{a}\right\rangle}^{* t}} \cdot b^{\vec{\theta}^{t}}<\max _{\beta_{\left\langle\overrightarrow{\theta^{t}}, \mathbf{a}\right\rangle}} v_{b_{\theta^{t}}^{* t}, \mathbf{a}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}^{* t}} \cdot b^{\vec{\theta}^{t}}
$$

which implies that:

$$
\begin{aligned}
& <\max _{\beta_{\left\langle\overrightarrow{\theta^{t}}, \mathbf{a}\right\rangle}}(R_{\mathbf{a}}+\sum_{\mathbf{o}^{t+1}}[\underbrace{\arg \max }_{\substack{\left.v_{\mathbf{a}}^{t+1} \\
g_{\mathbf{a}, \mathbf{o}}^{t} \in \mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta}, \vec{\theta}^{t}, \mathbf{a}\right\rangle}} \sum_{s^{t}} g_{\mathbf{a}, \mathbf{o}}^{\mathbf{a}^{t+1}}\left(s^{t}\right) b^{\vec{\theta}^{t \prime}}\left(s^{t}\right)]) \cdot b^{\vec{\theta}^{t}}
\end{aligned}
$$

Because R_{a} is the same for both vectors, this means that

thus:

would have to hold. However, because the possible choices for $\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}$ and $\beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}$ are identical, we know that $\mathcal{G}_{\mathbf{a}, \mathbf{o}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}}=\mathcal{G}_{\left.\mathbf{a}, \mathbf{o}, \beta_{\left\langle\vec{\theta}^{t}, \mathbf{a}\right\rangle}\right\rangle}$, and therefore that
contradicting (A.1).

Acknowledgements

The research reported here is supported by the Interactive Collaborative Information Systems (ICIS) project, supported by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024. This work was supported by Fundação para a Ciência e a Tecnologia (ISR/IST pluriannual funding) through the POS_Conhecimento Program that includes FEDER funds.

IAS reports

This report is in the series of IAS technical reports. The series editor is Stephan ten Hagen (stephanh@science.uva.nl). Within this series the following titles appeared:
G. Pavlin and P. de Oude and M.G. Maris and J.R.J. Nunnink and T. Hood A Distributed Approach to Information Fusion Systems Based on Causal Probabilistic Models. Technical Report IAS-UVA-07-03, Informatics Institute, University of Amsterdam, The Netherlands, July 2007.
P.J. Withagen and F.C.A. Groen and K. Schutte Shadow detection using a physical basis. Technical Report IAS-UVA-07-02, Informatics Institute, University of Amsterdam, The Netherlands, Februari 2007.
P.J. Withagen and K. Schutte and F.C.A. Groen Global intensity correction in dynamic scenes. Technical Report IAS-UVA-07-01, Informatics Institute, University of Amsterdam, The Netherlands, January 2007.
All IAS technical reports are available for download at the IAS website, http://www. science.uva.nl/research/ias/publications/reports/.

[^0]: Intelligent Autonomous Systems

 Informatics Institute, Faculty of Science University of Amsterdam
 Kruislaan 403, 1098 SJ Amsterdam The Netherlands
 Tel (fax): +31 205257461 (7490)
 http://www.science.uva.nl/research/ias/

 Corresponding author:
 F.A. Oliehoek
 tel: +31 205257524
 faolieho@science.uva.nl
 http://www.science.uva.nl/~faolieho/

[^1]: ${ }^{1}$ Unless stated otherwise, subscripts denote agent indices.
 ${ }^{2}$ We use $\mathcal{P}(X)$ to denote the infinite set of probability distributions over the finite set X.

[^2]: ${ }^{3}$ I.e., the action-observation histories that specify the same actions for all observation histories as π^{*}.

[^3]: ${ }^{4}$ Also observe that the inductive proof of 3.1 does not hold in the infinite horizon case.

