
Value-Based Planning for Teams of Agents

in Stochastic Partially Observable

Environments

Frans A. Oliehoek

Lay out: Typeset by the author himself using LATEX2ε.
Cover design: René Staelenberg, Amsterdam.

ISBN 9789056296100
e-ISBN 9789048512300
NUR 983

c© Frans Oliehoek / Vossiuspers UvA — Amsterdam University Press, 2010

All rights reserved. Without limiting the rights under copyright reserved above, no part

of this book may be reproduced, stored in or introduced into a retrieval system, or trans-

mitted, in any form or by any means (electronic, mechanical, photocopying, recording or

otherwise) without the written permission of both the copyright owner and the author of

the book.

Value-Based Planning for Teams of Agents

in Stochastic Partially Observable

Environments

Academisch Proefschrift

ter verkrijging van de graad van doctor
aan de Universiteit van Amsterdam
op gezag van de Rector Magnificus

prof. dr. D.C. van den Boom
ten overstaan van een door het college voor promoties

ingestelde commissie,
in het openbaar te verdedigen in de Agnietenkapel

op vrijdag 12 februari 2010, te 14:00 uur

door

Frans Adriaan Oliehoek

geboren te Utrecht

Promotiecommissie

Promotor: Prof. dr. ir. F. C. A. Groen
Co-promotor: Dr. N. Vlassis

Overige leden: Prof. dr. R. Babuska
Prof. dr. H. J. van den Herik
Prof. dr. L. P. Kaelbling
Prof. dr. H. J. Kappen
Dr. M. A. Wiering

Faculteit der Natuurwetenschappen, Wiskunde en Informatica

This research has been performed at the IAS group of the university of Amsterdam
and is part of the Interactive Collaborative Information Systems (ICIS) project,
supported by the Dutch Ministry of Economic Affairs, grant nr: BSIK03024.

Contents

1 Introduction 1
1.1 An Example of a Challenging Environment 2
1.2 Forms of Uncertainty . 2
1.3 Multiagent Systems . 3
1.4 Decision-Theoretic Planning . 5

1.4.1 Planning with Outcome Uncertainty 5
1.4.2 Dealing with State Uncertainty 6
1.4.3 Multiple Agents . 7
1.4.4 DTP and Game Theory . 8

1.5 The Focus of this Thesis . 8
1.6 Applications . 9
1.7 Organization of Thesis and Publications 11

1.7.1 Other Research . 13

2 Decision-Theoretic Planning for Teams of Agents 15
2.1 Game-Theoretic Models . 16

2.1.1 One-Shot Decisions . 16
2.1.2 Sequential Decisions . 20
2.1.3 The Shortcoming of Game-Theoretic Models 22

2.2 Decentralized POMDPs . 22
2.2.1 States and Transitions . 24
2.2.2 The Observation Model . 24
2.2.3 Rewards and Optimality Criteria 26

2.3 Benchmark Problems . 26
2.3.1 The FireFighting Problem 27
2.3.2 The Decentralized Tiger Problem 28
2.3.3 Other Problem Domains . 29

2.4 Histories . 29
2.5 Policies . 31

2.5.1 Pure and Stochastic Policies 31
2.5.2 Temporal Structure in Policies 32
2.5.3 The Quality of Joint Policies 33
2.5.4 Existence of an Optimal Pure Joint Policy 34

2.6 Solving Dec-POMDPs . 35

v

vi Contents

2.6.1 Complexity . 35
2.6.2 Brute Force Policy Evaluation 35
2.6.3 Alternating Maximization . 36
2.6.4 Multiagent A∗ (MAA

∗) . 37
2.6.5 Dynamic Programming for Dec-POMDPs 37
2.6.6 Other Finite-Horizon Methods 40

2.7 Generalization: Partially Observable Stochastic Games 40
2.8 Special Cases . 41

2.8.1 Degrees of Observability . 41
2.8.2 The Single Agent Case . 42
2.8.3 Communication . 42

2.9 Summary . 43

3 Optimal Value Functions for Dec-POMDPs 45
3.1 No Communication . 46

3.1.1 Modeling Dec-POMDPs as Series of Bayesian Games 46
3.1.2 The Q-Value Function of an Optimal Joint Policy 48
3.1.3 Deriving an Optimal Joint Policy 49
3.1.4 Computing an Optimal Q-Value Function 50
3.1.5 Optimal Dec-POMDP Value Functions 51

3.2 Instantaneous Communication . 56
3.3 One-Step Delayed Communication 58

3.3.1 Immediate Reward Formulation 59
3.3.2 Complexity . 60

3.4 k-Steps Delayed Communication . 60
3.4.1 Modeling Systems with k-Steps Delay 61
3.4.2 Optimal Value Functions . 63
3.4.3 Complexity . 64
3.4.4 Less Delay Cannot Decrease Value 65

3.5 Conclusions . 65
3.6 Future Work . 66

4 Approximate Value Functions & Heuristic Policy Search 67
4.1 Approximate Q-Value Functions . 67

4.1.1 QMDP . 68
4.1.2 QPOMDP . 69
4.1.3 QBG . 70
4.1.4 Generalized QBG and Bounds 70
4.1.5 Recursive Solution . 71

4.2 Generalized Value-Based Policy Search 71
4.2.1 The GMAA

∗ Algorithm . 72
4.2.2 The Expand Operator . 73

4.3 Experiments . 75
4.3.1 Comparing Q-Value Functions 75
4.3.2 Computing Optimal Policies 76
4.3.3 Forward-Sweep Policy Computation and k-GMAA

∗ 79

Contents vii

4.4 Conclusions . 81
4.5 Future Work . 81

5 Factored Dec-POMDPs: Exploiting Locality of Interaction 83
5.1 Factored Dec-POMDPs . 85

5.1.1 The Formal Model . 85
5.1.2 An Example: The FireFightingGraph Problem 86
5.1.3 Independence Assumptions 87

5.2 Value Functions for Factored Dec-POMDPs 89
5.2.1 Scope, Scope Backup and Interaction Graphs 90
5.2.2 Decomposition of Value Functions 92
5.2.3 Locality of Interaction . 94
5.2.4 Approximation of Value Functions 95

5.3 Factored Dec-POMDPs via CGBGs 95
5.3.1 Collaborative Graphical Bayesian Games 96
5.3.2 A Dec-POMDP Stage as a CGBG 96
5.3.3 Efficiently Constructing Collaborative Graphical BGs 99

5.4 Approximate Factored Q-Value Functions 102
5.4.1 Nearly Factored Underlying MDP Solutions 103
5.4.2 Factored QMDP: A Naive Approach using Linear Regression . 104
5.4.3 Factored QMDP: Approximate Dynamic Programming 107
5.4.4 Transferring Q-value Functions 109

5.5 Solution of Collaborative Graphical BGs 111
5.5.1 Nonserial Dynamic Programming 112
5.5.2 CGBGs as Factor Graphs . 113
5.5.3 Maximization over a Factor Graph using Max-Plus 115
5.5.4 Other Solution Methods for CGBGs 117

5.6 Algorithms . 117
5.6.1 Optimal Methods: Exploiting Last-stage Independence 118
5.6.2 Approximate Methods . 119

5.7 Experiments . 119
5.7.1 Problem Domains and Experimental Setup 119
5.7.2 Comparison to Other Methods 122
5.7.3 Analysis of Factored GMAA

∗ Methods 128
5.8 Summary and Conclusions . 134
5.9 Discussion and Future Work . 136

6 Lossless Clustering of Histories 139
6.1 Clustering Types in BGs . 140
6.2 Best-Response Equivalence for BGs 140
6.3 Lossless Clustering in Dec-POMDPs 143

6.3.1 Probabilistic Equivalence Criterion 143
6.3.2 Identical Values Allow Lossless Clustering of Histories 144

6.4 GMAA
∗-Cluster . 146

6.4.1 Bootstrapped Clustering . 147
6.4.2 Complexity . 148

viii Contents

6.5 Experiments . 149
6.5.1 Optimal Solutions using Clustering 150
6.5.2 General Clustering Performance 153

6.6 Conclusions . 153
6.7 Discussion and Future Work . 155

7 Conclusions and Discussion 157
7.1 Conclusions . 157

7.1.1 The Big Picture . 157
7.1.2 Specific Contributions . 159
7.1.3 Current State of Affairs . 162

7.2 Discussion and Future Work . 162
7.2.1 Scalability of Dec-POMDPs 162
7.2.2 Robustness and Flexibility . 163
7.2.3 The No-Communication Assumption 163
7.2.4 Future Work . 164

Summary 167

Samenvatting 169

A Problem Specifications 171

B Immediate Reward Value Function Formulations 173
B.1 k-Steps Delay Immediate Reward Formulation 173
B.2 Conversion between Formulations . 174
B.3 Less Delay Cannot Decrease Value 174
B.4 Summary of Q-value Functions for Decentralized Settings 175

C Formalization of Regression to Factored Q-Value Functions 179
C.1 Local State-Action Pairs and Indicator Functions 179

C.1.1 (State,Action)-Pairs. 179
C.1.2 Scope Restriction and Induced Scope. 180
C.1.3 The Basis Functions: Mapping SAPs to LSAPs. 180

C.2 Efficient Projections . 181
C.2.1 Rewriting Regression Using Inner Products 181
C.2.2 Efficient Inner Products . 182
C.2.3 Translation to Indicator Functions for SAPs 186

D Proofs 187
D.1 Proofs of Chapter 2 . 187
D.2 Proofs of Chapter 3 . 188
D.3 Proofs of Chapter 5 . 195

Bibliography 198

Acknowledgments 215

Chapter 1

Introduction

Making decisions is hard. Even though we humans make thousands of decisions
a day, most of which we do not even explicitly think about, some decisions are
difficult to make. Especially when there is uncertainty in the information on which
the decision is based and when the impact of a decision is great, we start to doubt.
This is even more true for decision making in complex dynamic environments, in
which the consequences of decisions are difficult to anticipate. This thesis focuses
on such complex decision problems and particularly on situations where there are
multiple decision makers, or agents.

When compared to computers systems, humans perform extremely well in mak-
ing most decisions. Still, there is a growing need for the development of intelligent
decision support systems and implementing cognitive abilities in autonomous ar-
tificial agents, because human decision making has its limitations. For instance,
human situation awareness is characterized by structural biases and humans are
conservative estimators as compared to applying for example Bayesian statistics
in handling uncertainties (Dawes, 1988). As such, human decision making may
be substantially improved when assisted by intelligent decision support systems
(Druzdzel and Flynn, 2003), providing an important social and economic incentive
to develop such systems with intelligent behavior.

The Interactive Collaborative Information Systems (ICIS) project, which has
supported the research reported in this thesis, focuses on the development of in-
telligent techniques and methods that can be applied in decision support systems.
It particularly aims to improve the overall quality of information processing and
decision making under conditions of stress, risk and uncertainty. For systems to be
effective under such circumstances, they need to have the capabilities to:

1. Operate in a highly dynamic environment and to cope with the changes in
the environment.

2. Support reasoning with uncertainty, reasoning with risks and reasoning in
the absence of knowledge, necessary because of the chaotic nature of the real
world. In particular, the system should be able to reach a set of (determined)

1

2 Introduction

goals by influencing the environment in which the system operates.

That is, such a system needs the capability to tackle the problem of sequential
decision making, making a series of decisions over time. This thesis describes
methods to realize such capabilities. In particular, it focuses on decision-theoretic
methods to allow for exact or approximate multiagent planning, collaboration and
optimization.

Following the ICIS project, the work in this thesis is illustrated by the applica-
tion to crisis management situations. These results, however, can be used in other
domains of application that can be characterized by decision making in complex
and dynamic environments.

1.1 An Example of a Challenging Environment

An example of a challenging environment is considered in the RoboCup Rescue
competition (Kitano, Tadokoro, Noda, Matsubara, Takahashi, Shinjoh, and Shi-
mada, 1999). Motivated by the earthquake in Kobe in 1995 (Tierney and Goltz,
1997), RoboCup Rescue simulates an earthquake in an urban environment. In this
scenario, buildings collapse causing roads to get blocked and people to get trapped
in the debris. Damage to gas pipes cause fires to break out all over the city and
parts of the communication infrastructure fails.

In this chaotic setting, teams of firefighters, police officers and ambulances have
to make decisions locally, based on only limited information. The objective of these
emergency response services is to minimize the casualties and structural damage.
To this end it is important to make effective plans to deal with the situation, but
this is difficult due to the uncertainties. For instance, it is hard to estimate how
fast the fire will spread or how many firefighting units one should allocate to a
particular fire site, and how long it will take them to control the fire. Moreover,
it is also important to try to improve the situational awareness, and these two
goals may compete with each other. For instance, it may be necessary to trade
off human capacity between fighting fire at a particular site and reconnaissance.
Not performing such information-gaining activities allows allocating more agents
to deal with the current situation, but may impose severe risks, e.g., a yet unknown
fire source may grow out of hand completely.

1.2 Forms of Uncertainty

The example of RoboCup Rescue illustrates how various forms of uncertainty com-
plicate effectively resolving situations. Here we discuss these different types of
uncertainty.

Outcome Uncertainty. The outcome or effects of actions may be uncertain. In
particular we will assume that the possible outcomes of an action are known, but
that each of those outcomes is realized with some probability. This means that the
way the state of the environment changes is stochastic.

1.3 Multiagent Systems 3

State Uncertainty. In the real world an agent might not be able to determine
what the state of the environment exactly is. In such cases, we say that the
environment is partially observable. Partial observability results from noisy and/or
limited sensors that may be spatially distributed. Because of sensor noise an
agent can receive faulty or inaccurate sensor readings, or observations. When
sensors are limited the agent is unable to observe the differences between states
that cannot be detected by the sensor, e.g., the presence or absence of an object
outside a laser range-finder’s field of view. Due to such sensor limitations, the same
sensor reading might require different action choices, a phenomenon referred to as
perceptual aliasing. In order to mitigate these problems, an agent may use the
history of actions it took and the observations it received to get a better estimate
of the state of the environment.

Uncertainty with respect to Other Agents. Another complicating factor is
the presence of multiple agents that each make decisions that influence the envi-
ronment. Such an environment together with the multiple agents that operate in it
is called a multiagent system (MAS). The difficulty in MASs is that each agent can
be uncertain regarding the other agents’ actions. This is apparent in self-interested
and especially adversarial settings, such as games, where agents may not share
information or try to mislead other agents. In such settings each agent should try
to accurately predict the behavior of the others in order to maximize its payoff.

In the cooperative setting, the agents have the same goal and therefore are will-
ing to coordinate. Still it is non-trivial how such coordination should be performed
(Boutilier, 1996). Especially when communication capabilities are limited or ab-
sent, the question of how the agents should coordinate their actions is problematic.
This problem is magnified in partially observable environments: as the agents are
not assumed to observe the complete state of the environment—each agent only
knows its own observations received and actions taken—there is no common signal
they can condition their actions on. Note that this problem is in addition to the
problem of partial observability, and not a substitute for it; even if the agents could
freely and instantaneously communicate their individual observations, the joint ob-
servations would in general not disambiguate the true state of the environment.

1.3 Multiagent Systems

The field of MASs is a broad interdisciplinary field with relations to distributed
and concurrent systems, artificial intelligence (AI), economics, logic, philosophy,
ecology and social sciences (Wooldridge, 2002). The sub-field of AI that deals
with principles and design of MASs is also referred to as ‘distributed AI’. Research
on MASs is motivated by the fact that it can potentially provide (Vlassis, 2007;
Sycara, 1998):

• Speedup and efficiency, due to the asynchronous and parallel computation.

• Robustness and reliability: the whole system can undergo a ‘graceful degra-
dation’ when one or more agents fail.

4 Introduction

• Scalability and flexibility, by adding additional agents as required.

• Lower cost, assuming the agents cost much less than a centralized system.

• Lower development cost and reusability, since it is easier to develop and
maintain a modular system.

There are many different aspects of multiagent systems, concerning the type of
agents, their capabilities and their environment. For instance, one can consider a
homogeneous MAS where all agents are identical, or heterogeneous MAS where the
design and capabilities of each agent can be different. The level of cooperation may
differ: are the agents cooperative, self-interested or adversarial? The environment
can be dynamic or static. These are just a few of many possible parameters one can
identify. As such, the total number of settings of these parameters and therefore
the number of types of MASs is huge, which has led to many different approaches.
Only a subset of these methods are relevant for problems of sequential decision
making. The remainder of this section gives a concise overview of such approaches,
for a more comprehensive overview of the field of MASs the reader is referred to
the texts by Huhns (1987); Singh (1994); Sycara (1998); Weiss (1999); Stone and
Veloso (2000); Yokoo (2001); Wooldridge (2002); Xiang (2002); Bordini, Dastani,
Dix, and El Fallah Segrouchni (2005); Shoham and Leyton-Brown (2007); Vlassis
(2007); Buşoniu, Babuška, and De Schutter (2008).

Many approaches to MASs are based on game theory, which therefore is an
essential tool in the field. Game theory studies the interaction of agents formalized
in models of games. We also use several game-theoretic models which will be
treated in some detail in Section 2.

Within AI much research has focused on planning. The single-agent ‘classical
planning problem’ is to transform the state of the environment, which is typically
described in logic, into a goal state through a sequence of actions, the plan. These
methods have been extended to the multiagent setting, resulting in a combina-
tion of planning and coordination, e.g. distributed problem solving (DPS) (Durfee,
2001). However, like classical planning itself, these extensions, typically fail to
address stochastic or partially observable environments (de Weerdt, ter Mors, and
Witteveen, 2005).

On the other hand, for the single-agent case, classical planning has been ex-
tended to deal with stochasticity and partial observability in conformant and con-
tingent planners. The latter category is equally expressive as the single-agent
decision-theoretic models considered in this thesis (Majercik and Littman, 2003;
Poupart, 2005). As such we expect that an extension of those planners to multiple
agents may be equally expressive to the models we consider.

Another branch of work is that of teamwork theory, which provides a more
implementation-directed perspective to control and coordination of MASs. This
line of work is largely based on the theory of practical reasoning (Bratman, 1987)
as observed with humans. In particular, the belief-desire-intention (BDI) model
of practical reasoning (Georgeff, Pell, Pollack, Tambe, and Wooldridge, 1999) has
inspired many teamwork theories, such as joint intentions (Cohen and Levesque,
1990, 1991a,b) and shared plans (Grosz and Sidner, 1990; Grosz and Kraus, 1996),

1.4 Decision-Theoretic Planning 5

and architectures that implement these theories (Jennings, 1995; Tambe, 1997;
Stone and Veloso, 1999; Pynadath and Tambe, 2003). Typically, these BDI-based
approaches to teamwork use precompiled plans, which have to be specified by a
programmer. Also, in the basis these approaches are based on behavior observed by
humans. As such, it is not likely that such a system will complement human per-
formance in decision making under uncertainty. Another disadvantage in this line
of work is that there are no clear quantitative measures for their performance, mak-
ing it hard to judge their quality (Pynadath and Tambe, 2002b; Nair and Tambe,
2005). Therefore, we will not consider this line of work any further. For more
information we refer to the texts by Wooldridge and Jennings (1995); Wooldridge
(2002); Bordini et al. (2005).

1.4 Decision-Theoretic Planning

Many of the mentioned multiagent approaches share the drawback of not having a
measure of quality of the generated plans. To overcome this problem we build upon
the field of decision-theoretic planning (DTP), which compactly specifies sequential
decision problems and provides tools to tackle them.

DTP has roots in control theory and in operations research (OR). In control
theory, one or more controllers control a deterministic or stochastic system by ma-
nipulating the inputs to a system (i.e., selecting actions) to obtain the desired effect
on the output of the system. The focus in control theory lies on physical problems
with continuous state variables and actions such as the control of a robot arm. In
this particular example, the state of the system may be characterized by the angles
of the joints and the angle velocities and the desired output may be a particular
position of the arm. Operations research, on the other hand, considers tasks related
to scheduling, logistics and work flow and tries to optimize the concerning systems.
The nature of such problems is often different from the problems in control theory,
as they typically involve discrete components. As a result, the OR community has
typically considered different models and methods.

Nevertheless there also is an overlap between OR and control theory. Many
decision-theoretic planning problems can be formalized as Markov decision pro-
cesses (MDPs) (Puterman, 1994), which have been frequently employed in both
control theory as well as operations research. In the last decades, the MDP frame-
work has also gained in popularity in the AI community as a model for planning
under uncertainty (Boutilier, Dean, and Hanks, 1999; Guestrin, Koller, Parr, and
Venkataraman, 2003). DTP is the intersection of control theory, operations re-
search and AI that studies MDPs and related models.

1.4.1 Planning with Outcome Uncertainty

The MDP is a framework for sequential decision making of a single agent at pre-
determined points in time, i.e., it is a discrete time model. The extension of the
MDP to continuous time is called a semi-Markov decision process (SMDP). Also
in control theory much research has considered continuous time settings (Sontag,
1998). In order to solve such continuous time settings, however, time is discretized

6 Introduction

or special assumptions, such as linear dynamics and quadratic costs, are required
(Bertsekas, 2005). As such, most approaches to DTP for multiagent systems have
focused on extensions of the MDP, a notable exception is presented by Wiegerinck,
van den Broek, and Kappen (2007) and Van den Broek, Wiegerinck, and Kappen
(2008), who consider the control of a MAS in continuous space and time.

MDPs can be used to formalize a discrete time planning task of a single agent in
a stochastically changing environment, on the condition that the agent can observe
the state of the environment. Every time step the state changes stochastically, but
the agent chooses an action that selects a particular transition function. Taking
an action from a particular state at time step t induces a probability distribution
over states at time step t + 1. The goal of planning for such an MDP is to find a
policy that is optimal with respect to the desired behavior. This desired behavior,
the agent’s objective, can be formulated in several ways. The first type of objective
of an agent is reaching a specific goal state, for example in a maze in which the
agent’s goal is to reach the exit. A different formulation is given by associating
a certain cost with the execution of a particular action in a particular state, in
which case the goal will be to minimize the expected total cost. Alternatively, one
can associate rewards with actions performed in a certain state, the goal being to
maximize the total reward.

When the agent knows the probabilities of the state transitions, i.e., when
it knows the model, it can contemplate the expected transitions over time and
compute a plan that is most likely to reach a specific goal state, minimizes the
expected costs or maximizes the expected reward. Such a planning approach stands
in contrast to reinforcement learning (RL) (Sutton and Barto, 1998; Buşoniu et al.,
2008), where the agent does not have a model of the environment, but has to learn
good behavior by repeatedly interacting with the environment. Reinforcement
learning can be seen as the combined task of learning the model of the environment
and planning, although in practice it often is not necessary to explicitly recover
the environment model. This thesis focuses only on planning, but considers two
factors that complicate computing successful plans: the inability of the agent to
observe the state of the environment as well as the presence of multiple agents.

1.4.2 Dealing with State Uncertainty

As mentioned in Section 1.2, noisy and limited sensors may prevent the agent from
observing the state of the environment, because the observations are inaccurate
and perceptual aliasing may occur. In order to represent such state uncertainty, a
partially observable Markov decision process (POMDP) extends the MDP model by
incorporating observations and their probability of occurrence conditional on the
state of the environment (Kaelbling, Littman, and Cassandra, 1998; Cassandra,
1998). In a POMDP, an agent no longer knows the state of the world, but rather
has to maintain a belief over states. That is, it can use the history of observations
to estimate the probability of each state and use this information to decide upon
an action.

In control theory, the (continuous) observations, also referred to as measure-
ments, are typically described as a function of the state. Sensor noise is modeled by

1.4 Decision-Theoretic Planning 7

adding a random disturbance term to this function and is dealt with by introducing
a state estimator component, e.g., by Kalman filtering (Kalman, 1960). Perceptual
aliasing arises when a state component cannot be measured. For instance it may
not be possible to directly measure angular velocity of a robot arm, in this case
it may be possible to use a so-called observer to estimate this velocity from its
positions over time.

Although the treatment of state uncertainty in control theory involves terminol-
ogy and techniques different from those in used in POMDPs, the basic idea in both
is the same: use information gathered from the history of observations in order
to improve decisions. There also is one fundamental difference, however. Control
theory typically separates the estimation from the control component. E.g., the
estimator returns a particular value for the angles and angle velocities of the robot
arm and these values are used to select actions as if there was no uncertainty. In
contrast, POMDPs allow the agent to explicitly reason over the belief (the prob-
ability of all possible states) and what the best action is given that belief. The
up-shot of this is that agents using POMDP techniques can select actions that will
provide information about the state.

1.4.3 Multiple Agents

Although POMDPs provide principled treatment of state uncertainty, they only
consider a single agent. In order to deal with the effects of uncertainty with respect
to other agents, this thesis will consider an extension of the POMDP framework.
We also note that this type of uncertainty may be mitigated through communi-
cation. Under the stringent assumptions of instantaneous, cost- and noise free
communication, they can be discarded altogether, and the problem reduces to a
POMDP (Pynadath and Tambe, 2002b). However, in general these assumptions
are too strong and deciding when to communicate what becomes part of the prob-
lem. Chapter 3 considers various assumptions with respect to communication de-
lays in MASs. The main focus of this thesis, however is the truly decentralized,
non-communicative setting. As it turns out, the framework we consider for these
non-communicative MASs can also model communication with a particular cost
that is subject to minimization (Pynadath and Tambe, 2002b; Goldman and Zil-
berstein, 2004) and the non-communicative setting can be interpreted as the special
case with infinite cost.

In a MAS each agent can be considered separately. In this case, which we refer
to as the subjective perspective of a MAS, each such agent maintains an explicit
model of the other agents. This is the approach as chosen in the recursive modeling
method (RMM) (Gmytrasiewicz and Durfee, 1995; Gmytrasiewicz, Noh, and Kel-
logg, 1998) and the interactive POMDP (I-POMDP) framework (Gmytrasiewicz
and Doshi, 2005). A difficulty in these approaches, however, is that the other agents
also model the considered agent, leading to an infinite recursion of beliefs regarding
the behavior of agents. Moreover, the number of possible models of other agents is
infinite. Even though there might be solutions to these problems (Rathnasabapa-
thy, Doshi, and Gmytrasiewicz, 2006; Zettlemoyer, Milch, and Kaelbling, 2009), we
feel that this approach is more appropriate for systems with self-interested agents.

8 Introduction

When planning for a team of cooperative agents, we feel that it is better to adopt an
objective perspective of the MAS, in which we try to find plans for all agents at the
same time. Such a model is the decentralized POMDP (Dec-POMDP) introduced
by Bernstein, Zilberstein, and Immerman (2000). The Dec-POMDP framework is
the generalization to multiple agents of the POMDP and can be used to model a
team of cooperative agents that are situated in a stochastic, partially observable
environment. Also, it will be the framework adopted in this thesis.

1.4.4 DTP and Game Theory

Up to this point, the overview of decision-theoretic planning has focused on single-
agent models (MDPs, POMDPs) and their generalization to multiple agents (the
Dec-POMDP). Game theory has not yet been mentioned because it usually is not
considered to fall in the DTP category. However, it can definitely be seen as a
branch of decision theory. In the author’s opinion, game-theoretic models, espe-
cially those that consider acting over multiple time steps, should also be considered
part of the field of DTP. In Chapter 2 we will treat background for both game-
theoretic models and Dec-POMDPs under the term ‘decision-theoretic planning
for teams of agents’. In contrast to mainstream DTP, game theory has always
considered multiple agents, and as a consequence several ideas and concepts from
game theory are now being applied in decentralized decision-theoretic planning.
In moving from the single-agent case to the multiagent case ideas and concepts
from game theory automatically come in to play. Still there have been problems in
applying game theory in the design of agents, as Russell and Norvig (2003) mention

“there have been some barriers that have prevented game theory from
being widely used in agent design. [...] there currently is no good way
to combine game theoretic and POMDP control strategies. Because
of these and other problems, game theory has been used primarily to
analyze environments that are at equilibrium, rather than to control
agents within an environment.”

This means that there is a gap in the theory between game theory and DTP
methods. There has been work to extend game-theoretic models to continuous
actions and time, thereby reducing the gap with control theory (Basar and Olsder,
1995). Still the gap with DTP methods considered in AI and OR remains. This
thesis makes a contribution to further closing this gap. Specifically, it will apply
one-shot game-theoretic models to represent time-steps in a sequential decision
problem.

1.5 The Focus of this Thesis

This thesis focuses on decision-theoretic planning for teams of cooperative agents
that are situated in a stochastic, partially observable environment. It adopts the
decentralized partially observable Markov decision process (Dec-POMDP) as its
central framework because it is an expressive model that allows for the principled
treatment of the uncertainty faced by such teams.

1.6 Applications 9

Unfortunately, the power of the Dec-POMDP model comes at a price: Bernstein
et al. show that optimally solving a Dec-POMDP is provably intractable (NEXP-
complete). As such optimal solutions will only be possible for very small problems
and efficient approximation algorithms are an important point of research. How-
ever, since any advancements in optimal solution methods are likely to transfer
also to approximate ones, this thesis considers both exact and approximate meth-
ods. Although recent approximate methods successfully scale with respect to the
horizon of the problem (Seuken and Zilberstein, 2007a), optimal algorithms have
remained behind. Moreover scalability with respect to other problem parameters
such as the number of agents has remained poor also for approximate methods.

This thesis aims at advancing decision-theoretic planning for coopera-
tive multiagent systems in stochastic, partially observable environments
that do not allow cost- and noise-free instantaneous communication, as
formalized by the Dec-POMDP framework. It aims to do so by

1. extending the theory of Dec-POMDPs and establishing further
connections with the area of game theory,

2. proposing optimal and approximate solution methods that scale
better with respect to the number of agents, and

3. proposing optimal solution methods that scale better with respect
to the horizon.

The assumption in this thesis is that planning takes place in an off-line phase, after
which the plans are executed in an on-line phase. In the decentralized setting, how-
ever, this statement deserves some clarification. In the on-line phase the computed
plan is executed in a completely decentralized way: each agent knows only the joint
policy as found in the planning phase and its individual history of actions and ob-
servations. The planning phase, however, can be viewed in two ways. First, we
can think of a centralized computer that computes the joint plan and consequently
distributes these plans to the agents, who then merely execute the plans on-line. In
this view the agents are reactive and all the intelligence comes from the centralized
computer. The second view is that each agent runs the same planning algorithm
in parallel and therefore each agent computes the same joint plan from which it
executes its individual component. In this view the planning phase is decentralized
too and the agents are decision theoretic. This thesis will not consider decentral-
ization of computation of plans in order the provide an increase in efficiency, i.e.,
methods that break up the planning problem in sub-problems which are then dis-
tributed and processed in parallel. Although such methods are of great interest,
the centralized-planning case assumed in this thesis presents enough challenges by
itself.

1.6 Applications

Because of the complexity of multiagent decision making under uncertainty, re-
search has been forced to restrict itself to toy problems, as there are no real-life

10 Introduction

applications small enough to tackle. Nevertheless, there are some application areas
that seem to come within reach. This section gives an overview starting with those
application areas and moving to areas that still present more challenges.

It may seem rather obvious that areas that are (almost) within reach of DTP
methods are those areas that are somewhat more abstract and thus simpler. An
example of such a task is that of load balancing among queues, as presented by
Cogill, Rotkowitz, Roy, and Lall (2004). Here, each agent represents a processing
unit with a queue and can only observe its own queue size and that of immediate
neighbors. The agents have to decide whether to accept new jobs or pass them
to another queue. Such a restricted problem can be found in many settings, for
instance industrial plants or a cluster of web-servers, and as such DTP (and in par-
ticular Dec-POMDP) methods may actually be close to being employed. Another
example of an abstract domain is that of communication networks. For instance,
Peshkin (2001) treated a packet routing application in which agents are routers and
have to minimize the average transfer time of packets. They are connected to im-
mediate neighbors and have to decide at each time step to which neighbor to send
each packet. Other approaches to communication networks using decentralized,
stochastic, partially observable systems are given by Ooi and Wornell (1996), Tao,
Baxter, and Weaver (2001) and Altman (2002). Dec-POMDPs are particularly
relevant for communication networks, because the agents (e.g., routers) typically
cannot communicate, since the cost of sending meta-level communication occupying
the communication channels is prohibitively large. Even though such communica-
tion networks typically are too complex to fully model with DTP methods, policies
found by such methods on smaller, more abstract instances, may be extrapolated
by human experts to improve current policies. Also it may be possible to use
machine-learning techniques to aid such extrapolations. In particular, the field of
inductive transfer or transfer learning deals with such problems. In Chapter 5
we will also introduce a technique, transfer planning, that uses the solution of a
smaller Dec-POMDP problem to aid in the solution of a larger one.

Much research in AI currently focuses on single-agent POMDP methods for
active perception (Spaan, 2008; Grappiolo, Whiteson, Pavlin, and Bakker, 2009),
which roughly can be explained as the problem where you need to take particular
actions (active) to gain more information (perception). When scaling such scenar-
ios to multiple agents, we immediately end up in Dec-POMDP-like settings. An
application domain that receives much attention in the Dec-POMDP community
is that of sensor networks (typically used for surveillance) (Lesser, Ortiz Jr., and
Tambe, 2003). Because there typically is much structure and relatively little inter-
action, researchers have been able to scale to larger demonstration networks (Nair,
Varakantham, Tambe, and Yokoo, 2005; Varakantham, Marecki, Yabu, Tambe, and
Yokoo, 2007; Kumar and Zilberstein, 2009).

In the long term, Dec-POMDPs and related models may be important for all
(cooperative) robotics (Arai, Pagello, and Parker, 2002). Robots have to navi-
gate in the real world which is always partially observable due to sensor noise and
perceptual aliasing. Also, in most of these domains full communication is either
not possible (e.g., too little bandwidth to transmit video streams from many cam-
eras) or consumes resources (e.g., battery power) and thus has a particular cost.

1.7 Organization of Thesis and Publications 11

Therefore models such as Dec-POMDPs, which do consider partially observable
environments are relevant for essentially all teams of embodied agents. However,
the size and continuous nature of this physical world also presents great challenges
for DTP methods and therefore large scale deployment of such methods in this area
may be far away. Still, there are examples of research that has been able to find
small more abstract problems within this area and apply DTP methods there. For
instance, Becker, Zilberstein, Lesser, and Goldman (2004b) consider multi-robot
space exploration, where the agents are Mars rovers and the decision problem is
how to proceed their mission: whether to collect particular samples at specific sites
or not. The rewards of particular samples can be sub- or super-additive, making
this task non-trivial. Another example is given by Emery-Montemerlo (2005), who
considered multi-robot navigation in which a team of agents with noisy sensors has
to act to find/capture a goal. They actually managed to run their Dec-POMDP
algorithm on robots. Also within robotic soccer as applied in RoboCup (Kitano,
Asada, Kuniyoshi, Noda, and Osawa, 1997), some researchers have been able to
apply decision-theoretic methods (Kok and Vlassis, 2005).

The application area of decision support systems for complex real-world set-
tings, such as crisis management, is actually closely related to the field of coop-
erative robotics described above. Also in this setting, it is typically necessary to
deal with the real world which often is continuous and highly uncertain. As such,
the widespread application of DTP methods in this area may also require quite a
few more years of research. Nevertheless, also in this field there have been some
advances. For instance, within the setting of RoboCup Rescue (Kitano et al.,
1999) as described in Section 1.1, researchers have been able to model small sub-
problems using Dec-POMDPs (Nair, Tambe, and Marsella, 2002, 2003a,b; Oliehoek
and Visser, 2006; Paquet, Tobin, and Chaib-draa, 2005).

1.7 Organization of Thesis and Publications

This thesis is based on several publications. This section explains the organization
of the thesis, at the same time explaining on which publications the different parts
are based. Chapter 2, gives an extensive introduction to decision-theoretic planning
methods for MASs. In the first part, the necessary game-theoretic background is
provided, covering both one-shot and sequential decision models. The second part
gives a formal introduction to the Dec-POMDP model and solution methods.

Chapter 3 describes optimal value functions for Dec-POMDPs and is largely
based on the work by Oliehoek, Spaan, and Vlassis (2008b) to which we refer
as OSV08 here. For single-agent MDPs, many solution methods are based on
value functions that indicate what the expected total reward is when starting to
act from a particular state of the environment. For Dec-POMDPs, however, such
value functions had previously not been investigated. Our investigation of such
value functions is facilitated by interpreting the Dec-POMDP as a series of one-
shot Bayesian games (BGs) of which the payoff function corresponds to a so-called
action-value or Q-value function. The chapter provides optimal value functions for
Dec-POMDP with different assumptions with respect to communication. First,

12 Introduction

it considers the setting without communication, then it considers zero, one and
k-steps delayed communication. The chapter expands on OSV08 in giving a more
cohesive overview of the value functions of these settings and how they relate.

Next, Chapter 4, which is also based on OSV08, introduces a generalized value-
based policy search framework for Dec-POMDPs that works by iteratively solving
BGs that represent different stages. Because the optimal value-function identified
in Chapter 3 is typically infeasible to compute, approximate QMDP, QPOMDP and
QBG value functions are introduced that correspond to appropriately chosen delays
as discussed in Chapter 3. Of these, QMDP and QPOMDP are well-known; QBG was
proposed by Oliehoek and Vlassis (2007b). Next, the chapter introduces the gener-
alized MAA

∗ (GMAA
∗) policy search method and explains how it generalizes the

existing methods of Szer and Charpillet (2005) and Emery-Montemerlo, Gordon,
Schneider, and Thrun (2004). GMAA

∗ was first proposed by Oliehoek and Vlassis
(2007a).

Chapter 5 exploits structure present in many real-world domains to scale up
with respect to the number of agents. Previous research achieved this by imposing
assumptions of complete independence between agents on the Dec-POMDP model.
However, such assumptions are too restrictive for many interesting problems. Still,
in many such problems the agents may be nearly independent: for instance each
agent may only need to interact a few neighbors. In particular, Chapter 5 intro-
duces the framework of factored Dec-POMDPs with additive rewards and proposes
to model such factored Dec-POMDPs as series of collaborative graphical Bayesian
games (CGBGs). Such CGBGs have a compact representation and we discuss how
they can be computed efficiently through approximate inference. The chapter also
introduces factored Q-value functions that can be used as the payoff functions for
the CGBGs. The CGBGs can be optimally solved by non-serial dynamic program-
ming or approximated efficiently by introducing a factor-graph description and
running a message passing algorithm on this graph. Given the complete specifica-
tion of the CGBGs and a method to solve them, it is possible to apply GMAA

∗

policy search methods. An empirical evaluation reveals that the proposed methods
scale to problems with up to 1,000 agents, as opposed to the maximum of 5 agents
in previous literature. This chapter is based on Oliehoek, Spaan, Whiteson, and
Vlassis (2008c) and an article under submission (Oliehoek, Whiteson, and Spaan,
2010).

The last chapter that describes research is Chapter 6. This chapter considers
techniques to provide scaling with respect to the horizon of the decision problem. It
is based on Oliehoek, Whiteson, and Spaan (2009) who propose to perform lossless
clustering of the histories of agents (i.e., types) within the BGs. Such clustering
of types was also proposed by Emery-Montemerlo, Gordon, Schneider, and Thrun
(2005), but only in an approximate setting. This chapter, on the other hand,
establishes criteria under which the optimal value function is guaranteed to be equal
and therefore histories can be clustered without loss in value in these settings. By
applying this technique within GMAA

∗, we have been able to compute optimal
solutions for significantly longer horizons than previously possible, although the
amount of scale-up is problem dependent.

Finally, Chapter 7 concludes and discusses the presented research and the most

1.7 Organization of Thesis and Publications 13

important directions of future work.

1.7.1 Other Research

Not all research that was performed fits in the scope of this thesis. This section
describes the work that did not make it into the thesis. To start, apart from the
identification of the optimal value functions under different communication settings,
most other work on communication in Dec-POMDPs has not been included. This
line of work includes:

• Certain theoretical properties of the QBG value function, especially the proof
that such value functions are piecewise-linear and convex over the space of
(joint) beliefs and that for an infinite horizon they can be approximated with
arbitrary accuracy (Oliehoek, Vlassis, and Spaan, 2007c).

• Based on these properties, Oliehoek, Spaan, and Vlassis (2007b) propose fi-
nite and infinite-horizon value iteration algorithms for the computation of
value functions of one-step delayed communication Dec-POMDPs and pro-
pose efficient approximations by extending Perseus, an approximate POMDP
solver (Spaan and Vlassis, 2005).

• Exact value functions and their efficient computation for settings with a
stochastic delay of 0 or 1 time step (Spaan, Oliehoek, and Vlassis, 2008).
The work also applies such value functions as an approximation of settings
with longer stochastic delays.

Also, we developed a policy search method based on cross-entropy optimization
(Oliehoek, Kooij, and Vlassis, 2007a; Oliehoek, Kooi, and Vlassis, 2008a). The
resulting method Dice was the first method to be demonstrated on regular Dec-
POMDPs with more than 2 agents. Although this line of research addresses the
plain Dec-POMDP setting, it does not fit nicely in the framework of value-based
planning described in this thesis. The software toolbox co-developed with Matthijs
Spaan (Spaan and Oliehoek, 2008) is not described in this thesis and the explicit
link between Dec-POMDPs and extensive-form games was described in a technical
report (Oliehoek and Vlassis, 2006), but has not been reproduced. Finally, older
work resulting from the author’s master’s thesis was also omitted. This research
focused on applying POMDPs in competitive two-player (poker) games (Oliehoek,
Spaan, and Vlassis, 2005a) and on coevolutionary methods to efficiently compute
approximate Nash equilibria for such games (Oliehoek, Vlassis, and de Jong, 2005b;
Oliehoek, de Jong, and Vlassis, 2006).

14 Introduction

Chapter 2

Decision-Theoretic Planning for Teams of

Agents

The introduction explained that this thesis focuses on decision-theoretic plan-
ning (DTP) for teams of cooperative agents, a problem of sequential decision mak-
ing. The goal is to find a plan that specifies what decisions the agents should
take over a predetermined number of time steps. Such teams of cooperative agents
are a special case of a multiagent system (MAS). Therefore, this chapter provides
background of DTP methods for multiagent systems. First, however, we take a
step back and consider making a one-shot decision for a single agent.

Decision theory describes how a decision maker, or agent, should make a deci-
sion given its preferences over as set of alternatives. Let us for the moment assume
that an agent has preferences over some abstract set of outcomes ω ∈ Ω. If the
agent’s preferences satisfy the axioms of utility theory, they can be conveniently
represented by a utility function u that maps each outcome to a real number u(ω)
(Russell and Norvig, 2003; DeGroot, 2004). This number indicates how the agent
values that outcome: if A is preferred to B, than u(A) > u(B).

Now consider that the agent has to make a one-shot decision that results in
a particular outcome. In particular, the agent can select an action from some
specified set a ∈ A. If the agent has a model of how its actions influence the
outcomes, i.e. when the probabilities Pr(ω|a) are available, the agent can compute
the expected utility of each action, which is defined as

u(a) ≡ E [u(ω)|a] =
∑

ω∈Ω

u(ω) Pr(ω|a). (2.0.1)

A rational agent should select the action that maximizes its expected utility.
This chapter extends the preceding explanation of decision making and intro-

duces some different models in which rational agents make decisions by maximizing
their expected utility. In particular, we are interested in rational agents in mul-
tiagent systems. In a MAS, the outcomes may be influenced by multiple agents
and therefore the utility function for a particular agent will in general depend on

15

16 Decision-Theoretic Planning for Teams of Agents

the actions of multiple agents. As such, making decisions in MASs becomes signif-
icantly more complex. Section 2.1 first introduces game-theoretic models for such
settings and subsequently treats models that extend multiagent decision making
to multiple time steps. Section 2.2 then introduces the Dec-POMDP, the model
central in this thesis, the remainder of the chapter provides background on the
Dec-POMDP and existing solution methods.

We note that although the focus of this thesis is on sequential decision mak-
ing formalized as Dec-POMDPs, the game-theoretic background is essential. In
particular, we will model Dec-POMDPs by series of one-shot decision problems,
Bayesian games, from game theory.

2.1 Game-Theoretic Models

This section describes game-theoretic models for multiagent decision making. The
main difference between these models and the Dec-POMDP model is that game-
theoretic models concentrate on the interaction between agents, referred to as play-
ers, and not so much on the environment. This is is especially true for one-shot
games as will be treated in Subsection 2.1.1. Sequential decision making is dis-
cussed in Subsection 2.1.2, which introduces extensive games. These games can
model a dynamic environment, although also here the main focus is on the inter-
action. More recently, methods have been proposed to exploit structure within
games. These methods will receive more attention in Chapter 5. Here, we just
briefly mention graphical games that exploit structure in the interactions between
agents in Subsection 2.1.1.3 and models that exploit structure of the environment
in Subsection 2.1.2.3.

2.1.1 One-Shot Decisions

One-shot games are games that are played only once. That is, there is one and
only one interaction between the agents, that is formalized by the game. This
subsection introduces two types of one-shot games, strategic and Bayesian games,
and the (Bayesian) Nash equilibrium solution concept.

2.1.1.1 Strategic Games and Nash Equilibria

The simplest form of game is the strategic or normal-form game. A strategic
game consists of a set of agents or players, each of which has a set of actions (or
strategies). The combination of selected actions specifies a particular outcome: a
payoff profile specifying the payoff for each agent. When a strategic game consists
of two agents, it can be visualized as a matrix as shown in Figure 2.1. The first
game shown is called ‘Chicken’ and involves two teenagers who are driving head on.
Both have the option to drive on or chicken out. Each teenager’s payoff is maximal
(+2) when he drives on and his opponent chickens out. However, if both drive on,
a collision follows giving both a payoff of −1. The second game is the meeting
location problem. Both agents want to meet in location A or B. They have no
preference over which location, as long as both pick the same location. This game

2.1 Game-Theoretic Models 17

D C
D −1,− 1 +2,0
C 0,+ 2 +1,+ 1

(a) Chicken. Both players have the option to
(D)rive on or (C)hicken out.

A B
A +2 0
B 0 +2

(b) The meeting location problem has iden-
tical payoffs, so each entry contains just
one number.

Figure 2.1: Two strategic games: Chicken and the meeting location problem.

is fully cooperative, which is modeled by the fact that the agents receive identical
payoffs.

Definition 2.1 (Strategic game). Formally, a strategic game is a tuple 〈D,A,u〉,
where

• D = {1, . . . ,n} is the set of n agents (decision makers),

• A = ×i∈DAi is the set of joint actions a = 〈a1, . . . ,an〉, and

• u = 〈u1, . . . ,un〉 with ui : A → R is the payoff function of agent i.

When the set of actions Ai for each agent i is finite, the strategic game is called
finite.

Game theory takes an objective perspective and tries to specify for each agent
how to play. That is, a game-theoretic solution should suggest a policy for each
agent. In a strategic game we write πi to denote a policy for agent i and π for a
joint policy. A policy for agent i is simply one of its actions πi = ai ∈ Ai (i.e.,
a pure policy), or a probability distribution over its actions πi ∈ P(Ai) (i.e., a
mixed policy).1 Also, the policy suggested to each agent should be rational given
the policies suggested to the other agent; it would be undesirable to suggest a
particular policy to an agent, if it can get a better payoff by switching to another
policy. Rather, the suggested policies should form an equilibrium, meaning that it
is not profitable for an agent to unilaterally deviate from its suggested policy. This
notion is formalized by the concept of Nash equilibrium.

Definition 2.2 (Nash equilibrium). A pure policy profile π = 〈π1, . . . ,πi, . . . ,πn〉
specifying a pure policy for each agent is a Nash Equilibrium (NE) if and only if

ui(〈π1, . . . ,πi, . . . ,πn〉) ≥ ui(〈π1, . . . ,π
′
i, . . . ,πn〉), ∀i:1≤i≤n, ∀π′

i
∈Ai

. (2.1.1)

This definition can be easily extended to incorporate mixed policies by defining

ui(〈π1, . . . ,πn〉) ≡
∑

〈a1,...,,an〉

ui(〈a1, . . . ,an〉)
n∏

j=1

Pr(aj |πj). (2.1.2)

Nash (1950) proved that when allowing mixed policies, every (finite) strategic game
contains at least one NE, making it a proper solution for a game. However, it is

1We write P(·) to denote the set of probability distributions over (·).

18 Decision-Theoretic Planning for Teams of Agents

unclear how such an NE should be found. In particular, there may be multiple
NEs in a game, making it unclear which one to select. In order to make some
discrimination between Nash equilibria, we can consider NEs such that there is no
other NE that is better for everyone. This intuition is formalized by the concept
of Pareto optimality.

Definition 2.3 (Pareto optimality). A joint action a is Pareto optimal if there is
no other joint action a′ that specifies at least the same payoff for every agent and
a higher payoff for at least one agent. I.e., there exists no a′ such that

∀i ui(a
′) ≥ ui(a) ∧ ∃i ui(a

′) > ui(a). (2.1.3)

If there does exist an a′ such that (2.1.3) holds, then a is said to be Pareto domi-
nated by a′.

This means that if a joint action a is Pareto optimal, a different joint action
a′ that is better for one agent, must be worse for another agent. For instance,
in the Chicken problem of Figure 2.1a 〈D,D〉 is not Pareto optimal, because it is
Pareto dominated by all other joint actions. The other joint actions, however, are
all Pareto optimal.

We now extend this definition to (possibly mixed) Nash equilibria.

Definition 2.4 (Pareto optimal NE). A Nash Equilibrium π is referred to as
Pareto Optimal (PO) if and only if there is no other π′ such that π′ is a NE and
π′ Pareto dominates π.

In the case when multiple Pareto optimal Nash equilibria exist, the agents can
agree beforehand on a particular ordering, to ensure the same NE is chosen.

2.1.1.2 Bayesian Games

A strategic game of imperfect information or Bayesian game (Osborne and Ru-
binstein, 1994) is an augmented strategic game in which the players hold some
private information. This private information defines the type of the agent, i.e.,
a particular type θi ∈ Θi of an agent i corresponds to that agent knowing some
particular information. The payoff the agents receive now no longer only depends
on their actions, but also on their private information. Formally, a BG is defined
as follows:

Definition 2.5. A Bayesian game (BG) is a tuple 〈D,A,Θ,Pr(Θ), 〈u1,...un〉〉,
where

• D is the set of n agents,

• A is the set of joint actions a = 〈a1, . . . ,an〉,

• Θ = ×iΘi is the set of joint types θ = 〈θ1, . . . ,θn〉,

• over which a probability function Pr(Θ) is specified, and

• ui : Θ×A → R is the payoff function of agent i.

2.1 Game-Theoretic Models 19

In a normal form game the agents select an action. Now, in a BG the agents
can condition their action on their private information. This means that in BGs
the agents use a different type of policies. For a BG, we denote a joint policy
β = 〈β1,...,βn〉, where βi is the individual policy of agent i. Deterministic (pure)
individual policies are mappings from types to actions βi : Θi → Ai, while ran-
domized policies map each type θi to a probability distribution over actions P(Ai).
In the context of BGs, an NE is usually referred to as a Bayesian Nash equilibrium
(BNE), but the definition is similar.

It is possible to convert a BG G to a strategic game G′. The actions a′i of an
agent i in G′ correspond to all the pure BG-policies βi it has in G. The payoff
u′i(a

′) for agent i of joint action a′, which corresponds to a joint BG policy β in G,
is given by taking the expectation over joint types

u′i(a
′) ≡ Eθ[ui(θ, 〈β1(θ1),...,βn(θn)〉)].

As such, the result of Nash (1950) transfers to (finite) BGs: there is guaranteed to
be a BNE in mixed policies.

In the special case of identical payoffs for the agents, a solution of a BG exists
in pure policies. It is given by the following theorem:

Theorem 2.1. For a BG with identical payoffs ∀i,j∀θ∀a ui(θ,a) = uj(θ,a) and we
write simply u(θ,a). Its solution is given by:

β∗ = argmax
β

∑

θ∈Θ

Pr(θ)u(θ,β(θ)), (2.1.4)

where β(θ) = 〈β1(θ1),...,βn(θn)〉 is the joint action specified by β for joint type θ.
This solution constitutes a Pareto optimal Bayes-Nash equilibrium.

Sketch of Proof. The proof consists of two parts: the first shows that β∗ is a Nash
equilibrium by rewriting (2.1.4) from the perspective of an arbitrary agent i, the
second shows it is Pareto optimal by contradiction. The full proof is listed in
Appendix D.

2.1.1.3 Graphical Models for Games

Strategic and Bayesian games can be represented by multi-dimensional matrices,
where the number of dimensions is equal to the number of agents. This means
that the size of these games grows exponentially in the number of agents. If the
interaction is dense, i.e. each agent affects the payoff of all the other agents, there is
no way around this. However, in many real-world domains agents have only limited
interaction with other agents. E.g., an agent may need to interact only with the
subset of agents that is in its physical neighborhood.

Graph-based models, or graphical models, have received much attention in AI
because of their ability to compactly represent domains that exhibit some structure
(Pearl, 1988; Kschischang, Frey, and Loeliger, 2001; Murphy, 2002; Bishop, 2006,
ch.8). In a similar way, graphical games (GGs) (Kearns, Littman, and Singh, 2001;
Kearns, 2007) and graphical Bayesian games (GBGs) (Singh, Soni, and Wellman,
2004b; Soni, Singh, and Wellman, 2007) compactly represent games with multiple
agents. We will return to the topic of graphical models and games in Chapter 5.

20 Decision-Theoretic Planning for Teams of Agents

D C

-1,-1 2,0 0,2 1,1

D DC C

(a) A sequential version of
‘Chicken’ where agent 1
gets to decide first. The
rational decisions are indi-
cated by double lines.

4,2 4,6

1 -1 2 1 2 -1 -1 -2 1 -2

0

(pass/fold)

1

(bet/call) Start

(b) A partial game-tree of 8-card poker. Shown
are situations in which (4,2) and (4,6) are
dealt. Gambler’s decision nodes are black,
dealer’s are gray. The diamond represent
the chance move at start. The payoffs are
given for the gambler.

Figure 2.2: Two extensive games.

2.1.2 Sequential Decisions

The game-theoretic models reviewed so far consider one-shot interactions. The
same models can be used when such a one-shot interaction takes place repeatedly.
This is the problem as considered in repeated games (Osborne and Rubinstein,
1994). Although repeated games are an instance of sequential decision making, the
game is exactly the same each time. As such it is not possible to model any temporal
context such as a dynamic environment within this paradigm. In the rest of this
section we will consider extensive games, which do allow different interactions over
time.

2.1.2.1 Extensive Games

Extensive games (Kuhn, 1950, 1953) are specified by a tree, referred to as a game
tree. In this tree, there are two types of nodes: decision nodes and outcome nodes.
Decision nodes are decision points each associated with one of the players, which
means that the decisions are made sequentially.1 An action of an agent corresponds
to selecting a child node in the tree. Outcome nodes are the leaves of the tree and
specify a payoff for each of the agents. Figure 2.2a shows a sequential version of
‘Chicken’. In this version, agent 1 may decide first and this choice is observed by
agent 2.

In an extensive game, the rational choice at each decision node can be deter-
mined from the leaves to the root. This procedure first described by Zermelo (1913)
is usually referred to as backwards induction. Figure 2.2a indicates the resulting

1It is possible to model simultaneous decisions by hiding the decision of the first player in an
extensive game of imperfect information.

2.1 Game-Theoretic Models 21

policies, which is a Nash equilibrium, by double lines: agent 1 selects (D)rive on,
while agent 2 (C)hickens out. Note that even in parts of the trees that are not
reached by the NE rational actions are specified: i.e., would agent 1 select C, then
the policy specifies that agent 2 selects D. An NE that possesses this property is
called a sub-game perfect Nash equilibrium (Osborne and Rubinstein, 1994).

2.1.2.2 Extensive Games with Imperfect Information

Extensive games have been extended to deal with partial information and chance.
This is explained using a small game from literature (Koller and Pfeffer, 1997)
called 8-card poker.

Example 2.1 (8-Card poker). 8-Card poker is played by two agents: a dealer and
a gambler, who both own two coins. Before the game starts, each agent puts one
coin in the pot, the ante. Then both agents are dealt one card out of a deck of
eight cards (1 suit, ranks 1–8). After they have observed their card, the agents
are allowed to bet their remaining coin, starting with the gambler. If the gambler
bets his coin, the dealer has the option to also bet (‘call’ in poker terms) or pass
(‘fold’). If the dealer folds he loses the ante, and if he calls showdown follows. If
the gambler does not bet, the dealer can choose to bet his coin. If the dealer does
so, the gambler will have to decide whether to fold or call. If the game reaches the
showdown (neither player bets or the bet is called), the player with the highest
card wins the pot.

The game of 8-card poker can be modeled as an extensive game with partial
(imperfect) information (Kuhn, 1950, 1953). To model chance, decision nodes are
split in two categories: decision nodes that represent points at which agents can
make a move, and chance nodes which represent stochastic transitions ‘taken by
nature’. In 8-card poker, the only chance node is the starting state, in which two
cards are chosen at random from the 8-card deck and are dealt to the agents. In
a partial information game, an agent may be uncertain about the true state of
the game. In particular, an 8-card poker agent may not be able to discriminate
between some nodes in the tree. The nodes that an agent cannot tell apart are
grouped in information sets.

In Figure 2.2 a part of the game-tree of 8-card poker is drawn. At the root of
the tree, the chance node ‘start’, a card is dealt to each agent. At each decision
node the agents can choose between action 1 (bet/call), and action 0 (pass/fold).
The figure shows two deals: in the first the dealer receives card 2, in the second he
receives card 6. The gambler receives card 4 in both cases. Therefore the gambler
cannot discriminate between the two deals. This is illustrated by the information
sets indicated by ovals. The leaves of the tree represent the outcomes of the game
and the corresponding payoffs. In the figure only the payoff of the gambler is shown,
the payoff of the dealer is exactly the opposite, as 8-card poker is a zero-sum game.

An assumption that usually is made with the analysis of extensive form games
is that of perfect recall. It embodies that, at a certain node or phase in the game,
a player perfectly remembers the actions he took and observations he received.

22 Decision-Theoretic Planning for Teams of Agents

2.1.2.3 Other Models of Sequential Decision Making

More recently, influence diagrams (ID) have been proposed for decision making
(Howard and Matheson, 1984/2005). An influence diagram models a decision mak-
ing situation by a graphical model that discriminates between variables (chosen by
nature) and decision nodes. Additionally the model specifies one or more utility
nodes, that specify the payoff for the decision maker. Koller and Milch (2003)
extended IDs to include multiple agents. Their model, the multiagent influence
diagram (MAID), can represent the same type of interactions as strategic and ex-
tensive games, but the representation can be more compact because the variables
are made explicit (whereas an extensive game typically has to combine all infor-
mation in its nodes). Koller and Milch show how Nash-equilibria can be computed
for such MAIDs. Networks of influence diagrams (NIDs) were introduced by Gal
and Pfeffer (2008) and extent MAIDs by allowing the agents to be uncertain over
the game being played and about the models of each other. Each such model is a
MAID and they are connected through a graph.

2.1.3 The Shortcoming of Game-Theoretic Models

In the preceding section we have introduced a number of models for decision mak-
ing under uncertainty. However, these models all share one important drawback:
they are unable to compactly specify decision problems over multiple time steps.
For instance, although extensive games can model problems of sequential decision
making in uncertain environments, the game trees needed to model complex en-
vironments are extremely large. MAIDs and NIDs can be more compact than
extensive games, but this is especially the case with respect to the structure of
the variables of influence, not with respect to decisions made over multiple stages.
Doshi, Zeng, and Chen (2008) propose a closely related graphical model formu-
lation of I-POMDPs called interactive dynamic influence diagram (I-DID). Even
though this model allows for a compact representation of sequential decision prob-
lems, like the I-POMDP, it gives a subjective view from a particular agent and as
such may be more suitable for self-interested agents. Moreover I-DIDs lead to the
same difficulties as I-POMDPs in that there is an infinite hierarchy of beliefs about
each other.

2.2 Decentralized POMDPs

This thesis adopts the decentralized POMDP framework as its model for objective
sequential decision making for a team of cooperative agents because it can be
specified compactly. In the remainder of this chapter we formally define the Dec-
POMDP and some other models from the family of discrete time, MDP-derived
frameworks and discuss some of their properties. Intuitively, such models specify
a number of agents that inhabit a particular environment, which is considered at
discrete time steps, also referred to as stages (Boutilier et al., 1999) or (decision)
epochs (Puterman, 1994). The number of time steps the agents will interact with

2.2 Decentralized POMDPs 23

their environment is called the horizon of the decision problem, and will be denoted
by h.

The family of MDP-derived frameworks considered in decision theoretic plan-
ning very neatly fits the definition of an agent (Russell and Norvig, 2003) by offering
an interface of actions and observations to interact with the environment. At each
stage t = 0,1,2, . . . ,h − 1 every agent under consideration takes an action and the
combination of these actions influences the environment, causing a state transition.
At the next time step, each agent first receives an observation of the environment,
after which it has to take an action again. The transition- and observation prob-
abilities are specified by the transition- and observation model and determine the
dynamics of the environment. Additionally there are rewards that specify what
behavior is desirable. Hence, the reward model defines the agents’ goal or task:
the agents have to come up with a plan that maximizes the expected long term
reward signal.

In this section we more formally treat the Dec-POMDP model. We start by
giving a mathematical definition of its components.

Definition 2.6 (Dec-POMDP). A decentralized partially observable Markov deci-
sion process (Dec-POMDP) is defined as a tuple

〈
D,S,A,T,R,O,O,h,b0

〉
, where

• D = {1, . . . ,n} is the set of n agents.

• S is a (finite) set of states.

• A is the set of joint actions.

• T is the transition probability function.

• R is the immediate reward function.

• O is the set of joint observations.

• O is the observation probability function.

• h is the horizon of the problem as mentioned above.

• b0 ∈ P(S), is the initial state distribution at time t = 0.

The Dec-POMDP model extends single-agent (PO)MDP models by considering
joint actions and observations. In particular, we define A = ×iAi as the set of joint
actions. Here, Ai is the set of actions available to agent i which can be different
for each agent. Every time step, one joint action a = 〈a1,...,an〉 is taken. How this
joint action influences the environment is described by the transition function T as
will be detailed in Subsection 2.2.1. In a Dec-POMDP, agents only know their own
individual action; they do not observe each other’s actions. We will assume that
any action ai ∈ Ai can be selected at any time. So the set Ai does not depend on
the stage or state of the environment. In general, we will denote the stage using
superscripts, so at denotes the joint action taken at stage t, ati is the individual
action of agent i taken at stage t. Also, we write a 6=i = 〈a1, . . . ,ai−1,ai+1, . . . ,an〉
for a profile of actions for all agents but i.

24 Decision-Theoretic Planning for Teams of Agents

Similarly to the set of joint actions, O = ×iOi is the set of joint observations,
where Oi is a set of observations available to agent i. Every time step the en-
vironment emits one joint observation o = 〈o1,...,on〉, from which each agent i
only observes its own component oi, as illustrated by Figure 2.3. The observation
function O specifies the probabilities of joint observations as will be explained in
Subsection 2.2.2. Notation with respect to time and indices for observations is
analogous to the notation for actions.

The work in this thesis is based on the assumption that the state action and
observation sets are finite. Infinite action- and observation sets are very difficult to
deal with even in the single-agent case, and to the author’s knowledge no research
has been performed on this topic in the partially observable, multiagent case.

A final note is that the Dec-POMDP model is equivalent to the multiagent team
decision problem (MTDP) that was introduced by Pynadath and Tambe (2002b).
Formally, the MTDP defines an extension to a richer belief space for each agent.
Would there be a compact belief representation for individual agents in partially
observable MASs, this could be used as the basis of the policy in the MTDP model.
So far no such compact representation has been proposed for the general setting,
and the models are equivalent.

2.2.1 States and Transitions

Actions and observations are the interface between the agents and their environ-
ment. The Dec-POMDP framework describes this environment by its states and
transitions. Rather than considering a complex, typically domain-dependent model
of the environment that explains how this environment works, a descriptive stance
is taken: A Dec-POMDP specifies an environment model simply as the set of pos-
sible states S =

{
s1,...,s|S|

}
of the environment, together with the probabilities of

state transitions, which are dependent on executed joint actions. In particular, the
transition to a state depends stochastically on the past states and actions. This
probabilistic dependence models outcome uncertainty : the fact that the outcome
of an action cannot be predicted with full certainty as discussed in Section 1.2.

An important characteristic of Dec-POMDPs is that the states possess the
Markov property. That is, the probability of a particular next state depends on the
current state and joint action, but not on the whole history:

Pr(st+1|st,at,st−1,at−1,...,s0,a0) = Pr(st+1|st,at). (2.2.1)

Also, we will assume that the transition probabilities are stationary, meaning that
they are independent of the stage t. In such a case the transition model T can be
described by |A| matrices of size |S| × |S|. In Chapter 5 we will consider factored
states, which make the variables, or factors, that describe each state explicit and
allow for a more compact representation of the transition model.

2.2.2 The Observation Model

In a way similar to how the transition model T describes the stochastic influence of
actions on the environment, the observation model O describes how the state of the

2.2 Decentralized POMDPs 25

actions

observations

states s0 s1 sh−1

o0 o1 oh−1

o01

o0n

o11

o1n

oh−1
1

oh−1
n

a0 a1

...
...

...
. . .

. . .

. . .

a01

a0n

a11

a1n

ah−1
1

ah−1
n

ah−2 ah−1

t 0 1 h− 1

Figure 2.3: An illustration of the dynamics of a Dec-POMDP. At every stage the environ-
ment is in a particular state. This state emits a joint observation, of which
each agent observes its individual observation. Then each agent selects an
action forming the joint action.

environment is perceived by the agents. Formally, O is the observation function,
a mapping from joint actions and resulting states to probability distributions over
joint observations: O : A× S → P(O). I.e., it specifies

Pr(ot|at−1,st). (2.2.2)

This implies that the observation model also satisfies the Markov property (there is
no dependence on the history). Also the observation model is assumed stationary:
there is no dependence on the stage t.

The Dec-POMDP is truly decentralized in the sense that during execution the
agents are assumed to act based on their individual observations only and no addi-
tional communication is assumed. This does not mean that Dec-POMDPs cannot
model settings which concern communication. For instance, if one agent has an
action “write ‘A’ on blackboard” and the other agent has an observation “see ‘A’
written on blackboard”, the agents certainly do have a mechanism of communi-
cation through the state of the environment. However, rather than making this
communication explicit, we say that the Dec-POMDP can model communication
implicitly through the actions, states and observations. Subsection 2.8.3 further
elaborates on communication in Dec-POMDPs.

26 Decision-Theoretic Planning for Teams of Agents

2.2.3 Rewards and Optimality Criteria

The reward function R : S × A → R is used to specify the goal of the agents and
is a function of states and joint actions. In particular, a desirable sequence of joint
actions should correspond to a high ‘long-term’ reward, formalized as the return.

Definition 2.7. Let the return or cumulative reward of a Dec-POMDP be defined
as the total sum of the rewards the team of agents receives during execution:

h∑

t=0

R(st,at) (2.2.3)

where R(st,at) is the reward received at time step t.

We consider as optimality criterion the expected cumulative reward

E
[h∑

t=0

R(st,at)
]
, (2.2.4)

where the expectation refers to the expectation over sequences of states and exe-
cuted joint actions. The planning problem is to find a conditional plan, or policy,
for each agent to maximize the optimality criterion. In the Dec-POMDP case this
amounts to finding a tuple of policies, called a joint policy that maximizes the
expected cumulative reward. Another frequently used optimality criterion is the
discounted expected cumulative reward

E
[h∑

t=0

γtR(st,at)
]
, (2.2.5)

where 0 ≤ γ < 1 is the discount factor. Discounting is typically used to keep the
optimality criterion bounded in infinite horizon problems, but can also be used in
finite horizon problems to give higher priority to rewards that are obtained sooner.
The regular expected cumulative reward is the special case with γ = 1. Another
optimality criterion we will not consider further is the average reward criterion
(Puterman, 1994; Petrik and Zilberstein, 2007)

Note that, in contrast to reinforcement learning settings (Sutton and Barto,
1998), in a Dec-POMDP, the agents are assumed not to observe the immediate
rewards. Observing the immediate rewards could convey information regarding the
true state which is not present in the received observations, which is undesirable
as all information available to the agents should be modeled in the observations.
When planning for Dec-POMDPs the only thing that matters is the expectation of
the cumulative future reward which is available in the off-line planning phase, not
the actual reward obtained. Indeed, it is not even assumed that the actual reward
can be observed at the end of the episode.

2.3 Benchmark Problems

This section introduces two example problems: a problem in which several agents
have to fight fires and Dec-Tiger, a standard Dec-POMDP benchmark.

2.3 Benchmark Problems 27

num. agents at H 0 1 ≥ 2
H burning? no yes * no yes yes *

burning neighbor? no no yes * no yes *

Pr(x′H = 0) 0 0 0 0 0 0 1
Pr(x′H = xH − 1) 0 0 0 0 1 0.6 0

Pr(x′H = xH) 1 0.6 0.2 1 0 0.4 0
Pr(x′H = xH + 1) 0 0.4 0.8 0 0 0 0

Table 2.1: Summary of the transition model for the fire level of a houseH in FireFighting.
The table shows the probabilities of the 4 possible stochastic effects: the fire in
the house is extinguished, the fire level decreases, remains equal or increases.

2.3.1 The FireFighting Problem

The FireFighting problem models a team of n firefighters that have to extinguish
fires in a row of NH houses. At every time step, each agent i can choose to fight
fires at each house H. That is Ai = {H1, . . . ,HNH

}. Each agent can only observe
whether there are flames, oi = F , or not, oi = N , at its location. Each house H
is characterized by a fire level xH , an integer parameter between 0 and Nf the
number of fire levels, where a level of 0 indicates the house is not burning. A state
in FireFighting is an assignment of fire levels s = 〈x1, . . . ,xNH

〉 . Initially, the
fire level xH of each house is drawn from a uniform distribution.

If a house H is burning (xH > 0) and no firefighting agent is present, its fire
level will increase by one point with probability 0.8 if any of its neighboring houses
are burning, and with probability 0.4 if none of its neighbors are on fire. A house
that is not burning can only catch fire (with probability 0.8) if there is no agent
fighting fire and at least one of its neighbors is on fire. When two agents are in
the same house, they extinguish any present fire completely, setting the house’s fire
level to 0. A single agent present at a house lowers the fire level by one point with
probability 1 if no neighbors are burning, and with probability 0.6 otherwise. The
transition model is summarized by Table 2.1.

The observations of the agents depend on the fire level of the house they chose
to fight fire at. Each agent will observe flames (F) with probability 0.2 if xH = 0,
with probability 0.5 if xH = 1, and with probability 0.8 otherwise.

The agents receive a reward of rH(s) = −xH for each house H and the total
reward R received at a step is the sum of rH . In particular, the rewards are specified
by the fire levels at the next time step

R(s,a,s′) =

NH∑

H=1

rH(s′) =

NH∑

H=1

−x′H

where x′H is the fire level of house H as specified by the next-stage state s′. These
rewards can be converted to the R(s,a)-form by taking the expectation over s′ as
follows

R(s,a) =
∑

s′

Pr(s′|s,a)R(s,a,s′).

28 Decision-Theoretic Planning for Teams of Agents

~o∅ → go house 3

flames → go house 3
no flames → go house 1

flames, flames → go house 1
flames, no flames → go house 1
no flames, flames → go house 2
no flames, no flames → go house 2

~o∅ → go house 2

flames → go house 2
no flames → go house 2

flames, flames → go house 1
flames, no flames → go house 1
no flames, flames → go house 1
no flames, no flames → go house 1

Figure 2.4: Optimal policy for 2-agent FireFighting 〈NH = 3,Nf = 3〉, horizon 3. On
the left the policy for the first agent, on the right the second agent’s policy.

Figure 2.4 shows an optimal joint policy for horizon 3 of the FireFighting

problem with n = 2,NH = 3,Nf = 3. One agent initially moves to the middle house
to fight fires there, which helps prevent fire from spreading to its two neighbors.
The other agent moves to house 3, and stays there if it observes fire, and moves to
house 1 if it does not observe flames. As well as being optimal, such a joint policy
makes sense intuitively speaking.

2.3.2 The Decentralized Tiger Problem

The most used Dec-POMDP benchmark is the decentralized tiger (Dec-Tiger)
problem introduced by Nair, Tambe, Yokoo, Pynadath, and Marsella (2003c),
which is a modification of the (single-agent) tiger problem (Kaelbling et al., 1998).
It concerns two agents that are standing in a hallway with two doors. Behind one
of the doors is a tiger, behind the other a treasure. Therefore there are two states:
the tiger is behind the left door (sl) or behind the right door (sr). Both agents
have 3 actions at their disposal: open the left door (aOL), open the right door (aOR)
and listen (aLi). But they cannot observe each other’s actions. In fact, they can
only receive 2 observations. Either they hear a sound left (oHL) or right (oHR).

At t = 0 the state is sl or sr with probability 0.5. As long as no agent opens
a door the state does not change, when a door is opened, the state resets to sl
or sr with probability 0.5. The full transition, observation and reward model are
listed by Nair et al. (2003c). The observation probabilities are independent, and
identical for both agents. For instance, when the state is sl and both perform
action aLi, both agents have a 85% chance of observing oHL, and the probability of
both hearing the tiger left is 0.85 · 0.85 = 0.72.

When the agents open the door for the treasure they receive a positive reward
(+9), while they receive a penalty for opening the wrong door (−101). When
opening the wrong door jointly, the penalty is less severe (−50). Opening the
correct door jointly leads to a higher reward (+20).

Note that, when the wrong door is opened by one or both agents, they are
attacked by the tiger and receive a penalty. However, neither of the agents observe
this attack nor the penalty and the episode continues. Arguably, a more natural
representation would be to have the episode end after a door is opened or to let
the agents observe whether they encountered the tiger or treasure. As such, the

2.4 Histories 29

reader should regard the Dec-Tiger problem purely as a benchmark, rather than
a realistic scenario.

2.3.3 Other Problem Domains

Throughout this thesis we will also refer to other test problems. Here we provide
very concise descriptions of these problems and pointers to more information.

Apart from the standard Dec-Tiger domain, we consider a modified version,
called Skewed Dec-Tiger, in which the start distribution is not uniform. In-
stead, initially the tiger is located on the left with probability 0.8. The Broad-

castChannel was introduced by Hansen, Bernstein, and Zilberstein (2004) and
models two nodes that have to cooperate to maximize the throughput of a shared
communication channel. Furthermore, a test problem called “Meeting on a Grid”
is provided by Bernstein, Hansen, and Zilberstein (2005), in which two robots nav-
igate on a two-by-two grid. We usually consider GridSmall, the version with
2 observations per agent (Amato, Bernstein, and Zilberstein, 2006). Other prob-
lems are Cooperative Box Pushing (Seuken and Zilberstein, 2007b) in which 2
robots have to cooperate to move boxes; Recycling Robots (Amato, Bernstein,
and Zilberstein, 2007a) which involves two agents that have to recycle trash and
Hotel 1, a benchmark where two travel agents have to allocate clients (Spaan and
Melo, 2008).

A more elaborate description of these problems is given in Appendix A, which
also includes a table that compares the number of agents, states, actions and obser-
vations for these problems and gives an indication of the number of joint policies.

2.4 Histories

The goal of planning in a Dec-POMDP is to find a (near-) optimal tuple of poli-
cies, and these policies specify for each agent how to act in a specific situation.
Therefore, before we define a policy, we first need to define exactly what these
specific situations are. In essence such situations are those parts of the history of
the process that the agents can observe.

Let us first consider what the history of the process is. A Dec-POMDP specifies
h time steps or stages t = 0,...,h − 1. At each of these stages, there is a state st,
joint observation ot and joint action at. Therefore, when the agents will have to
select their k-th actions (at t = k − 1), the history of the process is a sequence of
states, joint observations and joint actions, which has the following form:

(
s0,o0,a0,s1,o1,a1,...,sk−1,ok−1

)
. (2.4.1)

Here s0 is the initial state, drawn according to the initial state distribution b0.
The initial joint observation o0 is assumed to be the empty joint observation:
o0 = o∅ =

〈
o1,∅,...,on,∅

〉
.

From this history of the process, the true states remain unobserved and agent
i can only observe its own actions and observations. If the agents would be able
to observe the true state at some point, they could disregard the complete history

30 Decision-Theoretic Planning for Teams of Agents

before that since the states possess the Markov property and thus contain enough
information to predict the future. However, since the agents do not observe such a
Markovian signal, each agent will have to base its decision regarding which action
to select on the complete history of actions and its observations observed up to
that point.

Definition 2.8 (Action-observation history). We define the action-observation his-

tory (AOH) for agent i, ~θi, as the sequence of actions taken by and observations
received by agent i. At a specific time step t, this is

~θ ti =
(
o0i ,a

0
i ,o

1
i , . . . ,a

t−1
i ,oti

)
. (2.4.2)

The joint action-observation history, ~θ, is the action-observation history for all
agents:

~θt = 〈~θ t1 , . . . ,~θ
t
n〉. (2.4.3)

Agent i’s set of possible AOHs at time t is ~Θti = ×t(Oi×Ai). The set of all possible

AOHs for agent i is ~Θi = ∪
h−1
t=0

~Θti.
1 Finally the set of all possible joint AOHs is

given by ~Θ = ∪h−1
t=0 (

~Θt1 × ... × ~Θtn). At t = 0, the action-observation history is

empty, denoted by ~θ0 = ~θ∅.

We will also use a notion of history only using the observations of an agent.

Definition 2.9 (Observation history). The observation history (OH) for agent i,
~oi, is defined as the sequence of observations an agent has received. At a specific
time step t, this is:

~o ti =
(
o0i ,o

1
i , . . . ,o

t
i

)
. (2.4.4)

The joint observation history, ~o, is the observation history for all agents:

~o t = 〈~o t1 , . . . ,~o
t
n〉. (2.4.5)

The set of observation histories for agent i at time t is denoted ~Oti = ×tOi. Similar

to the notation for action-observation histories, we also use ~Oi and ~O and the
empty observation history is denoted ~o∅.

Similarly we can define the action history as follows.

Definition 2.10 (Action history). The action history (AH) for agent i, ~ai, is the
sequence of actions an agent has performed. At a specific time step t, we write:

~a ti =
(
a0i ,a

1
i , . . . ,a

t−1
i

)
. (2.4.6)

Notation for joint action histories and sets are analogous to those for ob-
servation histories. Also write ~o 6=i,~θ 6=i, etc. to denote a tuple of observation-,
action-observation histories, etc. for all agents except i. Finally we note that,
clearly, a (joint) AOH consists of a (joint) action- and a (joint) observation history:
~θt = 〈~o t,~a t〉.

1In a particular Dec-POMDP, it may be the case that not all of these histories can actually
be realized, because of the probabilities specified by the transition and observation model.

2.5 Policies 31

aOL

aOL

aOL

aOL

aOL

aLiaLi

aLi

aLi

aLiaLi

aLi

aOR

aOR

aOR

aOR

oHL

oHLoHL

oHL
oHR

oHRoHR

oHR

act.-obs. history

Figure 2.5: A deterministic policy can be represented as a tree. Left: a tree of action-
observation histories ~θi for one of the agents from the Dec-Tiger problem.
An arbitrary deterministic policy πi is highlighted. Clearly shown is that πi

only reaches a subset of of histories ~θi. (~θi that are not reached are not further
expanded.) Right: The same policy can be shown in a simplified policy tree.

2.5 Policies

As discussed in the previous section, the action-observation history of an agent
specifies all the information the agent has when it has to decide upon an action.
For the moment we assume that an individual policy πi for agent i is a deterministic
mapping from action-observation sequences to actions.

The number of possible AOHs is usually very large as this set grows expo-
nentially with the horizon of the problem. At time step t, there are (|Ai| · |Oi|)

t

action-observation histories for agent i. As a consequence there are a total of

h−1∑

t=0

(|Ai| · |Oi|)
t
=

(|Ai| · |Oi|)
h − 1

(|Ai| · |Oi|)− 1

of such sequences for agent i. Therefore the number of policies for agent i becomes:

|Ai|
(|Ai|·|Oi|)

h−1

(|Ai|·|Oi|)−1 , (2.5.1)

which is doubly exponential in the horizon h.

2.5.1 Pure and Stochastic Policies

It is possible to reduce the number of policies under consideration by realizing that
a lot of policies specify the same behavior. This is illustrated by the left side of
Figure 2.5, which clearly shows that under a deterministic policy only a subset
of possible action-observation histories are reached. Policies that only differ with
respect to an action-observation history that is not reached in the first place, man-
ifest the same behavior. The consequence is that in order to specify a deterministic

32 Decision-Theoretic Planning for Teams of Agents

policy, the observation history suffices: when an agent takes its actions determinis-
tically, it will be able to infer what action it took from only the observation history
as illustrated by the right side of Figure 2.5.

Definition 2.11. A pure or deterministic policy, πpi , for agent i in a Dec-POMDP

is a mapping from observation histories to actions, πpi : ~Oi → Ai. The set of pure
policies of agent i is denoted Πi.

Note that also for pure policies we sometimes write πpi (
~θi). In this case we

mean the action that πpi specifies for the observation history contained in ~θi. For

instance, let ~θi = 〈~oi,~ai〉, then πpi (
~θi) ≡ πpi (~oi). Whether πpi (

~θi) denotes such a

pure policy as described here, or a more general policy πi : ~Θi → Ai, should be
clear from the context. We use π = 〈π1,...,πn〉 to denote a joint policy, a profile
specifying a policy for each agent. We say that a pure joint policy is an induced
or implicit mapping from joint observation histories to joint actions π : ~O → A.
That is, the mapping is induced by individual policies πi that make up the joint
policy. Also we use π 6=i = 〈π1, . . . ,πi−1,πi+1, . . . ,πn〉, to denote a profile of policies
for all agents except i.

Apart from pure policies, it is also possible to have the agents execute ran-
domized policies, i.e., policies that do not always specify the same action for the
same situation, but in which there is an element of chance that decides which ac-
tion is performed. There are two types of randomized policies: mixed policies and
stochastic policies.

Definition 2.12. A mixed policy, πmi , for an agent i is a set of pure policies,
M ⊆ Πi, along with a probability distribution over this set. Thus a mixed policy
πmi ∈ P(M) is an element of the set of probability distributions overM.

Definition 2.13. A stochastic or behavioral policy, πsi , for agent i is a mapping
from action-observation histories to probability distributions over actions, πsi :
~Θi → P(Ai). The probability of ai taken for ~θi according to πsi is written π

s
i (ai|

~θi).

When considering stochastic policies, keeping track of only the observations
is insufficient, as in general all action-observation histories can be realized. That
is why stochastic policies are defined as a mapping from the full space of action-
observation histories to probability distributions over actions. Note that we use πi
and Πi to denote a policy (space) in general, so also for randomized policies. We
will only use πpi , π

m
i and πsi when there is a need to discriminate between different

types of policies.

2.5.2 Temporal Structure in Policies

Policies specify actions for all stages of the Dec-POMDP. A common way to repre-
sent the temporal structure in a policy is to split it in decision rules δi that specify
the policy for each stage. An individual policy is then represented as a sequence of
decision rules πi = (δ0i , . . . ,δ

h−1
i). In case of a deterministic policy, the form of the

decision rule for stage t is a mapping from length-t observation histories to actions
δti :

~Oti → Ai. The most general form of the decision rule for stage t is a mapping

2.5 Policies 33

from stage t action-observation histories to actions δti :
~Θti → Ai. A joint decision

rule δt = 〈δt1, . . . ,δ
t
n〉 specifies a decision rule for each agent.

We will also consider policies that are partially specified with respect to time.
Formally, ϕt = (δ0, . . . ,δt−1) denotes the past joint policy at stage t, which is a
partial joint policy specified for stages 0,...,t − 1. By appending a joint decision
rule for stage t, we can ‘grow’ such a past joint policy.

Definition 2.14 (Policy concatenation). We write

ϕt+1 = (δ0, . . . ,δt−1,δt) = 〈ϕt ◦ δt〉 (2.5.2)

to denote policy concatenation.

To complete the overview of possible policy constructs with respect to time,
we also define future policies. A future policy ψti of agent i specifies all the future
behavior. That is, ψti =

(
δt+1
i , . . . ,δh−1

i

)
. We also consider future joint policies

ψt = (δt+1, . . . ,δh−1).
Summarizing, the structure of a policy πi can be represented as follows

πi = (δ0i ,δ
1
i , . . . ,δ

t−1
i︸ ︷︷ ︸

ϕt
i

,δti , δ
t+1
i , . . . ,δh−1

i︸ ︷︷ ︸
ψt

i

) (2.5.3)

and similarly for joint policies.

2.5.3 The Quality of Joint Policies

Clearly, policies differ in how much reward they can expect to accumulate, which
will serve as a criterion of a joint policy’s quality. Formally, we consider the ex-
pected cumulative reward of a joint policy, also referred to as its value.

Definition 2.15. The value V (π) of a joint policy π is defined as

V (π) ≡ E
[h−1∑

t=0

R(st,at)
∣∣∣π,b0

]
, (2.5.4)

where the expectation is over states, observations and—in the case of a randomized
π—actions.

In particular we can compute this expectation using

V (π) =

h−1∑

t=0

∑

~θt∈~Θt

∑

st∈S

Pr(st,~θt|π,b0)
∑

at∈A

R(st,at)π(at|~θt), (2.5.5)

where π(at|~θt) is the probability of a as specified by the possibly stochastic joint

policy π, and where Pr(st,~θt|π,b0) is recursively defined as

Pr(st,~θt|π,b0) =
∑

st−1∈S

Pr(ot|at−1,st) Pr(st|st−1,at−1)π(at−1|~θt−1)

Pr(st−1,~θt−1|π,b0), (2.5.6)

34 Decision-Theoretic Planning for Teams of Agents

For stage 0 we have that Pr(s0,~θ∅|π,b
0) = b0(s0).

Because of the recursive nature of Pr(st,~θt|π,b0) it is more intuitive to specify
the value recursively:

Vπ(s
t,~θt) =

∑

at∈A

π(at|~θt)

[
R(st,at) +

∑

st+1∈S

∑

ot+1∈O

Pr(st+1,ot+1|st,at)Vπ(s
t+1,~θt+1)

]
, (2.5.7)

with ~θt+1 = (~θt,at,ot+1). The value of joint policy π is then given by

V (π) =
∑

s0∈S

Vπ(s
0,~θ∅)b

0(s0). (2.5.8)

By splitting Pr(st,~θt|π,b0) in a marginal and a conditional, for the special case
of evaluating a pure joint policy π, (2.5.5) can be written as

V (π) =

h−1∑

t=0

∑

~θt∈~Θt

Pr(~θt|π,b0)R(~θt,π(~θt)), (2.5.9)

where
R(~θt,at) =

∑

st∈S

R(st,at) Pr(st|~θt,b0) (2.5.10)

denotes the expected immediate reward. In this case, the recursive formulation
(2.5.7) reduces to1

V tπ(s
t,~o t) = R

(
st,π(~o t)

)
+

∑

st+1∈S

∑

ot+1∈O

Pr(st+1,ot+1|st,π(~o t))V t+1
π (st+1,~o t+1).

(2.5.11)

2.5.4 Existence of an Optimal Pure Joint Policy

Although randomized policies may be useful, we can restrict our attention to pure
policies without sacrificing optimality, as shown by the following.

Proposition 2.1 (Existence optimal pure joint policy). A finite horizon Dec-
POMDP has at least one optimal pure joint policy.

Proof. This proof follows a proof by Schoute (1978). It is possible to convert a
Dec-POMDP to an extensive game and thus to a strategic game, in which the
actions are pure policies for the Dec-POMDP (Oliehoek and Vlassis, 2006). In
this strategic game, there is at least one maximizing entry corresponding to a pure
joint policy which we denote πmax. Now, assume that there is a joint stochastic

1Note that, intermediate results should be cached. A particular (st+1,~o t+1)-pair can be
reached from |S| states st of the previous stage.

2.6 Solving Dec-POMDPs 35

policy πs = 〈πs1, . . . ,π
s
n〉 that attains a higher payoff. Kuhn (1953) showed that

for each stochastic πsi policy, there is a corresponding mixed policy πmi . Therefore
πs corresponds to a joint mixed policy πm = 〈πm1 , . . . ,π

m
n 〉. Clearly a mixed joint

policy can never achieve a higher value than the maximum of the pure joint policies
it assigns positive weight to, formalized in the following. Let us write Πmi for the
support of πmi . πm now induces a probability distribution pm over the set of joint
policies Πm = Πm1 × · · · ×Πmn ⊆ Π which is a subset of the set of all joint policies.
The expected payoff can now be written as

V (πs) = Epm(V (π)|π ∈ Πm) ≤ max
π∈Πm

V (π) ≤ max
π∈Π

V (π) = V (πmax),

contradicting that πs is a joint stochastic policy that attains a higher payoff.

2.6 Solving Dec-POMDPs

This section gives an overview of methods proposed for finding (approximate) so-
lutions for finite horizon Dec-POMDPs. Because the infinite-horizon problem is
significantly different from the finite-horizon case, we will not go into details of
work performed on infinite-horizon Dec-POMDPs, such as the work by Peshkin,
Kim, Meuleau, and Kaelbling (2000); Bernstein et al. (2005); Szer and Charpillet
(2005); Amato et al. (2006, 2007a); Amato and Zilberstein (2009). A major prob-
lem in this setting is how to represent policies. A common choice is to use finite
state controllers (FSCs). Since an infinite-horizon Dec-POMDP is undecidable
(Bernstein, Givan, Immerman, and Zilberstein, 2002), most research in this line
of work focuses on approximate solutions (e.g., Bernstein et al., 2005) or finding
optimal solutions given a particular controller size (Amato et al., 2006, 2007a).

2.6.1 Complexity

Section 2.5.4 assures that an optimal solution can be found in the set of pure joint
policies. Still, the number of such pure joint policies is doubly exponential in the
horizon h, which provides some intuition about how hard the problem is. This
intuition is supported by the complexity result due to Bernstein et al. (2000).

Theorem 2.2 (Dec-POMDP complexity). The problem of finding the optimal so-
lution for a finite horizon Dec-POMDP with n ≥ 2 is NEXP-complete.

Moreover, Dec-POMDPs cannot be approximated efficiently: Rabinovich, Gold-
man, and Rosenschein (2003) showed that even finding an ǫ-approximate solution
is NEXP-hard. As mentioned, the infinite-horizon problem is undecidable, which
is a direct result of the undecidability of (single-agent) POMDPs over an infinite
horizon (Madani, Hanks, and Condon, 1999).

2.6.2 Brute Force Policy Evaluation

Because there exists an optimal pure joint policy for a finite-horizon Dec-POMDP,
it is in theory possible to enumerate all different pure joint policies, evaluate them

36 Decision-Theoretic Planning for Teams of Agents

using equations (2.5.8) and (2.5.11) and choose the best one. The number of pure
joint policies to be evaluated is

O

(
|A∗|

n(|O∗|h−1)
|O∗|−1

)
, (2.6.1)

where |A∗| and |O∗| denote the largest individual action and observation sets. The
cost of evaluating each joint policy is O

(
|S| · |O∗|nh

)
. The resulting total cost of

brute-force policy evaluation is

O

(
|A∗|

n(|O∗|h−1)
|O∗|−1 · |S| · |O∗|

nh

)
, (2.6.2)

which is doubly exponential in the horizon h.

2.6.3 Alternating Maximization

Nair et al. (2003c) introduced Joint Equilibrium based Search for Policies (JESP).
This method guarantees to find a locally optimal joint policy, more specifically, a
Nash equilibrium: a tuple of policies such that for each agent i its policy πi is a best
response for the policies employed by the other agents π 6=i. It relies on a process
we refer to as alternating maximization. This is a procedure that computes a
policy πi for an agent i that maximizes the joint reward, while keeping the policies
of the other agents fixed. Next, another agent is chosen to maximize the joint
reward by finding its best-response to the fixed policies of the other agents. This
process is repeated until the joint policy converges to a Nash equilibrium, which is
a local optimum. The main idea of fixing some agents and having others improve
their policy was presented before by Chades, Scherrer, and Charpillet (2002), but
they used a heuristic approach for memory-less agents. The process of alternating
maximization is also referred to as hill-climbing or coordinate ascent.

Nair et al. (2003c) describe two variants of JESP, the first of which, Exhaustive-
JESP, implements the above idea in a very straightforward fashion: Starting from
a random joint policy, the first agent is chosen. This agent then selects its best-
response policy by evaluating the joint reward obtained for all of its individual
policies when the other agents follow their fixed policy.

The second variant, DP-JESP, uses a dynamic programming approach to com-
pute the best-response policy for a selected agent i. In essence, fixing the policies
of all other agents allows for a reformulation of the problem as an augmented
POMDP. In this augmented POMDP a state s̄ = 〈s,~o 6=i〉 consists of a nominal
state s and the observation histories of the other agents ~o 6=i. Given the fixed de-
terministic policies of other agents π 6=i, such an augmented state s̄ is a Markovian
state, and all transition and observation probabilities for the augmented POMDP
can easily be derived from π 6=i and the transition and observation model of the
original Dec-POMDP.

Like most methods proposed for Dec-POMDPs, JESP exploits the knowledge
of the initial belief b0 by only considering reachable beliefs b(s̄) in the solution
of the POMDP. However, in some cases the initial belief might not be available.
As demonstrated by Varakantham, Nair, Tambe, and Yokoo (2006), JESP can be
extended to plan for the entire space of initial beliefs, overcoming this problem.

2.6 Solving Dec-POMDPs 37

Time(s)

a

a

a

a

a

a

ā

ā āā

ā

ā āā

oo

o

oo

o

ōō

ō

ōō

ō

Figure 2.6: Difference between policy construction in MAA
∗ (left) and dynamic program-

ming (right) for an agent with actions a,ā and observations o,ō. The dashed
components are newly generated, dotted components result from the previ-
ous iteration. MAA

∗ expands a partial policy from the leaves, while dynamic
programming backs up a set of sub-tree policies forming new ones.

2.6.4 Multiagent A∗ (MAA∗)

Szer, Charpillet, and Zilberstein (2005) introduced a heuristically guided policy
search method called multiagent A∗ (MAA

∗). It performs a guided A*-like search
over partially specified joint policies, pruning joint policies that are guaranteed to
be worse than the best (fully specified) joint policy found so far by an admissible
heuristic. Note that this implies that the planning process itself can be reformu-
lated as a shortest path problem.

In particular MAA
∗ considers joint policies that are partially specified with

respect to time: a partial joint policy ϕt = (δ0,δ1, . . . ,δt−1) specifies the joint
decision rules for the first t stages. For such a partial joint policy ϕt a heuristic
value V̂ (ϕt) is calculated by taking V 0...t−1(ϕt), the actual expected reward ϕt

achieves over the first t stages, and adding V̂ t...h−1, a heuristic value for the re-
maining h−t stages. Clearly when V̂ t...h−1 is an admissible heuristic—a guaranteed
overestimation—so is V̂ (ϕt).

MAA
∗ starts by placing the completely unspecified joint policy ϕ0 in an open

list. Then, it proceeds by selecting partial joint policies ϕt = (δ0,δ1, . . . ,δt−1) from
the list and expanding them: generating all ϕt+1 = (δ0,δ1, . . . ,δt−1,δt) = 〈ϕt ◦ δt〉
by appending all possible joint decision rules δt for the next time step (t). The left
side of Figure 2.6 illustrates the expansion process. After expansion, all created
children are heuristically valuated and placed in the open list, any partial joint
policies ϕt+1 with V̂ (ϕt+1) less than the expected value V (π) of some earlier
found (fully specified) joint policy π, can be pruned. The search ends when the
list becomes empty, at which point an optimal fully specified joint policy is found.

2.6.5 Dynamic Programming for Dec-POMDPs

MAA
∗ incrementally builds policies from the first stage t = 0 to the last t =

h − 1. Prior to this work, Hansen, Bernstein, and Zilberstein (2004) introduced
dynamic programming (DP) for Dec-POMDPs, which constructs policies the other

38 Decision-Theoretic Planning for Teams of Agents

way around: starting with a set of 1-step policies (actions) that can be executed at
the last stage, they construct a set of 2-step policies to be executed at h− 2, etc.

It should be stressed that the policies maintained are quite different from those
used by MAA

∗. A partial policy in MAA
∗ has the form ϕt = (δ0,δ1, . . . ,δt−1).

The policies maintained by DP do not have such a correspondence to decision rules.
We define the time-to-go τ at stage t as

τ = h− t. (2.6.3)

Now qτ=ki denotes a k-steps-to-go sub-tree policy for agent i. That is, qτ=ki is a
policy tree that has the same form as a full policy for the horizon-k problem. Within
the original horizon-h problem qτ=ki is a candidate for execution starting at stage
t = h−k. The set of k-steps-to-go sub-tree policies maintained for agent i is denoted
Qτ=ki . Dynamic programming for Dec-POMDPs is based on backup operations:
constructing Qτ=k+1

i from Qτ=ki . For instance, the right side of Figure 2.6 shows
how qτ=3

i , a 3-steps-to-go sub-tree policy, is constructed from two qτ=2
i ∈ Qτ=2

i .
Also illustrated is the difference between this process and MAA

∗ expansion (on
the left side).

Dynamic programming consecutively constructs Qτ=1
i ,Qτ=2

i , . . . ,Qτ=hi for all
agents i. However, the size of the set Qτ=k+1

i constructed by an exhaustive backup
is given by

|Qτ=k+1
i | = |Ai| |Q

τ=k
i ||Oi|,

and as a result the sizes of the maintained sets grow doubly exponential with k
(note that since the qτ=ki are essentially full policies for the horizon-k problem,
their number is doubly exponential in k).

To counter this source of intractability, Hansen et al. (2004) propose to eliminate
dominated sub-tree policies. The expected reward of a particular sub-tree policy
qτ=ki depends on the probability over states when qτ=ki is started (at stage t = h−k)
as well as the probability with which the other agents j 6= i select their sub-tree
policies qτ=kj ∈ Qτ=kj . In fact, if the other agents use a fixed (possibly mixed)
policy, the problem can be interpreted as a single agent POMDP as described in
Section 2.6.3, as such it is possible to reuse some ideas from POMDP solutions. If
we let qτ=k6=i denote a sub-tree profile for all agents but i, and Qτ=k6=i the set of such

profiles, we can say that qτ=ki is dominated if it is not maximizing at any point
in the multiagent belief space: the simplex over S × Qτ=k6=i . Hansen et al. test for
dominance over the entire multiagent belief space by linear programming. Removal
of a dominated sub-tree policy qτ=ki of an agent i may cause a sub-tree policy
qτ=kj of an other agent j to become dominated. Therefore they propose to iterate
over agents until no further pruning is possible, a procedure known as iterated
elimination of dominated policies (Osborne and Rubinstein, 1994). Finally, when
the last backup step is completed the optimal policy can be found by evaluating
all joint policies π ∈ Qτ=h1 × · · · × Qτ=hn for the initial belief b0.

2.6.5.1 Extensions on DP for Dec-POMDPs

In the last few years several extensions to the dynamic programming algorithm for
Dec-POMDPs have been proposed. The first of these extensions is due to Szer

2.6 Solving Dec-POMDPs 39

and Charpillet (2006). Rather than testing for dominance over the entire multi-
agent belief space, Szer and Charpillet propose to perform point-based dynamic
programming (PBDP). In order to prune the set of sub-tree policies Qτ=ki , the set
of all the belief points Bi,reachable ⊂ P(S × Q

τ=k
6=i) that can possibly be reached

by deterministic joint policies are generated. Only the sub-tree policies qτ=ki that
maximize the value at some bi ∈ Bi,reachable are kept. The proposed algorithm
is optimal, but intractable because it needs to generate all the multiagent belief
points that are reachable through all joint policies. To overcome this bottleneck,
Szer and Charpillet propose to randomly sample one or more joint policies and use
those to generate Bi,reachable.

Seuken and Zilberstein (2007a) also proposed a point-based extension of the DP
algorithm, called memory-bounded dynamic programming (MBDP). Rather than
using a randomly selected policy to generate the belief points, they propose to use
heuristic policies. A more important difference, however, lies in the pruning step.
Rather than pruning dominated sub-tree policies qτ=ki , MBDP prunes all sub-tree
policies except a few in each iteration. More specifically, for each agent maxTrees
sub-tree policies are retained, which is a parameter of the planning method. As a
result, MBDP has only linear space and time complexity with respect to the hori-
zon. The MBDP algorithm still depends on the exhaustive generation of the sets
Qτ=k+1
i from Qτ=ki which now contain |Ai|maxTrees

|Oi| sub-tree policies. More-

over, in each iteration all
(
|A∗|maxTrees

|O∗|
)n

joint sub-tree policies have to be
evaluated for each of the sampled belief points. To counter this growth, Seuken and
Zilberstein (2007b) proposed an extension that limits the considered observations
during the backup step to the maxObs most likely observations. This approach
is refined by Carlin and Zilberstein (2008) who do not prune low-probability ob-
servations, but rather cluster observations together as to minimize the expected
loss.

The method of Carlin and Zilberstein (2008) is able to bound the error intro-
duced relative to MBDP without observation compression. The error caused by
MBDP itself, however, is unbounded. Recently, Boularias and Chaib-draa (2008)
proposed an algorithm based on DP that performs a lossless compression of the
sub-tree policies and thus a more efficient optimal algorithm. The idea is that sub-
tree policies are represented in a smaller more compact form by using ideas from
the work on predictive state representations (Singh, James, and Rudary, 2004a).

A different extension of the DP for Dec-POMDPs algorithm is given by Amato,
Carlin, and Zilberstein (2007b). Their approach, bounded DP (BDP), establishes a
bound not on the used memory, but on the quality of approximation. In particular,
BDP uses ǫ-pruning in each iteration. That is, a qτ=ki that is maximizing in some
region of the multiagent belief space, but improves the value in this region by at
most ǫ, is also pruned. Because iterated elimination using ǫ- pruning can still lead
to an unbounded reduction in value, Amato et al. propose to perform one iteration
of ǫ-pruning, followed by iterated elimination using normal pruning.

More recently, two papers have introduced new techniques to counter the com-
plexity induced by the exhaustive backup. Dibangoye, Mouaddib, and Chai-draa
(2009) replace the exhaustive backup performed in the dynamic programming al-
gorithm by a branch-and-bound search. Amato, Dibangoye, and Zilberstein (2009)

40 Decision-Theoretic Planning for Teams of Agents

introduce two techniques to improve the efficiency of DP techniques: First, in-
cremental policy generation independently generates sets Qτ=k+1,ai,oi

i of useful
(non-dominated) policies qτ=k+1

i for each ai, oi separately. Second, by analyzing
which states can occur, the amount of pruning is increased.

2.6.6 Other Finite-Horizon Methods

There are a few other approaches for finite-horizon Dec-POMDPs, which we will
only briefly describe here. Aras, Dutech, and Charpillet (2007) proposed a mixed
integer linear programming formulation for the optimal solution of finite-horizon
Dec-POMDPs. Their approach is based on representing the set of possible policies
for each agent in sequence form (Romanovskii, 1962; Koller, Megiddo, and von
Stengel, 1994; Koller and Pfeffer, 1997).1 In this representation, a single policy for
an agent i is represented as a subset of the set of sequences (roughly corresponding
to action-observation histories) for the agent. As such the problem can be inter-
preted as a combinatorial optimization problem, which Aras et al. propose to solve
with a mixed integer linear program.

Oliehoek et al. (2007a, 2008a) also recognize that finding a solution for Dec-
POMDPs in essence is a combinatorial optimization problem and propose to apply
the Cross-Entropy method (de Boer, Kroese, Mannor, and Rubinstein, 2005), a
method for combinatorial optimization that recently has become popular because
of its ability to find near-optimal solutions in large optimization problems. The re-
sulting algorithm Dice performs a sampling-based policy search for approximately
solving Dec-POMDPs. It operates by sampling pure policies from an appropriately
parametrized stochastic policy, and then evaluates these policies either exactly or
approximately in order to define the next stochastic policy to sample from, and so
on until convergence.

Finally, Emery-Montemerlo et al. (2004, 2005) proposed to approximate Dec-
POMDPs through series of Bayesian games. Most of the work in this thesis is based
on the same representation, and a detailed explanation is deferred to Chapter 3. We
do mention here that while Emery-Montemerlo et al. assume that the algorithm is
run on-line (interleaving planning and execution), no such assumption is necessary.
Rather we will apply the same framework during a off-line planning phase, just like
the other algorithms covered in this overview.

2.7 Generalization: Partially Observable Stochas-
tic Games

The generalization of the Dec-POMDP is the partially observable stochastic game
(POSG). It has the same components as a Dec-POMDP, except that it specifies not
a single reward function, but a collection of reward functions, one for each agent.
This means that a POSG assumes self-interested agents that want to maximize
their individual expected cumulative reward.

1Both the method of Boularias and Chaib-draa (2008) and the work on predictive state
representations are closely related to the sequence form.

2.8 Special Cases 41

The consequence of this is that there is no longer an optimal joint policy, sim-
ply because optimality is no longer defined. Rather the joint policy should be a
(Bayesian) Nash Equilibrium, and preferably a Pareto optimal NE. However, there
is no clear way to identify the best one. Moreover, such a Pareto optimal NE is only
guaranteed to exist in randomized policies (for a finite POSG), which means that it
is no longer possible to perform brute-force policy evaluation. Also search methods
based on alternating maximization (see Section 2.6.3) are no longer guaranteed
to converge for POSGs. The dynamic programming method proposed by Hansen
et al. (2004) does apply to POSGs: it finds the set of non-dominated policies for
each agent.

Even though the consequences of switching to self-interested agents are severe
from a computational perspective, from a modeling perspective the Dec-POMDP
and POSG framework are very similar. In particular all dynamics with respect to
transitions and observations are identical, and therefore computation of probabili-
ties of action-observation histories and joint beliefs transfers to the POSG setting.
As such, even though solution methods presented in this thesis may not transfer
directly to the POSG case, the modeling aspect largely does. Therefore we expect
that it should be possible to extend (parts of) these methods to POSG settings
even if this is non-trivial.

2.8 Special Cases

Because of the negative complexity results for Dec-POMDPs, much research has fo-
cused on special cases of Dec-POMDPs. This section treats some special cases that
are relevant for the work reported in this thesis. Related work that exploits particu-
lar independence assumptions for factored Dec-POMDPs is reported in Chapter 5.
For a more comprehensive overview of all the special cases, the reader is referred
to the articles by Pynadath and Tambe (2002b); Goldman and Zilberstein (2004);
Seuken and Zilberstein (2008).

2.8.1 Degrees of Observability

Researchers have identified different categories of observation functions correspond-
ing to degrees of observability (Pynadath and Tambe, 2002b; Goldman and Zilber-
stein, 2004). When the observation function is such that the individual observation
for each of the agents will always uniquely identify the true state, the problem is
considered fully- or individually observable. In such a case, a Dec-POMDP effec-
tively reduces to a multiagent Markov decision process (MMDP) introduced by
Boutilier (1996).

In this setting a (joint) action can be selected based on the state without con-
sidering the history, because the state is Markovian. Moreover, because each agent
can observe the state, there is an effective way to coordinate. One can think of
the situation as a regular MDP with a ‘puppeteer’ agent that selects joint actions.
For this ‘underlying MDP’ an optimal solution π∗ can be found efficiently1 with

1Solving an MDP is P-complete (Papadimitriou and Tsitsiklis, 1987), but the underlying

42 Decision-Theoretic Planning for Teams of Agents

standard dynamic programming techniques (Puterman, 1994). Such a solution
π∗ = (δ0, . . . ,δh−1) specifies a mapping from states to joint actions for each stage
∀t δ

t : S → A and can be split into individual policies πi =
(
δ0i , . . . ,δ

h−1
i

)
with

∀t δ
t
i : S → Ai for all agents.
The other extreme is when the problem is non-observable, meaning that none of

the agents observes any useful information. This is modeled by the fact that agents
always receive a null-observation, ∀i Oi =

{
oi,∅
}
. Under non-observability agents

can only employ an open-loop plan. A result of this is that the non-observable
setting is easier from a complexity point of view (NP-complete, Pynadath and
Tambe 2002b).

Between these two extremes there are partially observable problems which are
the focus of this thesis. One more special case has been identified, namely the case
where not the individual, but the joint observation identifies the true state. This
case is referred to as jointly- or collectively observable.

Definition 2.16 (Dec-MDP). A jointly observable Dec-POMDP is referred to as
a Dec-MDP.

Even though all observations together identify the state in a Dec-MDP, each
agent still has a partial view. As such Dec-MDPs are a non-trivial sub-class of
Dec-POMDPs for which the NEXP-completeness result holds (Bernstein et al.,
2002).

2.8.2 The Single Agent Case

In case there is only one agent, the Dec-POMDP reduces to a standard POMDP.
In a POMDP, the agent cannot observe the state, so it is not possible to specify a
policy as a mapping from states to actions. However, it turns out that maintaining
a probability distribution over states, called belief, b ∈ P(S), is a sufficient statistic:

∀st bt(st) ≡ Pr(st|ot,at−1,ot−1, . . . ,a0,o0). (2.8.1)

As a result, a single agent in a partially observable environment can specify its
policy as a series of mappings from the set of beliefs to actions ∀t δt : P(S)→ A.

Unfortunately, in the general Dec-POMDP case considered in this thesis, no
such space-saving simplifications of the policy are possible. Even though the tran-
sition and observation model can be used to compute a joint belief b, this compu-
tation requires knowledge of the joint actions and observations. During execution,
the agents simply have no access to this information and thus can not compute a
joint belief.

2.8.3 Communication

The main focus of this thesis is the regular Dec-POMDP, i.e., the setting without
explicit communication. The Dec-POMDP, however, has been extended to explic-
itly incorporate communication actions, and observations. The resulting model, the

MDP of a Dec-POMDP still has size exponential in the number of agents. However, given the
MMDP representation for a particular (typically small) number of agents, solution is efficient.

2.9 Summary 43

Dec-POMDP-Com (Goldman and Zilberstein, 2003, 2004) additionally includes a
set of messages Σ that can be sent by each agent and a cost function CΣ that
specifies the cost of sending each message. The multiagent team decision prob-
lem (MTDP) that was mentioned in Section 2.2, has a similar extension, called
the Com-MTDP (Pynadath and Tambe, 2002b), which is equivalent to the Dec-
POMDP-Com.

Although the Dec-POMDP-Com model itself could allow different communi-
cation models, studies so far have considered noise-free instantaneous broadcast
communication. That is, at a stage in the process each agent broadcasts its mes-
sage and receives the messages sent by all other agents instantaneously and without
errors.

In the most general case, the goal in a Dec-POMDP-Com is to:

“find a joint policy that maximizes the expected total reward over the
finite horizon. Solving for this policy embeds the optimal meaning of
the messages chosen to be communicated” — Goldman and Zilberstein
(2003)

That is, in this perspective the semantics of the communication actions become
part of the optimization problem. This problem is considered by Xuan, Lesser, and
Zilberstein (2001); Goldman and Zilberstein (2003); Spaan, Gordon, and Vlassis
(2006); Goldman, Allen, and Zilberstein (2007).

One can also consider the case where messages have fixed semantics. In such
a case the agents need a mechanism to process these semantics (i.e., to allow the
messages to affect their beliefs). In the Com-MTDP, the extended belief performs
this function. The same functionality is also assumed in the Dec-POMDP-Com.
For instance, when the agents share their local observations, each agent maintains a
joint belief and performs an update of this joint belief, rather than maintaining the
list of observations. It was shown by Pynadath and Tambe (2002b) that under cost-
free communication, a joint communication policy that shares the local observations
at each stage is optimal. Since intuitively this also makes sense, much research has
investigated sharing local observations in models similar to the Dec-POMDP-Com
(Ooi andWornell, 1996; Pynadath and Tambe, 2002b; Nair, Roth, and Yohoo, 2004;
Becker, Lesser, and Zilberstein, 2005; Roth, Simmons, and Veloso, 2005a,b; Spaan
et al., 2006; Oliehoek et al., 2007b; Roth, Simmons, and Veloso, 2007; Goldman
and Zilberstein, 2008).

Although models with explicit communication seem more general than the mod-
els without, it is possible to transform the former to the latter. That is, a Dec-
POMDP-Com can be transformed to a Dec-POMDP (Goldman and Zilberstein,
2004; Seuken and Zilberstein, 2008). The complexity results also transfer to these
models. This means that although this thesis focuses on the regular Dec-POMDP
setting, contributions transfer to the case of general communication.

2.9 Summary

This chapter presented an overview of both game-theoretic as decision-theoretic
models for multiagent decision making. The main emphasis in this overview was

44 Decision-Theoretic Planning for Teams of Agents

on the decentralized POMDP and its solution over a finite horizon, which also is
the focus of the rest of the thesis. In particular, the presented class of dynamic
programming solution methods give a backwards perspective on the solution of
Dec-POMDPs: a solution is constructed incrementally starting from the last stage
and moving back through time. The next two chapters, in contrast, will present
a forward perspective on the solution of Dec-POMDPs. This perspective will use
the introduced single-shot Bayesian games.

Chapter 3

Optimal Value Functions for

Dec-POMDPs

Over the last half century, the single-agent MDP framework has received much
attention, and many results are known (Bellman, 1957b,a; Howard, 1960; Puter-
man, 1994; Sutton and Barto, 1998; Bertsekas, 2007). In particular it is known
that an optimal plan, or policy, can be extracted from the optimal action-value,
or Q-value, function Q∗(s,a), and that the latter can be calculated efficiently. For
POMDPs, similar results are available, although finding an optimal solution is
harder (PSPACE-complete for finite-horizon problems, Papadimitriou and Tsitsik-
lis, 1987).

This chapter discusses how value functions can be computed for decentralized
settings, and how policies can be extracted from those value functions. In particu-
lar, it treats the value functions that result of superimposing different assumptions
with respect to communication on top of the Dec-POMDP model. The common
assumption is that this communication is noise and cost free, the differences are
with respect to the delay this communication incurs. We consider:

• The plain Dec-POMDP setting which assumes no communication. This can
be interpreted as a delay of at least h stages.

• Instantaneous communication.

• One-step delayed communication.

• k-steps delayed communication.

The main contribution of this chapter lies in the contribution to the theory of Dec-
POMDPs. In particular, it addresses the previously outstanding issue whether
Q-value functions can be defined for Dec-POMDPs just as in (PO)MDPs, and
whether an optimal policy can be extracted from such Q-value functions. Most al-
gorithms for planning in Dec-POMDPs are based on some version of policy search,
and a proper theory of Q-value functions in Dec-POMDPs has been lacking. Given

45

46 Optimal Value Functions for Dec-POMDPs

the wide range of applications of value functions in single-agent decision-theoretic
planning, we expect that such a theory for Dec-POMDPs can provide great ben-
efits, both in terms of providing insight as well as guiding the design of solution
algorithms.

A second contribution is the integrated overview of value-functions for decen-
tralized settings. For the communicative settings already some results are known.
In particular the immediate communication case reduces to the POMDP setting,
for which many results are known, and Dec-MDP settings with delayed communica-
tion have received some attention in control theory literature. Yet, to the author’s
knowledge, there has never been an overview presenting these different settings in
an integrated manner. Also, this chapter extends to the Dec-POMDP setting with
delayed communication.

3.1 No Communication

This section shows how value functions can be defined for Dec-POMDPs of a finite
horizon h. That is we assume that the agents cannot communicate or, equivalently,
that the delay of communication is h. These value functions can be employed by
representing a Dec-POMDP as a series of Bayesian Games, which were discussed
in Subsection 2.1.1.2. This idea of using a series of BGs to find policies for a
Dec-POMDP was proposed in an approximate setting by Emery-Montemerlo et al.
(2004). In particular, they showed that using series of BGs and an approximate
payoff function, they were able to obtain approximate solutions for Dec-POMDPs.

The main result of this section is that an optimal joint Dec-POMDP policy
can be computed from the solution of a sequence of Bayesian games. That is,
there exists at least one Q-value function Qπ∗ (corresponding to an optimal policy
π∗) that, when used as the payoff function of a sequence of Bayesian games, will
yield an optimal solution. Thus, the results of Emery-Montemerlo et al. (2004) are
extended to include the optimal setting.

Subsection 3.1.4 shows that without assuming a particular optimal joint pol-
icy π∗, it is not possible to compute an optimal value function of the form Q∗(~θt,a).
Rather, as Subsection 3.1.5 demonstrates, the optimal Qt,∗ for a stage t depends
on the past joint policy executed over stages 0,...,t− 1.

3.1.1 Modeling Dec-POMDPs as Series of Bayesian Games

Bayesian games can be used to model Dec-POMDPs. Essentially, a Dec-POMDP
can be seen as a tree where nodes are joint action-observation histories and edges
represent joint actions and observations, as illustrated in Figure 3.1. At a specific
stage t in a Dec-POMDP, the main difficulty in coordinating action selection is
presented by the fact that each agent has its own individual action-observation
history. That is, there is no global signal that the agents can use to coordinate
their actions. This situation can be conveniently modeled by a Bayesian game as
we will now discuss.

At a time step t, one can directly associate the primitives of a Dec-POMDP
with those of a BG with identical payoffs: the actions of the agents are the same in

3.1 No Communication 47

t = 0

t = 1

joint actions

joint observations

joint act.-obs. history〈a1,a2〉

〈ā1,a2〉

〈a1,ā2〉

〈ā1,ā2〉

〈o1,o2〉

〈ō1,o2〉
〈o1,ō2〉

〈ō1,ō2〉

Figure 3.1: A Dec-POMDP can be seen as a tree of joint actions and observations. The
indicated planes correspond with the Bayesian games for the first two stages.

both cases, and the types of agent i correspond to its action-observation histories
Θi ≡ ~Θti. Figure 3.2 shows the Bayesian games for t = 0 and t = 1 for a fictitious
Dec-POMDP with 2 agents.

We denote the payoff function of the BG that models a stage of a Dec-POMDP
by Q(~θt,a). This payoff function should be naturally defined in accordance with
the value function of the planning task. For instance, Emery-Montemerlo et al.
define Q(~θt,a) as the QMDP-value of the underlying MDP. We will more extensively
discuss the payoff function in Subsection 3.1.2.

The probability Pr(θ) is equal to the probability of the joint action-observation

history ~θt to which θ corresponds and depends on the past joint policy ϕt =
(δ0, . . . ,δt−1) and the initial state distribution. It can be calculated as the marginal
of (2.5.6):

Pr(θ) = Pr(~θt|ϕt,b0) =
∑

st∈S

Pr(st,~θt|ϕt,b0). (3.1.1)

When only considering pure joint policies ϕt, the action probability component
π(a|~θ) in (2.5.6) (which corresponds to ϕ(a|~θ) here) is 1 for joint action-observation

histories ~θt that are ‘consistent’ with the past joint policy ϕt and 0 otherwise. We
say that an action-observation ~θi history is consistent with a pure policy πi if it
can occur when executing πi, i.e., when the actions in ~θi would be selected by πi.
Let us more formally define this consistency as follows.

Definition 3.1 (AOH Consistency). Let us write ~θ ki for the restriction of ~θ ti to

48 Optimal Value Functions for Dec-POMDPs

~θ t=0
2 ()

~θ t=0
1 a2 ā2

()
a1 +2.75 −4.1
ā1 −0.9 +0.3

~θ t=1
2 (a2,o2) (a2,ō2) ...

~θ t=1
1 a2 ā2 a2 ā2

(a1,o1)
a1 −0.3 +0.6 −0.6 +4.0 ...
ā1 −0.6 +2.0 −1.3 +3.6 ...

(a1,ō1)
a1 +3.1 +4.4 −1.9 +1.0 ...
ā1 +1.1 −2.9 +2.0 −0.4

(ā1,o1)
a1 −0.4 −0.9 −0.5 −1.0 ...
ā1 −0.9 −4.5 −1.0 +3.5 ...

(ā1,ō1)

Figure 3.2: The Bayesian game for the first and second time step (left: t = 0, right:

t = 1). The entries ~θt, at are given by the payoff function Q(~θt,at). Light
shaded entries indicate the solutions. Dark entries will not be realized given
〈a1,a2〉 the solution of the BG for t = 0.

stages 0, . . . ,k (with 0 ≤ k < t). An action-observation history ~θ ti of agent i is
consistent with a pure policy πi if and only if at each time step k with 0 ≤ k < t

πi(~θ
k
i) = πi(~o

k
i) = aki

is the (k + 1)-th action in ~θ ti . A joint action-observation history ~θt = 〈~θ t1 , . . . ,~θ
t
n〉

is consistent with a pure joint policy π = 〈π1, . . . ,πn〉 if each individual ~θ ti is
consistent with the corresponding individual policy πi. C is the indicator function
for consistency. For instance C(~θt,π) ‘filters out’ the action-observation histories
~θt that are inconsistent with a joint pure policy π:

C(~θt,π) =

{
1 , ~θt =

(
o0,π(o0),o1,π(o0,o1),...

)
)

0 , otherwise.
(3.1.2)

We will also write ~Θt
π ≡ {~θ

t | C(~θt,π) = 1} for the set of ~θt consistent with π.

This definition allows us to write

Pr(~θt|ϕt,b0) = C(~θt,ϕt)
∑

st∈S

Pr(st,~θt|b0) (3.1.3)

with

Pr(st,~θt|b0) =
∑

st−1∈S

Pr(ot|at−1,st) Pr(st|st−1,at−1) Pr(st−1,~θt−1|b0). (3.1.4)

Figure 3.2 illustrates how the indicator function ‘filters out’ action-observation
histories: when πt=0(~θt=0) = 〈a1,a2〉, only the non-shaded part of the BG for
t = 1 ‘can be reached’ (has positive probability).

3.1.2 The Q-Value Function of an Optimal Joint Policy

Given the perspective of a Dec-POMDP interpreted as a series of BGs as outlined
in the previous section, the solution of the BG for stage t is a joint decision rule
δt for that stage. If the payoff function for the BG is chosen well, the quality of

3.1 No Communication 49

δt should be high. Emery-Montemerlo et al. (2004) try to find a good joint policy
π = (δ0, . . . ,δh−1) by a procedure we refer to as forward-sweep policy computation
(FSPC): in one sweep forward through time, the BG for each stage t = 0,1, . . . ,h−1
is consecutively solved. As such, the payoff functions for the BGs constitute a Q-
value function for the Dec-POMDP.

Here, we show that there exists an optimal Q-value function Q∗: when using
this as the payoff functions for the BGs, forward-sweep policy computation will
lead to an optimal joint policy π∗ = (δ0,∗, . . . ,δh−1,∗). In particular, given an
optimal joint policy π∗ we identify a normative description of Qπ∗ as the Q-value
function for an optimal joint policy.

Proposition 3.1 (Value of an optimal joint policy.). The expected cumulative
reward over stages t, . . . ,h − 1 induced by π∗, an optimal pure joint policy for a
Dec-POMDP, is given by:

V t(π∗) =
∑

~θt∈~Θt
π∗

Pr(~θt|b0)Qπ∗(~θt,π∗(~θt)), (3.1.5)

where ~θt = 〈~o t,~a t〉, where π∗(~θt) = π∗(~o t) denotes the joint action π∗ specifies
for ~o t, and where

Qπ∗(~θt,a) = R(~θt,a) +
∑

ot+1∈O

Pr(ot+1|~θt,a)Qπ∗(~θt+1,π∗(~θt+1)) (3.1.6)

is the Q-value function for π∗, which gives the expected cumulative future reward
when taking joint action a at ~θt given that π∗ is followed hereafter.

Sketch of proof. By filling out (2.5.5) for an optimal pure joint policy π∗ it is
possible to derive the equations. This derivation is listed in Appendix D.

3.1.3 Deriving an Optimal Joint Policy

At this point we have derived Qπ∗ , a Q-value function for an optimal joint policy.
Now, we extend the results of Emery-Montemerlo et al. (2004) into the exact setting
by the following theorem:

Theorem 3.1 (Optimality of FSPC). Applying forward-sweep policy computation
using Qπ∗ as defined by (3.1.6) yields an optimal joint policy.

Proof. Note that, per definition, an optimal Dec-POMDP policy π∗ maximizes the
expected future reward V t(π∗) specified by (3.1.5). Therefore δt,∗, the optimal
decision rule for stage t, is identical to an optimal joint policy βt,∗ for the Bayesian
game for time step t, if the payoff function of the BG is given by Qπ∗ , that is:

δt,∗ ≡ βt,∗ = argmax
βt

∑

~θt∈~Θt
π∗

Pr(~θt|b0)Qπ∗(~θt,βt(~θt)). (3.1.7)

Equation (3.1.7) tells us that δt,∗ ≡ βt,∗. This means that it is possible to construct
the complete optimal Dec-POMDP policy π∗ = (δ0,∗, . . . ,δh−1,∗), by computing
δt,∗ for all t.

50 Optimal Value Functions for Dec-POMDPs

A subtlety in the calculation of π∗ is that (3.1.7) itself is dependent on an

optimal joint policy, as the summation is over all ~θt ∈ ~Θt
π∗ ≡ {~θt | C(~θt,π∗) = 1}.

This is resolved by realizing that only the past actions influence which action-
observation histories can be reached at time step t. If we denote the optimal past
joint policy by ϕt,∗ = (δ0,∗, . . . ,δt−1,∗), we have that ~Θt

π∗ = ~Θt
ϕt,∗ , and therefore

that:
βt,∗ = argmax

βt

∑

~θt∈~Θt

ϕt,∗

Pr(~θt|b0)Qπ∗(~θt,βt(~θt)). (3.1.8)

This can be solved in a forward manner for time steps t = 0,1,2,...,h−1, because at
every time step ϕt,∗ will be available: it is specified by (β0,∗,...,βt−1,∗) the solutions
of the previously solved BGs.

In this way, we have identified how a Q-value function of the form Qπ∗(~θt,a) can
be used in the planning phase to find an optimal policy through solution of a series
of BGs. Note that the fact that the true AOH, ~θt, is not observed during execution
is not a problem: the joint policy is constructed in the (off-line) planning phase,
based on the expectation over all possible AOHs. This expectation is implicit in
what can be called the ‘BG operator’, i.e., the solution of a BG.

3.1.4 Computing an Optimal Q-Value Function

So far we discussed that Qπ∗ can be used to find an optimal joint policy π∗.
Unfortunately, when an optimal joint policy π∗ is not known, computing Qπ∗

itself is impractical, as we will discuss here. This is in contrast with the (fully
observable) single-agent case where the optimal Q-values can be found relatively
easily in a single sweep backward through time.

In Section 3.1.2, the optimal expected return was expressed as Qπ∗(~θt,a) by
assuming an optimal joint policy π∗ is followed up to the current stage t. However,
when no such previous policy is assumed, the optimal expected return is not defined.

Proposition 3.2 (No Q∗(~θt,at) except for last stage). For a pair (~θt,at) with t <

h−1 the optimal value Q∗(~θt,at) cannot be defined without assuming some (possibly
randomized) past policy ϕt+1 =

(
δ0, . . . ,δt

)
. Only for the last stage t = h− 1 such

expected reward is defined as

Q∗(~θh−1,ah−1) ≡ R(~θh−1,ah−1) (3.1.9)

without assuming a past policy.

Proof. Let us try to deduceQ∗(~θt,at) the optimal value for a particular ~θt assuming

the Q∗-values for the next time step t+1 are known. The Q∗(~θt,at)-values for each
of the possible joint actions can be evaluated as follows

∀a Q∗(~θt,at) = R(~θt,at) +
∑

ot+1

Pr(ot+1|~θt,at)Q∗(~θt+1,δt+1,∗(~θt+1)). (3.1.10)

where δt+1,∗ is an optimal decision rule for the next stage. But what should
δt+1,∗ be? If we assume that up to stage t + 1 we followed a particular (possibly

3.1 No Communication 51

randomized) past joint policy ϕt+1, then

δt+1,∗
ϕ = argmax

βt+1

∑

~θt+1∈~Θt+1

Pr(~θt+1|ϕt+1,b0)Q∗(~θt+1,βt+1(~θt+1)). (3.1.11)

is optimal. However, there are many pure and infinite randomized past policies
ϕt+1 that are consistent with ~θt,at, and thus many different ~Θt+1

ϕ over which

the above maximization could take place, leading to many δt+1,∗
ϕ that might be

optimal. The conclusion we can draw is that Q∗(~θt,at) is ill-defined without

Pr(~θt+1|ϕt+1,b0), the probability distribution (belief) over joint action-observation
histories, which is induced by ϕt+1, the policy followed for stages 0, . . . ,t.

Let us investigate what the consequences of this insight are for the formulation
of the optimal Q-value function as defined in Section 3.1.2. Consider π∗(~θt+1)
in (3.1.6). This optimal policy is a mapping from observation histories to actions

π∗ : ~O → A induced by the individual policies and observation histories. This
means that for two joint action-observation histories with the same joint observation
history, π∗ results in the same joint action. That is ∀~a,~o,~a′ π∗(〈~a,~o〉) = π∗(〈~a′,~o〉).

Effectively this means that when we reach some ~θt 6∈ ~Θt
π∗ , say through a mistake1,

π∗ continues to specify actions as if no mistake ever happened: That is, still as-
suming that π∗ has been followed up to this stage t. In fact, π∗(~θt) might not

even be optimal if ~θt 6∈ ~Θt
π∗ . This in turn means that Q∗(~θt−1,a), the Q-values for

predecessors of ~θt, might not be the optimal.

3.1.5 Optimal Dec-POMDP Value Functions

We demonstrated that the optimal Q-value function for a Dec-POMDP is not well-
defined without assuming a past joint policy. We propose a definition of the optimal
value function of a Dec-POMDP that explicitly incorporates the past joint policy.

Theorem 3.2 (Optimal Q∗). The optimal Q-value function is properly defined as
a function of the initial state distribution and joint past policies, action-observation
histories and decision rules Q∗(b0,ϕt,~θt,δt). This Q∗ specifies the optimal value

given for all ~θt, even for ~θt that are not reached by execution of an optimal joint
policy π∗.

Proof. For all ~θt,ϕt,δt, the optimal expected return, respectively for the last stage
and for all 0 ≤ t < h− 1, is given by

Q∗(b0,ϕh−1,~θh−1,δh−1) = R(~θh−1,δh−1(~θh−1)), (3.1.12)

Q∗(b0,ϕt,~θt,δt) = R(~θt,δt(~θt)) +
∑

ot+1

Pr(ot+1|~θt,δt(~θt))Q∗(b0,ϕt+1,~θt+1,δt+1,∗),

(3.1.13)

1The question as to how the mistake of one agent should be detected by another agent is a
different matter altogether and beyond the scope of this text.

52 Optimal Value Functions for Dec-POMDPs

a1a1

a1

ā1

ā1 ā1

ā1

o1o1

o1

ō1ō1

ō1

a2

a2

a2

a2

ā2ā2ā2

o2o2

o2

ō2ō2

ō2

t = 0

t = 1

t = 2

ϕ2
1 ϕ2

2

ϕ2

δ2,∗

Figure 3.3: Computation of Q∗. δ2,∗ is the optimal decision rule for stage t = 2, given that
ϕ2 = 〈ϕ1 ◦ δ1〉 is followed for the first two stages. Q∗(~θ1,ϕ1,δ1) entries are
computed by propagating relevant Q∗-values of the next stage. For instance,
for the shaded joint history ~θ1 = 〈(a1,ō1),(a2,o2)〉, the Q∗-value under ϕ2 is
computed by propagating the values of the four successor joint histories, as
per (3.1.13).

with ϕt+1 = 〈ϕt ◦ δt〉 and

δt+1,∗ = argmax
δt+1

∑

~θt+1∈~Θt+1

Pr(~θt+1|b0,ϕt+1)Q∗(b0,ϕt+1,~θt+1,δt+1). (3.1.14)

These definitions are consistent. Because of (3.1.12) for the last stage (3.1.14) will
maximize the expected reward and thus is optimal. Equation (3.1.13) propagates
these optimal value to the preceding stage. As such optimality for all stages follows
by induction.

The above equations constitute a dynamic program. When assuming that only
pure joint past policies ϕ can be used, the dynamic program can be evaluated from
the end (t = h−1) to the beginning (t = 0). Figure 3.3 illustrates the computation
of Q∗.

When arriving at stage 0, the past joint policy is empty ϕ0 = () and joint
decision rules are simply joint actions, thus it is possible to select

δ0,∗ = argmax
δ0

Q∗(b0,ϕ0,~θ∅,δ
0) = argmax

a

Q∗(b0,(),~θ∅,a). (3.1.15)

Then given ϕ1 = δ0,∗ we can determine δ1,∗ using (3.1.14), etc. This essentially is
the forward-sweep policy computation using optimal Q-value function as defined
by (3.1.13). Note that the solution of the Bayesian game (i.e., performing the
maximization in (3.1.14)) has already been done and can be cached.

At this point, there is no clear understanding of Q∗(b0,ϕt,~θt,δt) as an action-
value function anymore, i.e., it is no longer coupled to domain level (joint) actions.

Of course it is possible to recover these. The value of performing a = δt(~θt) from

3.1 No Communication 53

~θt after having followed ϕt+1 = ϕt,δt and continuing optimally afterward is given
by

Qϕt+1=〈ϕt◦δt〉(~θ
t,δt(~θt)) = Q∗(b0,ϕt,~θt,δt). (3.1.16)

This can be used for instance to compute Qπ∗ .
Another emerging question is why we still refer to a Q-value function, i.e., why

we use the symbol ‘Q’ to refer to the value function defined here. The answer is
that δt can be seen as an action on the meta-level of the planning process. In the
same way we can interpret ϕt as the state in this planning process and we can
define V and Q with their usual interpretations. In particular, it is possible to
write

V ∗(b0,ϕt) = max
δt

Q∗(b0,ϕt,δt) (3.1.17)

where Q∗ is defined as

Q∗(b0,ϕt,δt) =
∑

~θt

Pr(~θt|b0,ϕt)Q∗(b0,ϕt,~θt,δt). (3.1.18)

Note that this Q∗ indeed has the regular interpretation of the expected immediate
reward induced by first taking ‘action’ δt plus the cumulative reward of continuing
optimally afterward. We can see this by rewriting

Q∗(b0,ϕt,δt)

=
∑

~θt

Pr(~θt|b0,ϕt)

[
R(~θt,δt(~θt))+

∑

ot+1

Pr(ot+1|~θt,δt(~θt))Q∗(b0,〈ϕt ◦ δt〉,~θt+1,δt+1,∗)
]

=
∑

~θt

Pr(~θt|b0,ϕt)R(~θt,δt(~θt))

+
∑

~θt

Pr(~θt|b0,ϕt)
∑

ot+1

Pr(ot+1|~θt,δt(~θt))Q∗(b0,〈ϕt ◦ δt〉,~θt+1,δt+1,∗)

= E
[
R(st,at)

∣∣ b0,ϕt,δt
]
+
∑

~θt+1

Pr(~θt+1|b0,〈ϕt ◦ δt〉)Q∗(b0,〈ϕt ◦ δt〉,~θt+1,δt+1,∗)

= E
[
R(st,at)

∣∣ b0,ϕt,δt
]
+Q∗(b0,〈ϕt ◦ δt〉,δt+1,∗)

= E
[
R(st,at)

∣∣ b0,ϕt,δt
]
+max
δt+1

Q∗(b0,〈ϕt ◦ δt〉,δt+1)

= E
[
R(st,at)

∣∣ b0,ϕt,δt
]
+ V ∗(b0,〈ϕt ◦ δt〉). (3.1.19)

Here E
[
R(st,at)

∣∣ b0,ϕt,δt
]
corresponds to the expected immediate reward at stage

t and V ∗(b0,〈ϕt ◦ δt〉) to the optimal value of continuing afterward.

3.1.5.1 The Relation to (Point-Based) Dynamic Programming

The computation of Q∗ is closely related to (point-based) dynamic programming
for Dec-POMDPs as discussed in Subsection 2.6.5 and 2.6.5.1. Suppose that t = 2

54 Optimal Value Functions for Dec-POMDPs

in Figure 3.3 is the last stage (i.e., h = 3). When for each ϕ2 = 〈ϕ1 ◦ δ1〉 the
maximizing δ2,∗ = 〈δ2,∗1 , . . . ,δ2,∗n 〉 has been computed, it is easy to construct the
sets of non-dominated actions for each agent: every action ai of agent i that is
specified by some δ2,∗i is non-dominated.

Once we have computed the values for all (~θ1,ϕ2 = 〈ϕ1 ◦ δ1〉) at t = 1 (i.e., all

Q∗(b0,ϕ1,~θ1,δ1) are computed), each ϕ2 has an associated next-stage joint decision
rule δ2,∗, and in general an optimal joint future policy ψ1 = (δ2,∗, . . . ,δh−1,∗) 1.

This means that, given ϕ1,δ1, we can define a joint sub-tree policy qτ=2 for
each ~θ1.2 This is done by taking 〈δ1 ◦ ψ1〉 and restricting this joint policy to the

histories consistent with ~θ1. For instance, in Figure 3.3 the shaded trees represent
the joint sub-tree policy for ~θ1 given the indicated past policy ϕ2 = 〈ϕ1 ◦ δ1〉.

Clearly, Q∗(b0,ϕ1,~θ1,δ1) corresponds to the expected value of this associated joint
sub-tree policy. Dynamic programming keeps track of these sub-trees policies. In
contrast, the algorithm to compute Q∗ presented in this section keeps track of the
values.

3.1.5.2 The Relation to Sequential Rationality

The fact that it is not possible to simply define Q∗(~θt,at) is very much related
to the notion of sub-game perfect equilibria from game theory. As explained in
Section (2.2), a sub-game perfect Nash equilibrium π = 〈π1, . . . ,πn〉 has the char-
acteristic that the contained policies πi specify an optimal action for all possible
situations—even situations that can not occur when following π. A commonly
given rationale behind this concept is that, by a mistake of one of the agents dur-
ing execution, situations that should not occur according to π, may occur, and also
in these situations the agents should act optimally. A different rationale is given by
Binmore (1992), who remarks that although it is tempting to ignore situations that
should not occur according to π, it would clearly be a mistake, because the agents
“remain on the equilibrium path because of what they anticipate would happen if
they were to deviate”. This implies that agents can decide upon a Nash equilibrium
by analyzing what the expected outcome would be by following other policies: that
is, when acting optimally from other situations. In the previous section, we per-
formed a similar reasoning for Dec-POMDPs, which—in a similar fashion—resulted
in a description that allows to deduce an optimal Q-value function and thus joint
policy.

A Dec-POMDP can be modeled as an extensive form game of imperfect informa-
tion (Oliehoek and Vlassis, 2006). For such games, the notion of sub-game perfect
equilibria is inadequate; because this type of games often do not contain proper
sub-games, every Nash equilibrium is trivially sub-game perfect. (The extensive
form of a Dec-POMDP indeed does not contain proper sub-games, because agents
can never discriminate between the other agents’ observations.) To overcome this
problem different refinements of the Nash equilibrium concept have been defined, of
which we will mention the assessment equilibrium (Binmore, 1992) and the closely

1In this example ψ1 = δ2,∗ because h = 3
2Remember a τ -stages-to-go sub-tree policy is rooted at stage t = h − τ , so qτ=2 starts at

stage t = 3− 2 = 1.

3.1 No Communication 55

related, but stronger sequential equilibrium (Osborne and Rubinstein, 1994). Both
these equilibria are based on the concept of an assessment, which is a pair 〈π,B〉
consisting of a joint policy π and a belief system B. The belief system maps the
information sets of each agent—also the ones that are not reachable given π—to
a probability distributions over nodes and thus possible joint histories. Roughly
speaking, an assessment equilibrium requires sequential rationality and belief con-
sistency.1 The former entails that the joint policy π specifies optimal actions for
each information set given B. Belief consistency means that all the beliefs that are
assigned by B are Bayes-rational given the specified joint policy π, i.e., the beliefs
are computed through proper application of Bayes’ rule.2

This is in direct correspondence to (3.1.14), which specifies to follow a strategy

that is rational given the probabilities of all possible histories ~θ, and those probabil-
ities (the corresponding consistent belief system) are computed correctly. As such
we also refer to Q∗ as defined in Theorem 3.2 as the ‘sequentially rational’ Q-value
function, in contrast to the normative description Qπ∗ of (3.1.6). Also note that
using Q∗ the optimal future policy can be computed for any past policy. This may
have important applications in an online setting. For instance, suppose agent i
makes a mistake at stage t, executing an action not prescribed by π∗

i , assuming the
other agents execute their policy π6=i without mistakes, agent i knows the actually
executed previous policy ϕt+1. Therefore it can compute a new individual policy
by

δt+1,∗
i = argmax

δt+1
i

∑

~θt+1

Pr(~θt+1|b0,ϕt+1)Q∗(~θt+1,ϕt+1,〈δt+1
i ,δt+1

6=i 〉). (3.1.20)

3.1.5.3 The Complexity of Computing Q∗

Although we have now found a way to compute the optimal Q-value function, this
computation is intractable for all but the smallest problems. The last stage is
trivial, since the Q-values are given directly by the immediate reward function.
However, for stage t = h − 2 the Q-value function Q∗(b0,ϕt,~θt,δt) has a huge
number of entries: effectively we need to compute an entry for each combination of
ϕh−1 = 〈ϕh−2 ◦ δh−2〉 and each consistent joint action-observation history ~θh−2.

Up to and including an arbitrary stage t − 1, there are
∑t−1
t′=0 |Oi|

t′
= |Oi|

t−1
|Oi|−1

observation histories for agent i and thus the number of ϕt is

O

(
|A∗|

n(|O∗|t−1)
|O∗|−1

)
.

For each of these past joint policies ϕt there are | ~Ot| = |O|t consistent joint action-
observation histories at stage t (for each observation history ~o t, ϕt specifies the

actions forming ~θt). This means that for stage h − 2 (for h − 1, the Q-values are

1Osborne and Rubinstein (1994) refer to this second requirement as simply ‘consistency’. In
order to avoid any confusion with definition 3.1 we will use the term ‘belief consistency’.

2A sequential equilibrium includes a more technical part in the definition of belief consistency
that addresses what beliefs should be held for information sets that are not reached according to
π. For more information we refer to Osborne and Rubinstein (1994).

56 Optimal Value Functions for Dec-POMDPs

easily calculated), the number of entries to be computed is the number of joint past
policies ϕh−1 times the number of joint histories

O

(
|A∗|

n(|O∗|h−1−1)
|O∗|−1 · |O|h−2

)
,

indicating that computation of this function is doubly exponential in the horizon.
Also, for each joint past policy ϕh−2,δh−2, we need to compute δh−1,∗ by solving
a BG for the last stage. To the author’s knowledge, the only method to optimally

solve these BGs is evaluation of all O(|A∗|
n|O∗|

h−1

) joint BG-policies.
As such, computing optimal value functions is intractable. In the remainder of

this chapter we will treat value functions for Dec-POMDPs with communication
and show that these are easier to compute. In the next chapter, we will consider
using approximate value functions for the non-communicative setting.

3.2 Instantaneous Communication

This section describes the optimal value functions for the setting in which the
agents are capable of instantaneous, noise-free and cost-free communication. In
particular Pynadath and Tambe (2002b) showed that under such circumstances,
it is optimal for the agents to share their local observations (e.g., by broadcasting
the individual observations to all other agents).

In effect such communication transforms a Dec-POMDP to what we refer to as
a multiagent POMDP (MPOMDP).1 We can think of the MPOMDP as a POMDP
in which there is a puppeteer agent that takes joint actions and receives joint
observations. By solving this underlying POMDP of the Dec-POMDP, all POMDP-
literature applies to this setting.

In particular, the optimal 0-steps delay value function V0 for an underlying
POMDP satisfies:

V ∗
0 (b

t) = max
a

Q∗
0(b

t,a) (3.2.1)

Q∗
0(b

t,a) = R(bt,a) +
∑

ot+1∈O

P (ot+1|bt,a)max
at+1

Q∗
0(b

t+1,at+1), (3.2.2)

where bt is the joint belief (corresponding to some joint AOH ~θt) of the single
puppeteer agent that selects joint actions and receives joint observations at time
step t, where

R(bt,a) =
∑

s∈S

R(s,a)bt(s) (3.2.3)

is the expected immediate reward, and where bt+1 is the joint belief resulting from
bt by action a and joint observation ot+1, calculated by Bayes’ rule:

∀s′ bt+1(s′) =
Pr(o|a,s′)

∑
s∈S Pr(s′|s,a)bt(s)

∑
s′∈S Pr(o|a,s′)

∑
s∈S Pr(s′|s,a)bt(s)

. (3.2.4)

1This name is chosen in analogy with the multiagent MDP, described in Subsection 2.8.1.

3.2 Instantaneous Communication 57

~θ t=0
2 ()

~θ t=0
1 a2 ā2

()
a1 +3.1 −4.1
ā1 −0.9 +0.3

~θ t=1
2 (a2,o2) (a2,ō2) ...

~θ t=1
1 a2 ā2 a2 ā2

(a1,o1)
a1 −0.3 +0.6 −0.6 +4.0 ...
ā1 −0.6 +2.0 −1.3 +3.6 ...

(a1,ō1)
a1 +3.1 +4.4 −1.9 +1.0 ...
ā1 +1.1 −2.9 +2.0 −0.4

(ā1,o1)
a1 −0.4 −0.9 −0.5 −1.0 ...
ā1 −0.9 −4.5 −1.0 +3.5 ...

(ā1,ō1)

Figure 3.4: Backward calculation of Q∗
0-values. Note that the solutions (the highlighted

entries) are different from those in Figure 3.2: in a MPOMDP the joint actions
can be conditioned on the joint action-observation history. The highlighted
‘+3.1’ entry for the Bayesian game for t = 0 is calculated as the expected
immediate reward (= 0) plus a weighted sum of the maximizing entry (joint
action) per next joint observation history. When assuming a uniform distri-
bution over joint observations given 〈a1,a2〉 the future reward is given by:
+3.1 = 0 + 0.25 · 2.0 + 0.25 · 4.0 + 0.25 · 4.4 + 0.25 · 2.0.

For a finite horizon, Q∗
0 can be computed by generating all possible joint beliefs

and solving the belief MDP. Generating all possible beliefs is easy: starting with
b0 corresponding to the empty joint action-observation history ~θt=0, for each a
and o we calculate the resulting ~θt=1 and corresponding joint belief and continue
recursively. Solving the belief MDP amounts to recursively applying (3.2.2).

The cost of computing the optimal MPOMDP Q-value function can be divided
in the cost of calculating the expected immediate reward for all ~θt,a, and the cost
of evaluating future reward for all ~θt,a, with t = 0,...,h− 2. The former operation
has cost O(|S|) per (~θt,a)-pair. The latter requires selecting the maximizing joint

action for each joint observation which induces a cost of (|A| |O|) per (~θt,a)-pair.
The total complexity of computing Q∗

0 becomes

O

(
(|A| |O|)h−1 − 1

(|A| |O|)− 1
|A| (|A| |O|) +

(|A| |O|)h − 1

(|A| |O|)− 1
|A||S|

)
. (3.2.5)

Evaluating (3.2.2) for (joint beliefs for) all joint action-observation histories
~θt ∈ ~Θt can be done in a single backward sweep through time. This can also
be visualized in Bayesian games as illustrated in Figure 3.4; the expected future
reward is calculated as a maximizing weighted sum of the entries of the next time
step BG.1

Nevertheless, solving a POMDP optimally is also known as an intractable prob-
lem. As a result, POMDP research in the last decade has focused on approxi-
mate solutions for POMDPs. In particular, it is known that the value function
of a POMDP is piecewise-linear and convex (PWLC) over the (joint) belief space
(Sondik, 1971). This property is exploited by many approximate POMDP solution
methods (Pineau, Gordon, and Thrun, 2003; Spaan and Vlassis, 2005).

1Note that the maximization in (3.2.2) can be seen as a special instance of the ‘BG-operator’
expressed by (3.1.14). Because, under instantaneous communication, it will be possible to prune
all histories that are not realized from the BG, the BG-operator reduces to a simple maximization.

58 Optimal Value Functions for Dec-POMDPs

3.3 One-Step Delayed Communication

Here we describe the optimal value functions for a Dec-POMDP with noise-free
and cost-free communication that arrives with a one-step delay (1-SD). I.e., the

assumption is that during execution at stage t the agents know ~θt−1, the joint
action-observation history up to time step t − 1, and the joint action at−1 that
was taken at the previous time step. Because all the agents know ~θt−1, they can
compute the joint belief bt−1 it induces which is a Markovian signal. Therefore the
agents do not need to maintain prior information, bt−1 takes the same role as b0

in a regular Dec-POMDP (i.e., without communication).
The 1-SD-setting has also been considered in the field of decentralized control,

where it is usually referred to as decentralized control with a “one-step delayed
sharing pattern”. In particular, Varaiya and Walrand (1978) showed that in this
setting state estimation and control are separable. I.e., there exist an optimal sep-
arable joint policy, that specifies a separable individual policy for each agent that
maps from bt−1 and the individual history of observations received since bt−1, to
actions. Hsu and Marcus (1982) extended this work by deriving dynamic program-
ming algorithms for the finite- and infinite-horizon case. Their approach, however,
is based on the one-step predictor of st, leading to a rather involved formulation.
In this section we present what we believe to be a conceptually clearer formulation,
by resorting to Bayesian games.

As mentioned, in the 1-SD setting the agents know ~θt−1 and thus can compute
bt−1. Also, since we assume that during execution each agent knows the joint
policy, each agent can defer the taken joint action at−1. However, the agents
are uncertain regarding each other’s last observation, and thus regarding the joint
observation ot. Effectively, this situation defines a BG for each possible joint belief
bt−1 (induced by all possible ~θt−1) and joint action at−1. Note, however, that these
BGs are different from the BGs used in Section 3.1.1: the BGs here have types
that correspond to single observations, whereas the BGs in 3.1.1 have types that
correspond to complete action-observation histories. Hence, the BGs of here are
much smaller in size and thus easier to solve.

Lemma 3.1 (Value of one-step delayed communication). The optimal value func-
tion for a finite-horizon Dec-POMDP with one-step delayed communication is given
by

V t,∗1 (bt−1,at−1) = max
βt

Qt,∗1 (bt−1,at−1,βt) (3.3.1)

Qt,∗1 (bt−1,at−1,βt) =
∑

ot

Pr(ot|bt−1,at−1)Qt,∗1 (bt−1,at−1,ot,βt) (3.3.2)

Qt,∗1 (bt−1,at−1,ot,βt) = R(bt,βt(ot))

+ max
βt+1

∑

ot+1

Pr(ot+1|bt,βt(ot))Qt+1,∗
1 (bt,βt(ot),ot+1,βt+1), (3.3.3)

where bt results from bt−1,at−1,ot.

3.3 One-Step Delayed Communication 59

Proof. Qt,∗1 (bt−1,at−1,βt) should be defined as the sum of the expected immediate
and future reward, so (3.3.2) should equal

E
[
R(st,at)

∣∣ bt−1,at−1,βt
]
+ E

[
V t+1,∗
1 (bt,at)

∣∣ bt−1,at−1,βt
]
=

∑

ot

Pr(ot|bt−1,at−1)R(bt,βt(ot)) +
∑

ot

Pr(ot|bt−1,at−1)V t+1,∗
1 (bt,βt(~θt)) (3.3.4)

substitution of V t+1,∗
1 yields

∑

ot

Pr(ot|bt−1,at−1)
[
R(bt,βt(ot))+

max
βt+1

∑

ot+1

Pr(ot+1|bt,βt(ot))Qt+1,∗
1 (bt,βt(ot),ot+1,βt+1)

]
(3.3.5)

which shows that the definitions are consistent. For the last stage h − 1, the
maximization in (3.3.1) assures that the future reward is maximized, as such (3.3.1)
is optimal for the last stage. Given the optimality of the last stage, optimality
for previous stages follows by induction: given the optimality of V h−1,∗

1 , V h−2,∗
1

maximizes the sum of the expected immediate reward at h − 2 plus the future
reward V h−1,∗

1 , etc.

There is a clear correspondence between the equations in Lemma 3.1 and those
in Section 3.1.5. In particular, (3.3.1) corresponds to (3.1.17), because at−1 (resp.
ϕt) is the joint policy taken since the last known Markovian signal (distribution
over states) bt−1 (resp. b0). Similarly, (3.3.2) corresponds to (3.1.18) where βt

(resp. δt) is the joint policy for stage t that implicitly maps sequences of joint

observations ot (resp. ~θt) received since the last Markov signal to actions at.

3.3.1 Immediate Reward Formulation

Note that the arguments of (3.3.3) are somewhat redundant. In particular, the
right side only depends on the joint belief bt that results from bt−1,at−1,ot and on
the joint action at = βt(~θt). As such it can be rewritten simpler as

V t,∗1 (bt,at) = R(bt,at) + max
βt+1

∑

ot+1∈O

Pr(ot+1|bt,at)V t+1,∗
1 (bt+1,βt+1(ot+1))

(3.3.6)
In doing so, we have now constructed a formulation that specifies the value over
stages t, . . . ,h − 1 using arguments of stage t. We refer to this formulation as an
immediate reward value function. This should be seen in contrast to formulas of the
form of (3.3.1) that specify the expected value over stages t, . . . ,h − 1, but using
arguments (in particular a Markovian signal bt−1) of stage t − 1 (or in general
t − k). We refer to this type as expected reward value function, since they specify
the expected value over later stages given arguments of an earlier stage.

The remainder of this chapter will use the expected reward formulation, but
occasionally we will make a remark about the other immediate reward formulation,

60 Optimal Value Functions for Dec-POMDPs

as done here. We also note that in (3.3.6) we use V1 and not Q1 because this is
consistent with the notation for immediate reward value function formulations. An
overview of immediate reward value functions and the relation to expected reward
formulations is given in Appendix B.

3.3.2 Complexity

The cost of computing V t,∗1 (bt,at) for all ~θt,a can be split up in the cost of com-
puting the immediate reward and the cost of computing the future reward (solving

a BG over the last received observation), which is O
(
|A∗|

n|O∗|
)
, leading to a total

cost of:

O

(
(|A| |O|)h−1 − 1

(|A| |O|)− 1
|A| · |A∗|

n|O∗| +
(|A| |O|)h − 1

(|A| |O|)− 1
|A||S|

)
. (3.3.7)

Comparing to the cost of computing V0 given by (3.2.5), this contains an additional
exponential term, but this term does not depend on the horizon of the problem.

As discussed in Section 3.2, V0, the value function of the underlying POMDP,
can be efficiently approximated by exploiting the PWLC-property of the value func-
tion. Hsu and Marcus (1982) showed that the value function of their formulation
for 1-step delayed communication also preserves the PWLC property. Not surpris-
ingly, V t,∗1 (bt,at) in (3.3.6) is also PWLC over the joint belief space (Oliehoek et al.,
2007c) and, as a result, approximation methods for POMDPs can be transferred
to its computation (Oliehoek et al., 2007b).

3.4 k-Steps Delayed Communication

This section describes the setting where there is cost-free and noise-free communi-
cation, but there is a delay of k stages. Aicardi, Davoli, and Minciardi (1987) and
Ooi and Wornell (1996) performed similar work on decentralized control in which
there is a k-steps delayed state observation. That is, they consider the setting
where, at time step t, all agents i know their own observations o0i , . . . ,o

t
i and the

states that have occurred up to t−k: s0, . . . ,st−k. In particular Aicardi et al. (1987)
consider the Dec-MDP setting in which agent i’s observations are local states ŝi
and where a joint observation identifies the state s = 〈ŝ1, . . . ,ŝn〉. As a conse-
quence the delayed observation of the state st−k can be interpreted as the result
of k-steps delayed communication in a Dec-MDP. Aicardi et al. present a dynamic
programming formulation to optimally solve the finite-horizon problem. Ooi and
Wornell (1996) examine the decentralized control of a broadcast channel over an
infinite horizon and present a reformulation of the stochastic control problem, that
is very close to the description that will be presented in this section. Ooi and Wor-
nell extend upon the previous work by splitting the (individual) observations in a
local and global part, lowering the complexity of evaluating the resulting dynamic
program.

3.4 k-Steps Delayed Communication 61

In this section we will present a reformulation and minor extension of previous
work by demonstrating the solution for Dec-POMDPs where there is a k-steps de-
layed communication of the individual observation. That is, for systems where not
the state, but the joint action-observation history is perceived with a k stage delay:
at stage t, each agent i knows ~θt−k and its individual ~θ ti . For these systems the
optimal value functions are discussed, reformulated to naturally fit in the overview
of different communication assumptions. A main contribution is the result that
decreased communication delays cannot decrease the expected value of decentral-
ized systems in Section 3.4.4. For the centralized setting a similar result was shown
by Bander and White (1999). Although it is a very intuitive result, and Ooi and
Wornell (1996) use this intuition to motivate their approach, for the decentralized
setting a formal proof had been lacking.

3.4.1 Modeling Systems with k-Steps Delay

In the setting of k-steps delayed communication, at stage t each agent agent knows
~θt−k, the joint action-observation history of k stages earlier, and therefore can
compute bt−k the joint belief induced by ~θt−k. Again, bt−k is a Markov signal,
so no further history needs to be retained and bt−k takes the role of b0 in the
no-communication setting and bt−1 in the one-step delay setting. Indeed, one-step
delay is just a special case of the k-steps delay setting.

In contrast to the one-step delayed communication case, the agents do not know
the last taken joint action. However, since we assume the agents know each other
policies, they do know qτ=k,t−k, the joint policy that has been executed during
stages t − k, . . . ,t − 1. This qτ=k,t−k is a length-k joint sub-tree policy rooted at
stage t− k: it specifies a sub-tree policy qτ=k,t−ki for each agent i which is a policy
tree that specifies actions for k stages t− k, . . . ,t− 1. 1

In this section we more concisely write qt−k|k| for a length-k joint sub-tree policy.

The technicalities of how these sub-tree policies should be maintained are somewhat
involved and require some more notation that will first be introduced. Afterward
we will define optimal value functions and discuss the complexity of computing
them.

Let us assume that at a particular stage t the situation is as depicted in the top
half of Figure 3.5: the system with 2 agents has k = 2 steps delayed communication,
so each agent knows bt−k and qt−k|k| the joint sub-tree policy that has been executed

during stages t − k,t − 1. At this point the agents need to select an action, but
they don’t know each others individual observation history since stage t− k. That
is they have uncertainty with respect to the length-k observation history ~ot|k| =

(ot−k+1, . . . ,ot). Effectively, this means that the agents have to use a joint BG-
policy βt|k| = 〈β

t
1|k|, . . . ,β

t
n|k|〉 that implicitly maps length-k observation histories

to joint actions βt|k|(~o
t
|k|) = at.

We assume that in the planning phase we computed such a joint BG-policy βt|k|

1Remember from Subsection 2.6.5 that we use τ to denote the number of steps-to-go and in
the context of a sub-tree policy τ refers to its ‘length’: the number of time-steps for which it
specifies actions.

62 Optimal Value Functions for Dec-POMDPs

...a1

a1

a1

ā1 ā1

ā1

ā1ā1ā1

ā1

a2

a2

a2

a2

a2

ā2

ā2ā2ā2

ā2

o1

o1o1

o1

ō1

ō1ō1

ō1

o2

o2o2

o2

ō2

ō2ō2

ō2

qt−k
1 qt−k

2

βt
|k|

o
t−k+1 = 〈ō1,o2〉

qt−k+1
1 qt−k+1

2

t− k

t− 1

t− 1

t

t

Figure 3.5: Sub-tree policies in a system with k = 2 steps delayed communication. Top:
policies at t − k. The policies are extended by a joint BG-policy βt

|k| shown

dashed. Bottom: The resulting policies after joint observation 〈ō1,o2〉.

as indicated in the figure. As is shown, βt|k| can be used to extend the sub-tree

policy qt−k|k| to form a longer sub-tree policy with τ = k + 1 stages-to-go. Each

agent has knowledge of this extended joint sub-tree policy

qt−k|k+1| = 〈q
t−k
|k| ◦ β

t
|k|〉.

Consequently each agent i executes the action corresponding to its individual
observation history βti|k|(~o

t
i|k|) = ati and a transition occurs to stage t+ 1. At that

point each agent receives a new observation ot+1
i through perception and the joint

observation ot−k+1 through communication, it transmits its individual observation,
and computes bt−k+1. Now, all the agents know what action was taken at t − k
and what the following observation ot−k+1 was. Therefore the agents know which
part of qt−k|k+1| has been executed during the last k stages t − k + 1, . . . ,t and they

discard the part not needed further. I.e., the joint observation ‘consumes’ part of
the joint sub-tree policy.

Definition 3.2 (Policy consumption). Feeding a length-k joint sub-tree policy q
with a sequence l < k joint observations consumes a part of q leading to a joint
sub-tree policy q′ which is a sub-tree of q. In particular, consumption

w� by a single

joint observation ot−k+1 is written as

qt−k+1
|k| = qt−k|k+1|

w�
ot−k+1 . (3.4.1)

3.4 k-Steps Delayed Communication 63

This process is illustrated in the bottom part of Figure 3.5. Policy consumption
also applies to joint BG-policies:

βt|k−1| = β
t
|k|

w�
ot−k+1

Proposition 3.3 (Distributivity of policy operations). Policy concatenation and
consumption are distributive. That is

〈qt−k|k|

w�
ot−k+1 ◦ β

t
|k|

w�
ot−k+1〉 = 〈q

t−k
|k| ◦ β

t
|k|〉
w�

ot−k+1

Proof. This statement can easily be verified by inspection of Figure 3.5. A formal
proof is omitted.

3.4.2 Optimal Value Functions

This section discusses the optimal value functions under k-steps delayed commu-
nication. To ease notation we will simply write qt−k,βt for qt−k|k| ,β

t
|k|. With some

abuse of notation we write βt(~θt|k|) to denote βt|k|(o
t−k+1, . . . ,ot) the application

of the length-k joint BG policy to the last k joint observations of ~θt|k|.

Also we will consider probabilities of the form Pr(~θt|k||b
t−k,qt−k). These are

defined as marginals of Pr(st,~θt|k||b
t−k,qt−k) that are defined analogous to (2.5.6)

Pr(st,~θt|k||b
t−k,qt−k) = Pr(ot|at−1,st)

∑

st−1

Pr(st|st−1,at−1)

Pr(at−1|~θt−1
|k−1|,q

t−k) Pr(st−1,~θt−1
|k−1||b

t−k,qt−k) (3.4.2)

In a similar way as the no-communication and one-step delayed communication
settings we have the following value function in the k-steps delayed communication
case. That is, the ‘start point’ is bt−k instead of b0 or bt−1 and qt−k takes the role
of respectively ϕt, at−1.

Lemma 3.2 (Value of k-steps delayed communication). The optimal value func-
tion for a finite-horizon Dec-POMDP with k-steps delayed, cost and noise free,
communication is given by:

V t,∗k (bt−k,qt−k) = max
βt

Qt,∗k (bt−k,qt−k,βt). (3.4.3)

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)Qt,∗k (bt−k,qt−k,~θt|k|,β

t) (3.4.4)

Qt,∗k (bt−k,qt−k,~θt|k|,β
t) = R(bt,βt(~θt|k|))+∑

ot+1

Pr(ot+1|bt,βt(~θt|k|))Q
t+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗) (3.4.5)

64 Optimal Value Functions for Dec-POMDPs

where bt results from bt−k,~θt|k|, and

βt+1,∗ = argmax
βt+1

∑

~θt+1
|k|

Pr(~θt+1
|k| |b

t−k+1,qt−k+1)Qt+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1)

(3.4.6)

Sketch of proof. We will show that

Qt,∗k (~θt−k,qt−k,βt)

= E
[
R(st,at)|~θt−k,qt−k,βt

]
+ E

[
V t+1,∗
k (~θt−k+1,qt−k+1)

∣∣ ~θt−k,qt−k,βt
]

(3.4.7)

and that the other equations are consistent with this definition. This means that,
for the last stage (3.4.3) maximizes the expected reward and therefore is optimal,
optimality for other stages follows immediately by induction. The full proof is
listed in the Appendix D.

Again, there is a clear correspondence between the equations presented here
and those for the no-communication and one-step delayed communication setting.
In particular, (3.4.3) corresponds to (3.3.1), (3.1.17) and (3.4.4) corresponds to
(3.3.2),(3.1.18). More relations between the value functions are discussed in Ap-
pendix B.

3.4.3 Complexity

The equations in Lemma 3.2 form a dynamic program that can be evaluated from
end to begin. We give an analysis of the complexity by considering the number of
entries of V h−1,∗

k (bh−1−k,qh−1−k) and the amount of work needed to compute one
entry. The number of length-k joint sub-tree policies q is

O

(
|A∗|

n(|O∗|k−1)
|O∗|−1

)
(3.4.8)

where |O∗|
k−1

|O∗|−1 =
∑k−1
t=0 |O∗|

t
. The number of joint beliefs b is bounded by the

number of ~θ that induce those joint beliefs, is given by:

h−1−k∑

t=0

∣∣∣~Θt
∣∣∣ =

h−1−k∑

t=0

(|A| |O|)t =
(|A| |O|)h−k

(|A| |O|)− 1
. (3.4.9)

The maximization over β needs to consider |A∗|
n|O∗|

k

joint policies. As a result,
complexity induced by selecting the best β for each bh−1−k,qh−1−k is

O

(
(|A| |O|)h−k

(|A| |O|)− 1
· |A∗|

n|O∗|k

|O∗|−1 · |A∗|
n|O∗|

k

)
(3.4.10)

3.5 Conclusions 65

which should be compared to the first term in (3.3.2). The total complexity is the
sum of (3.4.10) and the complexity induced by computing the expected immedi-
ate rewards. Careful inspection of equations in Lemma 3.2 reveals that for each
bt induced by a pair (bt−k,~θt|k|) the expected immediate reward will need to be

computed for each joint action. The number of such bt is again bounded by the
number of joint AOHs. Therefore, the complexity induced by these computations
is

O(
(|A| |O|)h − 1

(|A| |O|)− 1
|A||S|)

as before in (the right side of) (3.3.2).
In the sections on immediate and 1-step delayed communication, we mentioned

that because these value functions are PWLC over the joint belief space, we could
use efficient approximate computation methods. Clearly it would be beneficial to
also perform approximate computation for Vk. Unfortunately is turns out that this
is not straightforward: for k ≥ 2 Varaiya and Walrand (1978) showed that k-steps
delayed communication systems1 are not separable. The result of this is that, just
as in the Dec-POMDP case (Oliehoek et al., 2007c), Vk is not a function of the
joint belief space, let alone PWLC over this space.

3.4.4 Less Delay Cannot Decrease Value

This section shows that when the delay of communication decreases, the expected
value cannot become less. That is, less delay in communication is not harmful. A
related result by Bander and White (1999) shows that for a single agent POMDP
with delayed observations, decreasing delays will not decrease the expected return.
For the decentralized case, however, no such results were available.

Theorem 3.3 (Shorter communication delays cannot decrease the expected value).
The expected value over stages t, . . . ,h − 1 given a joint belief bt−k−1 and joint
policy qt−k−1

|k+1| followed during stages t − k − 1, . . . ,t − 1 is no less under k-steps

communication delay, than under (k + 1)-steps delay. That is

∀t∀bt−k−1∀qt−k−1
|k+1|

E
[
V t,∗k (bt−k,qt−k|k|) | bt−k−1,qt−k−1

|k+1|

]
≥ V t,∗k+1(b

t−k−1,qt−k−1
|k+1|),

(3.4.11)
where the expectation on the left-hand side is over joint observations ot−k that
together with bt−k−1,qt−k−1

|k+1| induce bt−k.

Sketch of proof. The proof is by induction. The base case is that (3.4.11) holds for
the last stage t = h− 1. The full proof is listed in Appendix D.

3.5 Conclusions

A large body of work in single-agent decision-theoretic planning is based on value
functions, but such theory has been lacking thus far for Dec-POMDPs. Given

1Varaiya and Walrand refer to k units delayed ‘sharing patterns’.

66 Optimal Value Functions for Dec-POMDPs

the large impact of value functions on single-agent planning under uncertainty,
we expect that a thorough study of value functions for Dec-POMDPs can greatly
benefit multiagent planning under certainty. This chapter presented a framework of
Q-value functions for Dec-POMDPs under different communication assumptions,
providing a significant contribution to fill this gap in Dec-POMDP theory.

The main contributions are for the setting without communication, where an
optimal joint policy π∗ induces an optimal Q-value function Qπ∗(~θt,a), and how
it is possible to construct an optimal joint policy π∗ using forward-sweep policy
computation. This entails solving Bayesian games for time steps t = 0, . . . ,h − 1
which use Qπ∗(~θt,a) as the payoff function. Because Qπ∗ implicitly depends on

the optimal past joint policy, there is no clear way to compute Qπ∗(~θt,a) directly.
To overcome this problem, we introduced a different description of the optimal
Q-value function Q∗(b0,ϕh−1,~θh−1,δh−1) this makes the dependence on the past
joint policy explicit. This new description of Q∗ can be computed using dynamic
programming and can then be used to construct π∗.

Another important contribution of this chapter is that it shows that a decrease
in communication delay cannot lead to a decrease in expected return. That is,
shorter communication delays are not harmful.

Finally, the chapter has presented a unified overview of the optimal value func-
tions under various delays of communication and discussed how they relate to each
other. Two formulations, the expected reward and immediate reward formulation,
were identified, of which the former is used in this chapter. The latter form and
the relations between the two is explained in Appendix B.

3.6 Future Work

An interesting direction of future work is to try to extend the results of this chapter
to partially observable stochastic games (POSGs) (Hansen et al., 2004), which are
Dec-POMDPs with an individual reward function for each agent. Since the dynam-
ics of the POSG model are identical to those of a Dec-POMDP, a similar modeling
via Bayesian games is possible when allowing the past policy to be stochastic. An
interesting question is whether also in this case, an ‘optimal’ joint policy (i.e.,
a Pareto-optimal Bayes-Nash equilibrium) can be found by forward-sweep policy
computation.

Chapter 4

Approximate Value Functions & Heuristic

Policy Search

In the previous chapter it was discussed that a Dec-POMDP can be represented
by a series of Bayesian games (BGs), one for each stage. In these BGs, the pay-

off functions Q(~θ,a) of these BGs represent the expected return. A solution for
the Dec-POMDP can be computed by solving the BGs for subsequent stages, a
procedure first proposed by Emery-Montemerlo et al. (2004) and to which we re-
fer as forward-sweep policy computation (FSPC). When using a heuristic Q-value
function as the payoff function for the BGs FSPC finds an approximate solution.
However, the quality of such solutions may be poor. When using an optimal payoff
function Q∗, the procedure can find an optimal solution. However, Q∗ is costly to
compute and thus impractical.

This chapter brings leverage to this problem in two ways. First, we investi-
gate approximate Q-value functions that are easier to compute. In particular, we
reuse the value-functions for 0 and 1-step delayed communication identified in the
previous chapter. Next, we mitigate the problem of poor solutions by allowing back-
tracking. The resulting value-based policy search algorithm named generalized

multiagent A
∗ (GMAA

∗) unifies FSPC and MAA
∗.

4.1 Approximate Q-Value Functions

Although an optimal Q-value function Q∗ exists, it is costly to compute and thus
impractical. In this section, we review some other Q-value functions, Q̂, that can
be used as an approximation for Q∗. We will discuss underlying assumptions,
computation, computational complexity and other properties, thereby providing a
taxonomy of approximate Q-value functions for Dec-POMDPs. In particular we
will treat two well-known approximate Q-value functions, QMDP and QPOMDP, and
QBG recently introduced by Oliehoek and Vlassis (2007a). We also establish that
these value functions are admissible heuristics when used in FSPC. I.e., they are
guaranteed overestimates of Q∗ the optimal Q-value function.

67

68 Approximate Value Functions & Heuristic Policy Search

4.1.1 QMDP

QMDP was originally proposed to approximately solve POMDPs by Littman, Cas-
sandra, and Kaelbling (1995), but has also been applied to Dec-POMDPs (Emery-
Montemerlo et al., 2004; Szer et al., 2005). The idea is that Q∗ can be approximated
using the state-action values QM(s,a) found when solving the ‘underlying MDP’
of a Dec-POMDP. This underlying MDP is the horizon-h MDP defined by a sin-
gle ‘puppeteer’ agent that takes joint actions a ∈ A and observes the nominal
state s that has the same transition model T and reward model R as the original
Dec-POMDP. Solving this underlying MDP can be efficiently done using dynamic
programming techniques (Puterman, 1994), resulting in the optimal non-stationary
MDP Q-value function:

Qt,∗M (st,a) = R(st,a) +
∑

st+1∈S

Pr(st+1|st,a)max
a

Qt+1,∗
M (st+1,a). (4.1.1)

Note that Qt,∗M also is an optimal Q-value function, but in the MDP setting. Q∗

denotes the optimal value function for the (original) Dec-POMDP. In order to

transform the Qt,∗M (st,a)-values to approximate Q̂M(~θt,a)-values to be used for the
original Dec-POMDP, we compute:

Q̂M(~θt,a) =
∑

s∈S

Qt,∗M (s,a) Pr(s|~θt,b0), (4.1.2)

where Pr(s|~θt,b0) can be computed from (3.1.4). Note that Q̂M is consistent with
the established definition of Q-value functions since it is defined as the expected
immediate reward of performing (joint) action a plus the value of following an
optimal joint policy (in this case the optimal MDP-policy) thereafter. This can be
seen by combining (4.1.1) and (4.1.2):

Q̂M(~θt,a) = R(~θt,a) +
∑

st+1∈S

Pr(st+1|~θt,a)max
a′

Qt+1,∗
M (st+1,a′), (4.1.3)

Because calculation of the QtM(s,a)-values by dynamic programming (which
has a cost of O(|S|2 · |A| · h)) can be performed in a separate phase, the cost of
computation of QMDP is only dependent on the cost of evaluation of (4.1.3), which

is O(|S| |A|). When we want to evaluate QMDP for all
∑h−1
t=0 (|A| |O|)t = (|A||O|)h−1

(|A||O|)−1

joint action-observation histories is, the total computational cost becomes:

O

(
(|A| |O|)h − 1

(|A| |O|)− 1
|A|2|S|

)
. (4.1.4)

However, when applying QMDP in forward-sweep policy computation, we do not
have to consider all action-observation histories, but only those that are consistent
with the policy found for earlier stages. Effectively we only have to evaluate (4.1.3)
for all observation histories and joint actions, leading to:

O

(
(|O|)h − 1

(|O|)− 1
|A|2|S|

)
. (4.1.5)

4.1 Approximate Q-Value Functions 69

When used in the context of POMDPs, QMDP solutions are known to un-
dervalue actions that gain information (Fernández, Sanz, Simmons, and Diéguez,
2006). This is explained by realizing that (4.1.3) assumes that the state will be
fully observable in the next time step. Therefore actions that provide information
about the state, and thus can lead to a high future reward (but might have a
low immediate reward), will be undervalued. When applying QMDP in the Dec-
POMDP setting, this effect can also be expected. Another consequence of the
simplifying assumption is that the QMDP-value function is an upper bound to the
optimal value function when used to approximate a POMDP (Hauskrecht, 2000),
i.e., it is an admissible heuristic (Russell and Norvig, 2003). As a consequence it
is also an upper bound to the optimal value function of a Dec-POMDP. This is
intuitively clear, as a Dec-POMDP is a POMDP but with the additional difficulty
of decentralization. A formal argument will be presented in Section 4.1.4.

4.1.2 QPOMDP

Similar to the underlying MDP, one can define the ‘underlying POMDP’ of a Dec-
POMDP as the POMDP with the same T , O and R, but in which there is only a
single agent that takes joint actions a ∈ A and receives joint observations o ∈ O.
Note that the underlying POMDP is identical to the multiagent POMDP to which a
Dec-POMDP reduces under instantaneous communication, as was discussed in Sec-
tion 3.2. QPOMDP approximates Q∗ using the solution of the underlying POMDP
(Szer et al., 2005; Roth et al., 2005a).

Therefore, the QPOMDP function really is just Q0 as given by (3.2.2). For each
~θt there is one joint belief bt. In this chapter we will on a few occasions denote

such a joint belief by b
~θt

to make explicit the history that it is induced by. Now,
it is possible to directly use Q0-values as payoffs for the BGs of the Dec-POMDP.
That is, we define the approximate QPOMDP value function Q̂P as

Q̂P(~θ
t,a) ≡ Q∗

0(b
~θt

,a). (4.1.6)

It is intuitively clear that QPOMDP is an admissible heuristic for Dec-POMDPs,
as it still assumes that more information is available than actually is the case (again
a formal proof will be given in Section 4.1.4). Also it should be clear that, as fewer
assumptions are made, QPOMDP should yield less of an over-estimation than QMDP.
I.e., the QPOMDP-values should lie between the QMDP and optimal Q∗-values.

In contrast to QMDP, QPOMDP does not assume full observability of nominal
states. As a result the latter does not share the drawback of undervaluing ac-
tions that will gain information regarding the nominal state. When applied in a
Dec-POMDP setting, however, QPOMDP does share the assumption of centralized
control. This assumption might also cause a relative undervaluation: there might
be situations where some action might gain information regarding the joint (i.e.,
each other’s) observation history. Under QPOMDP this will be considered redun-
dant, while in decentralized execution this might be very beneficial, as it allows for
better coordination.

70 Approximate Value Functions & Heuristic Policy Search

4.1.3 QBG

QMDP approximates Q∗ by assuming that the state becomes fully observable in the
next time step, while QPOMDP assumes that at every time step t the agents know the

joint action-observation history ~θt (i.e., it assumes instantaneous communication).
Here we present a new approximate Q-value function, called QBG, that relaxes

the assumptions further: it assumes that the agents know ~θt−1, the joint action-
observation history up to time step t− 1, and the joint action at−1 that was taken
at the previous time step. That is, it assumes the setting of one-step delayed
communication, as described in Section 3.3.

As such we define the QBG heuristic Q̂B as

Q̂B(~θ
t,a) ≡ V ∗

1 (b
~θt

,a), (4.1.7)

with V ∗
1 as defined in (3.3.6).

4.1.4 Generalized QBG and Bounds

In the previous two subsections, the value functions for systems under respectively
0 and 1 step delayed communication have been used to define heuristic payoff
functions for BGs that represent a stage of a Dec-POMDP. An obvious idea is to
extend to using Vk, the value function of a k-steps delayed communication system.

However, because such a system is not separable, it is not trivial to derive a
heuristic payoff function of the form Q̂(~θt,at). In particular, we have that the

expected immediate reward formulation is of the form Qt,∗k (bt−k,qt−k,~θt|k|,β
t
|k|).

While it is possible to split ~θt in (b
~θt−k

,~θt|k|) and qt−k is given by the past joint

policy ϕt, there is no single value for at. That is, there are many βt|k| that specify

βt|k|(
~θt|k|) = at. One option is the select the one that maximizes the value, but is

not obvious whether this is indeed the best choice and more study is needed.
There is another use of the k-step delayed communication model. It allows

expressing the different Q-value functions defined in this section as optimal value
functions of appropriately chosen k-step delay models. Since we know that a shorter
delay cannot decrease the optimal value, we can prove a hierarchy of bounds that
hold over the various Q-functions.

Theorem 4.1 (Hierarchy of upper bounds). The approximate Q-value functions
QBG and QPOMDP correspond to the optimal Q-value functions of appropriately
defined k-step delayed communication models. Moreover these Q-value functions
form a hierarchy of upper bounds to the optimal Q∗ of the Dec-POMDP:

Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP. (4.1.8)

Proof. QPOMDP corresponds to a system with no (0-steps) delayed communication,
while the QBG-setting corresponds to a 1-step delayed communication system. Q∗

corresponds to the value of a h-step delayed communication system. Theorem 3.3
and Theorem B.1 show that both the expected and immediate reward value func-
tions of a system with k steps delay forms an upper bound to that of a decentralized

4.2 Generalized Value-Based Policy Search 71

system with k+1 steps delay. We note that the last inequality of (4.1.8) is a well-
known result (Hauskrecht, 2000).

4.1.5 Recursive Solution

Szer et al. (2005) consider a heuristic that employs the recursive solution of prob-
lems of horizon h − 1 to which they refer as ‘recursive MAA

∗’. In particular
V̂ t...h−1(ϕt), the heuristic value for the remaining h− t stages is defined as

V̂ t...h−1(ϕt) =
∑

st∈S

Pr(st|b0,ϕt)V ∗(st), (4.1.9)

where V ∗(st) is the optimal value of the horizon h−t Dec-POMDP starting in state
st (found by recursive solution of this shorter Dec-POMDP). For clarity we will
denote this shorter Dec-POMDP by D′ and the original horizon-h Dec-POMDP
by D.

Szer et al. (2005) reason that the optimal value is the tightest possible heuristic.
However, they employ the optimal value function of D′, not of D (for which the
optimal value function was presented in Section 3.1.5). In particular V ∗(st) assumes
that at stage t (so that is the initial stage t′ = 0 in D′), there is no uncertainty
regarding the history, which clearly results in an over-estimation. Moreover, linear
combination of optimal values V ∗ results in another over estimation. I.e., even
though it is possible to take a linear combination of values for a fixed joint policy
as in (2.5.8), we have that

V ∗(b0) ≡ max
π

∑

s0∈S

b0(s0)Vπ(s
0,~θ∅) ≤

∑

s0∈S

b0(s0)max
π

Vπ(s
0,~θ∅) =

∑

s0∈S

b0(s0)V ∗(s0). (4.1.10)

That is, such linear combination as in (4.1.9) is an overestimation because it as-
sumes correctly guessing the hidden state and then executing the optimal joint
policy.

4.2 Generalized Value-Based Policy Search

The hierarchy of approximate Q-value functions implies that all of these Q-value
functions can be used as admissible heuristics in MAA

∗ policy search, treated in
Section 2.6.4. In this section we will present a more general heuristic policy search
framework which we will call Generalized MAA

∗ (GMAA
∗), and show how it

unifies some of the solution methods proposed for Dec-POMDPs.
GMAA

∗ generalizes MAA
∗ (Szer et al., 2005) by making explicit different

procedures that are implicit in MAA
∗: (1) iterating over a pool of partial joint

policies, pruning this pool whenever possible, (2) selecting a partial joint policy
from the policy pool, and (3) finding some new partial and/or full joint policies

72 Approximate Value Functions & Heuristic Policy Search

Algorithm 4.1 GMAA
∗

1: v⋆←−∞
2: P←{ϕ0 = ()}
3: repeat
4: ϕt← Select(P)
5: ΦExpand← Expand(ϕt)
6: if ΦExpand contains a subset of full policies ΠExpand ⊆ ΦExpand then
7: π′← argmaxπ∈ΠExpand

V (π)

8: if V (π′) > v⋆ then
9: v⋆←V (π′)

10: π⋆←π′

11: P←
{
ϕ ∈ P | V̂ (ϕ) > v⋆

}
{prune the policy pool}

12: end if
13: ΦExpand←ΦExpand \ΠExpand {remove full policies}
14: end if
15: P←P \ϕt {remove processed ϕt}

16: P←P ∪ {ϕ ∈ ΦExpand | V̂ (ϕ) > v⋆} {add new ϕ}
17: until P is empty

given the selected policy. The first procedure is the core of GMAA
∗ and is fixed,

while the other two procedures can be performed in many ways.

The second procedure, Select, chooses which policy to process next and thus
determines the type of search (e.g., depth-first, breadth-first, A

∗-like) (Russell
and Norvig, 2003; Bertsekas, 2005). The third procedure, which we will refer to
as Expand, determines how the set of next (partial) joint policies are constructed,
given a previous partial joint policy. The original MAA

∗ can be seen as an instance
of the generalized case with a particular Expand-operator, namely that shown in
algorithm 4.2.

4.2.1 The GMAA∗ Algorithm

In GMAA
∗ the policy pool P is initialized with a completely unspecified joint

policy ϕ0 = () and the maximum lower bound (found so far) v⋆ is set to −∞. π⋆

denotes the best joint policy found so far.

At this point GMAA
∗ starts. First, the selection operator, Select, selects a

partial joint policy ϕ from P. We will assume that, in accordance with MAA
∗,

the partial policy with the highest heuristic value is selected. In general, however,
any kind of selection algorithm may be used. Next, the selected policy is processed
by the policy search operator Expand, which returns a set of (partial) joint policies
ΦExpand and their heuristic values. When Expand returns one or more full (i.e., fully

specified) joint policies π ∈ ΦExpand, the provided values V̂ (π) = V (π) are a lower
bound for an optimal joint policy, which can be used to prune the search space.
Any found partial joint policies ϕ ∈ ΦExpand with a heuristic value V̂ (ϕ) > v⋆ are
added to P. The process is repeated until the policy pool is empty.

4.2 Generalized Value-Based Policy Search 73

Algorithm 4.2 Expand(ϕt) — MAA
∗

1: Φt+1←
{
ϕt+1 = 〈ϕt ◦ δt〉

}

2: ∀ϕt+1∈Φt+1 V̂ (ϕt+1)←V 0...t−1(ϕt) + E
[
R(st,a)

∣∣ϕt+1
]
+ V̂ (t+1)...h(ϕt+1)

3: return Φt+1

4.2.2 The Expand Operator

Here we describe some different choices for the Expand-operator and how they
correspond to existing Dec-POMDP solution methods.

4.2.2.1 MAA∗

GMAA
∗ reduces to standard MAA

∗ by using the Expand-operator described by
Algorithm 4.2. Line 1 expands ϕt by appending all possible joint decision rules
δt for stage t. This results in Φt+1 the set of partial joint policies of length t + 1.
Line 2 valuates all the ϕt+1 ∈ Φt+1. The first part gives the true expected reward
over the first t+ 1 stages:

V 0...t(ϕt+1) = V 0...t−1(ϕt) + E
[
R(st,a)

∣∣ϕt+1
]
. (4.2.1)

The second part, V̂ (t+1)...h(ϕt+1), is the heuristic value over stages t+ 1, . . . ,h− 1
given that ϕt+1 has been followed the first t+ 1 stages.

When using an admissible heuristic, GMAA
∗ will never prune a partial policy

that can be expanded into an optimal policy. When combining this with the fact
that the MAA

∗-Expand operator returns all possible ϕt+1 for a ϕt, it is clear that
when P becomes empty an optimal policy has been found.

4.2.2.2 Forward-Sweep Policy Computation

Forward-sweep policy computation, as introduced in Section 3.1.2, is described by
algorithms 4.1 and 4.3 jointly. Given a partial joint policy ϕt, the Expand operator
now constructs and solves a BG for time step t. Because Expand in algorithm 4.3
only returns the best-ranked policy, P will never contain more than 1 joint policy
and the whole search process reduces to solving BGs for time steps 0, . . . ,h− 1.

The approach of Emery-Montemerlo et al. (2004) is identical to forward-sweep
policy computation, except that 1) smaller BGs are created by discarding or clus-
tering low probability action-observation histories, and 2) the BGs are approxi-
mately solved by alternating maximization. Therefore this approach can also be
incorporated in the GMAA

∗ policy search framework by making the appropriate
modifications in Algorithm 4.3.

4.2.2.3 A Unified Perspective of MAA∗ and FSPC

Here we will give a unified perspective of the MAA
∗ and forward-sweep policy com-

putation by examining the relation between the corresponding Expand-operators.
In particular we show that, when using QMDP, QPOMDP or QBG as a heuristic, the

74 Approximate Value Functions & Heuristic Policy Search

Algorithm 4.3 Expand(ϕt) — Forward-sweep policy computation

1: BG←〈A, ~Θt
ϕt ,Pr(~Θt

ϕt),Q̂t〉

2: for all β = 〈β1, . . . ,βn〉 s.t. βi : ~Oti → Ai do

3: V̂ t(β)←
∑
~θt∈~Θt

ϕt
Pr(~θt)Q̂t(~θt,β(~θt))

4: ϕt+1←〈ϕt ◦ β〉

5: V̂ (ϕt+1)←V 0...t−1(ϕt) + V̂ t(β)
6: end for
7: return argmaxϕt+1 V̂ (ϕt+1)

sole difference between the two is that FSPC returns only the joint policy with the
highest heuristic value.

Proposition 4.1. If a heuristic Q̂ has the following form

Q̂t(~θt,a) = R(~θt,a) +
∑

ot+1

Pr(ot+1|~θt,a)V̂ t+1(~θt+1), (4.2.2)

then for a partial policy ϕt+1 =
(
ϕt,βt

)

∑

~θt∈~Θt
ϕ

Pr(~θt)Q̂t(~θt,β(~θt)) = E
[
R(st,a)

∣∣ϕt+1
]
+ V̂ (t+1)...h(ϕt+1) (4.2.3)

holds.

Proof. The expectation of Rt given ϕt+1 can be written as

E
[
R(st,a)

∣∣ϕt+1
]
=

∑

~θt∈~Θt
ϕ

Pr(~θt)
∑

s∈S

R(s,ϕt+1(~θt)) Pr(s|~θt) =

∑

~θt∈~Θt
ϕ

Pr(~θt)R(~θt,ϕt+1(~θt)). (4.2.4)

Also, we can rewrite V̂ (t+1)...h(ϕt+1) as

V̂ (t+1)...h(ϕt+1) =
∑

~θt∈~Θt
ϕ

Pr(~θt)
∑

ot+1

Pr(ot+1|~θt,ϕt+1(~θt))V̂ (t+1)...h(~θt+1),

such that

E
[
R(st,a)

∣∣ϕt+1
]
+ V̂ (t+1)...h(ϕt+1) =

∑

~θt∈~Θt
ϕ

Pr(~θt)

[
R(~θt,ϕt+1(~θt)) +

∑

ot+1

Pr(ot+1|~θt,ϕt+1(~θt))V̂ (t+1)...h(~θt+1)

]
. (4.2.5)

Therefore, assuming (4.2.2) yields (4.2.3).

4.3 Experiments 75

This means that if a heuristic satisfies (4.2.2), which is the case for all the Q-
value functions discussed in Section 4.1, the Expand operators of algorithms 4.2
and 4.3 evaluate the expanded policies in the same way. I.e., algorithms 4.2 and
4.3 calculate identical heuristic values for identical next-stage joint policies. Also
the expanded policies ϕt+1 are formed in the same way: by considering all possible
δt respectively βt to extend ϕt. Therefore, the sole difference in this case is that
the latter returns only the joint policy with the highest heuristic value.

Clearly, there is a computation time versus quality trade-off between MAA
∗

and FSPC: MAA
∗ is guaranteed to find an optimal policy (given an admissible

heuristic), while FSPC is guaranteed to finish in one forward sweep. We propose
a generalization, that returns the k-best ranked policies. We refer to this as the
‘k-best joint BG policies’ GMAA

∗ variant, or k-GMAA
∗. In this way, k-GMAA

∗

reduces to forward-sweep policy computation for k = 1 and to MAA
∗ for k =∞.

4.3 Experiments

In order to compare the different approximate Q-value functions discussed in this
chapter, as well as to show the flexibility of the GMAA

∗ algorithm, this section
presents several experimental results using QMDP, QPOMDP and QBG as heuristic
estimates of Q∗. The first experiment provides some qualitative insight in the
different Q-value functions we considered. Next, experiments testing the impact
on computing optimal policies using MAA

∗, and on the performance of forward-
sweep policy computation are described.

4.3.1 Comparing Q-Value Functions

Before providing a comparison of performance of some of the approximate Q-value
functions, this section tries to provide some more insights in their actual values. For
the h = 4 Dec-Tiger problem, we generated all possible ~θt and the corresponding
Pr(sl|~θ

t), according to (3.1.4). For each of these, the maximal Q(~θt,a)-value is
plotted in Figure 4.1. Apart from the three approximate Q-value functions, the
optimal value Q∗ for each joint action-observation history ~θt that can be realized
when using π∗ is also plotted. Note that it is possible that different ~θt have different
optimal values, but induce the same Pr(sl|~θt), as demonstrated in the figure: there

are multiple Q∗-values plotted for some Pr(sl|~θ
t). For the horizon-3 Meeting on

a Grid problem we also collected all ~θt that can be visited by the optimal policy,
and in Figure 4.2 we again plotted maximal Q(~θt,a)-values. Because this problem
has many states, a representation as in Figure 4.1 is not possible. Instead, the
~θ are ordered according to their optimal value. We can see that the bounds are
tight for some ~θ, while for others they can be quite loose. However, when used in
the GMAA

∗ framework, their actual performance as a heuristic also depends on
their valuation of ~θ ∈ ~Θ not shown by Figure 4.2, namely those that will not be
visited by an optimal policy: especially when these are overestimated, GMAA

∗

will first examine a sub-optimal branch of the search tree. A tighter upper bound
can speed up computation to a very large extent, as it allows the algorithm to

76 Approximate Value Functions & Heuristic Policy Search

0 1
0

10

20

30

40

50

60
Q−heuristics for horizon=4 Dec−Tiger at t=0

P(s
l
 | θt)

Q
m

ax
 =

 m
ax

a Q
(θ

t ,a
)

Q
BG

Q
POMDP

Q
MDP

Q*

0 1
−10

0

10

20

30

40

50

60
Q−heuristics for horizon=4 Dec−Tiger at t=1

P(s
l
 | θt)

Q
m

ax
 =

 m
ax

a Q
(θ

t ,a
)

Q
BG

Q
POMDP

Q
MDP

Q*

0 1
−20

−10

0

10

20

30

40
Q−heuristics for horizon=4 Dec−Tiger at t=2

P(s
l
 | θt)

Q
m

ax
 =

 m
ax

a Q
(θ

t ,a
)

Q
BG

Q
POMDP

Q
MDP

Q*

0 1
−100

−80

−60

−40

−20

0

20
Q−heuristics for horizon=4 Dec−Tiger at t=3

P(s
l
 | θt)

Q
m

ax
 =

 m
ax

a Q
(θ

t ,a
)

Q
BG

Q
POMDP

Q
MDP

Q*

Figure 4.1: Q-values for horizon 4 Dec-Tiger. For each ~θt, corresponding to some
Pr(sl|~θ

t), the maximal Q(~θt,a)-value is plotted. Shown are the heuristic
QMDP, QPOMDP and QBG Q-value functions and Q∗ the value function in-
duced by an optimal joint policy π∗.

prune the policy pool more, reducing the number of Bayesian games that need to
be solved. Both figures clearly illustrate that Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP (see
Theorem 4.1).

4.3.2 Computing Optimal Policies

As shown above, the hierarchy of upper bounds Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP

is not just a theoretical construct, but the differences in value specified can be
significant for particular problems. This section describes the impact of these
differences when applied inMAA

∗. As QBG, QPOMDP and QMDP are upper bounds
toQ∗, MAA

∗ is guaranteed to find the optimal policy when using them as heuristic,
however the timing results may differ. All timing results are CPU times with a
resolution of 0.01s, and were obtained on 3.4GHz Intel Xeon processors.

Table 4.1 shows the resultsMAA
∗ obtained on the originalDec-Tiger problem

for horizon 3 and 4. It shows for each h the optimal value V ∗ and for each heuristic

4.3 Experiments 77

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Q
m

ax
 =

 m
ax

a Q
(θ

t ,a
)

θt

Q
MDP

Q
POMDP

Q
BG

Q*

Figure 4.2: Comparison of maximal Q(~θt,a)-values for Meeting on a Grid. We plot the
value of all θt that can be reached by an optimal policy, ordered according
their optimal value.

h V ∗ nϕ TGMAA∗ TQ

3 5.1908
QMDP 105,228 0.31 s < 0.01 s

QPOMDP 6,651 0.02 s < 0.01 s
QBG 6,651 0.02 s 0.02 s

4 4.8028
QMDP 37,536,938,118 431,776 s < 0.01 s

QPOMDP 559,653,390 5,961 s 0.13 s
QBG 301,333,698 3,208 s 0.94 s

Table 4.1: MAA
∗ results for Dec-Tiger.

h V ∗ nϕ TGMAA∗ TQ

3 5.8402
QMDP 151,236 0.46 s < 0.01 s

QPOMDP 19,854 0.06 s 0.01 s
QBG 13,212 0.04 s 0.03 s

4 11.1908
QMDP 33,921,256,149 388,894 s < 0.01 s

QPOMDP 774,880,515 8,908 s 0.13 s
QBG 86,106,735 919 s 0.92 s

Table 4.2: MAA
∗ results for Skewed Dec-Tiger.

78 Approximate Value Functions & Heuristic Policy Search

h V ∗ nϕ TGMAA∗ TQ

4 3.8900
QMDP 328,212 3.54 s < 0.01 s

QPOMDP 531 < 0.01 s 0.01 s
QBG 531 < 0.01 s 0.03 s

5 4.7900
QMDP N/A > 4.32e5 s < 0.01 s

QPOMDP 196,883 5.30 s 0.20 s
QBG 196,883 5.15 s 0.53 s

Table 4.3: MAA
∗ results for BroadcastChannel.

h V ∗ nϕ TGMAA∗ TQ

2 0.9100
QMDP 1,275 < 0.01 s < 0.01 s

QPOMDP 1,275 < 0.01 s < 0.01 s
QBG 194 < 0.01 s < 0.01 s

3 1.5504
QMDP 29,688,775 81.93 s < 0.01 s

QPOMDP 3,907,525 10.80 s 0.15 s
QBG 1,563,775 4.44 s 1.37 s

Table 4.4: MAA
∗ results for GridSmall.

the number of partial joint policies evaluated nϕ, CPU time spent on the GMAA
∗

phase TGMAA∗ , and CPU time spent on calculating the heuristic TQ. Note that
V ∗ for h = 4 is lower than for horizon 3. This is because, like for h = 3, the
optimal joint policy for h = 4 (shown in Figure 4.3) specifies only to open the door
at the last stage. This means that the agents will listen one additional time (in
comparison to h = 3) leading to a better chance of opening the right door, but also
to an additional cost of −2 for the listening itself. With respect to the performance
of the different heuristics, we see that for h = 3 using QPOMDP and QBG only a
fraction of the number of policies are evaluated when compared to QMDP. This is
reflected proportionally in the time spent on GMAA

∗. For this horizon QPOMDP

and QBG perform the same, but the time needed to compute the QBG heuristic
is as long as the GMAA

∗-phase, therefore QPOMDP outperforms QBG here. For
h = 4, the impact of using tighter heuristics becomes even more pronounced. In
this case the computation time of the heuristic is negligible, and QBG outperforms
both, as it is able to prune much more partial joint policies from the policy pool.

Table 4.2 shows results for Skewed Dec-Tiger. For this problem the QMDP

and QBG results are roughly the same as the originalDec-Tiger problem; for h = 3
the timings are a bit slower, and for h = 4 they are faster. For QPOMDP, however,
we see that for h = 4 the results are slower as well and that QBG outperforms
QPOMDP by almost an order of magnitude.

Results for the BroadcastChannel (Table 4.3), GridSmall (Table 4.4) and
the FireFighting problem (Table 4.5) are similar. The N/A entry in Table 4.3
indicates the QMDP was not able to compute a solution within 5 days. For these
problems we also see that the performance of QPOMDP and QBG is roughly equal.
For the Meeting on a Grid problem, QBG yields a significant speedup over QPOMDP.

4.3 Experiments 79

h V ∗ nϕ TGMAA∗ TQ

3 −5.7370
QMDP 446,724 1.58 s 0.56 s

QPOMDP 26,577 0.08 s 0.21 s
QBG 26,577 0.08 s 0.33 s

4 −6.5788
QMDP 25,656,607,368 309,235 s 0.85 s

QPOMDP 516,587,229 5,730 s 7.22 s
QBG 516,587,229 5,499 s 11.72 s

Table 4.5: MAA
∗ results for FireFighting 〈NH = 3, Nf = 3〉.

~o∅ → aLi

oHL → aLi

oHR → aLi

oHL, oHL → aOR

oHL, oHR → aLi

oHR, oHL → aLi

oHR, oHR → aOL

oHL, oHL, oHL → aLi

oHL, oHL, oHR → aLi

oHL, oHR, oHL → aLi

oHL, oHR, oHR → aLi

oHR, oHL, oHL → aLi

oHR, oHL, oHR → aLi

oHR, oHR, oHL → aLi

oHR, oHR, oHR → aLi

~o∅ → aLi

oHL → aLi

oHR → aLi

oHL, oHL → aLi

oHL, oHR → aLi

oHR, oHL → aLi

oHR, oHR → aLi

oHL, oHL, oHL → aOR

oHL, oHL, oHR → aLi

oHL, oHR, oHL → aLi

oHL, oHR, oHR → aLi

oHR, oHL, oHL → aLi

oHR, oHL, oHR → aLi

oHR, oHR, oHL → aLi

oHR, oHR, oHR → aOL

Figure 4.3: Policies found using forward-sweep policy computation (i.e., k = 1) for the
h = 4 Dec-Tiger problem. Left: the policy resulting from QMDP. Right:
the optimal policy as calculated by QPOMDP and QBG. The framed entries
highlight the crucial differences.

4.3.3 Forward-Sweep Policy Computation and k-GMAA∗

The MAA
∗ results described above indicate that the use of a tighter heuristic can

yield substantial time savings. In this section, the approximate Q-value functions
are used in forward-sweep policy computation. The expectation is that when using
a Q-value function that more closely resembles Q∗, the quality of the resulting
policy will be higher. We also tested how the quality of the policies computed
by k-GMAA

∗ improves when increasing k (the number of best joint BG policies
returned by the Expand operator). In particular, we tested k = 1,2, . . . ,5.

For the Dec-Tiger problem, k-GMAA
∗ with k = 1 (and thus also 2 ≤ k ≤ 5)

found the optimal policy (with V (π∗) = 5.19) for horizon 3 using all approximate
Q-value functions. For horizon h = 4, also all different values of k produced the
same result for each approximate Q-value function. In this case, however, QMDP

found a policy with expected return of 3.19. QPOMDP and QBG did find the optimal
policy (V (π∗) = 4.80). Figure 4.3 illustrates the optimal policy (right) and the one
found by QMDP (left). It shows that QMDP overestimates the value for opening the
door in stage t = 2.

80 Approximate Value Functions & Heuristic Policy Search

1 2 3 4 5
2

3

4

5

6

Q
MDP

Q
POMDP

Q
BG

V

k

(a) Skewed Dec-Tiger, h = 3.

1 2 3 4 5
0

5

10

15

Q
MDP

Q
POMDP

Q
BG

V

k

(b) Skewed Dec-Tiger, h = 4.

1 2 3 4 5
1.549

1.5495

1.55

1.5505

1.551

Q
MDP

Q
POMDP

Q
BG

V

k

(c) GridSmall, h = 3.

1 2 3 4 5
−6.59

−6.585

−6.58

−6.575

Q
MDP

Q
POMDP

Q
BG

V
k

(d) FireFighting 〈NH = 3,Nf = 3〉,
h = 4.

1 2 3 4 5
−11.25

−11.2

−11.15

−11.1

−11.05

Q
MDP

Q
POMDP

Q
BG

V

k

(e) FireFighting 〈NH = 4,Nf = 3〉,
h = 3.

1 2 3 4 5
−14.4

−14.3

−14.2

−14.1

−14
Q

MDP

Q
POMDP

Q
BG

V

k

(f) FireFighting 〈NH = 4,Nf = 3〉,
h = 4.

Figure 4.4: k-GMAA
∗ results for different problems and horizons. The y-axis indicates

value of the initial joint belief, while the x-axis denotes k.

For the Skewed Dec-Tiger problem, different values of k did produce differ-
ent results. In particular, for h = 3 only QBG finds the optimal policy (and thus
attains the optimal value) for all values of k, as shown in Figure 4.4a. QPOMDP

does find it starting from k = 2, and QMDP only from k = 5. Figure 4.4b shows
a somewhat unexpected result for h = 4: here for k = 1 QMDP and QBG find
the optimal policy, but QPOMDP doesn’t. This clearly illustrates that a tighter
approximate Q-value function is not a guarantee for a better joint policy, which is
also illustrated by the results for GridSmall in Figure 4.4c.

We also performed the same experiment for two settings of the FireFighting

problem. For 〈NH = 3,Nf = 3〉 and h = 3 all Q-value functions found the optimal
policy (with value −5.7370) for all k, and horizon 4 is shown in Figure 4.4d. Fig-
ures 4.4e and 4.4f show the results for 〈NH = 4,Nf = 3〉. For h = 4, QMDP did not
finish for k ≥ 3 within 5 days.

It is encouraging that for all experiments k-GMAA
∗ using QBG and QPOMDP

with k ≤ 2 found the optimal policy. Using QMDP the optimal policy was also al-
ways found with k ≤ 5, except in horizon 4 Dec-Tiger and the 〈NH = 4,Nf = 3〉
FireFighting problem. These results seem to indicate that this type of approx-

4.4 Conclusions 81

imation might be likely to produce (near-) optimal results for other domains as
well.

4.4 Conclusions

Because calculating the optimal Dec-POMDP Q-value function Q∗ is too com-
putationally expensive, we examined approximate Q-value functions that can be
calculated more efficiently and we discussed how they relate to Q∗. Section 4.1
covered QMDP, QPOMDP, and QBG, which was recently proposed by Oliehoek
and Vlassis (2007a). Also, using the fact that decreasing communication delays
in decentralized systems cannot decrease the expected value we established that
Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP. Experimental evaluation indicated that these
upper bounds are not just of theoretical interest, but that significant differences
exist in the tightness of the various approximate Q-value functions.

Additionally we showed how the approximate Q-value functions can be used
as heuristics in a generalized policy search method GMAA

∗, thereby presenting
a unified perspective of forward-sweep policy computation and the recent Dec-
POMDP solution techniques of Emery-Montemerlo et al. (2004) and Szer et al.
(2005). Finally, an empirical evaluation of GMAA

∗ shows significant reductions
in computation time when using tighter heuristics to calculate optimal policies.
Also QBG generally found better approximate solutions in forward-sweep policy
computation and the ‘k-best joint BG policies’ GMAA

∗ variant, or k-GMAA
∗,

although there are no guarantees.
Still, the scalability of GMAA

∗ as discussed here is limited. The bottleneck en-
countered for the experimental results presented in this chapter is the exact solution
of the BGs. For approximate settings, the bottleneck can be alleviated by using ap-
proximate BG solvers such as alternating maximization (Emery-Montemerlo et al.,
2004). However, this will only provide limited possibility of scaling, since the BGs
will grow exponentially with the number of agents and the horizon. The growth
induced by the number of agents is addressed in the next chapter. The exponential
growth with respect to the horizon is caused by the growth in the number of AOHs
and thus the number of types in the BGs and is addressed in Chapter 6.

4.5 Future Work

Future research could further generalize GMAA
∗, by defining other Expand or

Select operators, with the hope that the resulting algorithms will be able to scale
to larger problems. For instance by introducing weights as proposed by Szer et al.
(2005). Also it is important to establish bounds on the performance and learning
curves of GMAA

∗ in combination with different Expand operators and heuristics.
A different direction is to experimentally evaluate the use of even tighter heuristics
such as Q-value functions for the case of observations delayed by multiple time
steps. This research should be paired with methods to efficiently find such Q-value
functions. Finally, there is a need for efficient approximate methods for solving the
Bayesian games.

82 Approximate Value Functions & Heuristic Policy Search

Chapter 5

Factored Dec-POMDPs: Exploiting

Locality of Interaction

A Dec-POMDP can be represented by a series of Bayesian games (BGs), one for
each time step, as introduced in Chapter 3. Subsequently, Chapter 4 showed how
this can be used in a policy search method calledGeneralized MAA

∗ (GMAA
∗).

Still, this method is limited to small problems. Two sources of intractability are
the number of agents n and the horizon h, because the size of the BGs grows
exponentially with respect to these parameters. In particular, the number of joint
policies for a BG for the last stage t = h−1, and thus the cost of optimally solving
such a BG, is

O
(
|A∗|

n(|O∗|
h−1)

)
, (5.0.1)

where A∗ and O∗ denote the largest individual action and observation sets. This
chapter only focuses on providing scaling with respect to the number of agents n.
Techniques to improve scalability in the horizon are the topic of Chapter 6.

Previous work tried to overcome the complexity introduced by the number
of agents by superimposing assumptions of independence between agents on the
Dec-POMDP model such as transition and observation independence (Becker, Zil-
berstein, Lesser, and Goldman, 2003; Nair et al., 2005; Varakantham et al., 2007;
Kumar and Zilberstein, 2009). In such models it is easy to prove that there is
locality of interaction, which can be exploited for their efficient solution. However,
such assumptions are very restrictive and preclude many interesting problems.

Still, in many problems the agents may be nearly independent: for instance
each agent may only need to interact with a particular neighbor. This chapter
formalizes the interaction of several agents under uncertainty as a factored Dec-
POMDP with an additively factored immediate reward function that has restricted
scopes. I.e., each component of the reward function is only influenced by a subset
of agents. Rather than superimposing independence assumptions, a more general
analysis of dependencies in factored Dec-POMDPs is presented by analyzing value
functions for such models.

83

84 Factored Dec-POMDPs: Exploiting Locality of Interaction

The main idea in this chapter is to apply GMAA
∗ to factored Dec-POMDPs,

exploiting any independence between agents that may be present. To this end, we
replace the regular Bayesian games (BGs) from GMAA

∗ by collaborative graphical
BGs (CGBGs) that can represent independence between agents and therefore may
be specified much more compactly and solved more efficiently. In order to get this
idea to work, however, there are a few issues that need to be taken care of.

CGBGs can be represented compactly, but constructing them exactly requires
performing exact inference over the space of states and joint histories, whose size is
exponential in the number of state factors and the number of agents respectively.
Therefore, we will construct them using approximate inference. To subsequently
use CGBGs in the solution of factored Dec-POMDPs, a factored Q-value function
is necessary to serve as payoff function for the CGBGs. An optimal Q-value func-
tion Q∗ is factored: it can be specified as the sum of multiple components with
different scopes. However, these scopes grow when moving from the last stage to
the first (i.e., when going back in time towards the initial stage t = 0), and thus
using Q∗ is impractical because it is fully coupled for earlier stages. Also, it is
computationally too expensive to compute. Therefore we will consider approxi-
mate Q-value functions given a predetermined scope structure that specifies the
scopes for each stage. Two methods to compute a factored approximation of the
QMDP value function will be introduced. We also propose a third way of comput-
ing an approximate Q-value function, namely transfer planning (TP) that uses an
approximate (e.g., QMDP) value function for a smaller source problem that involves
a smaller number of agents. Given the factored payoff functions, the CGBGs are
fully specified. We will discuss how they can be solved efficiently using either non-
serial dynamic programming or a message passing algorithm called Max-Plus.
Finally we combine all these elements in a family of algorithms which we refer to
as Factored GMAA

∗.

Organization of Chapter

This chapter is organized as follows. First, Section 5.1 introduces factored Dec-
POMDPs with additively factored immediate reward functions. Section 5.2 shows
that for such models, there is an optimal factored value function that has scopes
that grow when moving from the last stage to the first.

Section 5.3 shows how a factored Dec-POMDP can be represented by a series
of collaborative graphical Bayesian games (CGBG). When using Q∗ as a payoff
function for the BGs, this modeling is exact, but the earlier stages will be fully
coupled. To avoid this problem, Section 5.4 proposes to compute approximate
factored Q-value functions given a predetermined scope structure. The efficient
solution of CGBGs is described in Section 5.5.

Given the complete specification of the CGBGs and a method to solve them,
GMAA

∗ policy search methods can be employed, leading to a family of methods
we refer to as Factored GMAA

∗ described in Section 5.6. It introduces the
GMAA

∗-ELSI (Exploiting Last-Stage Independence) algorithm that can exploit
locality of interaction in the last stage to speed up computation of optimal solutions
and Factored FSPC and Factored k-GMAA

∗ that are scalable and efficient

5.1 Factored Dec-POMDPs 85

approximate methods.
Section 5.7 reports on the empirical evaluation on two problem domains: the

FireFightingGraph problem and a problem domain called Aloha. This eval-
uation shows that GMAA

∗-ELSI can significantly speed up the computation of
optimal solutions and that the approximate Factored GMAA

∗ methods are ef-
ficient and scale well with respect to the number of agents, but that the quality of
the found solutions depends very much on the used heuristic. Although identify-
ing more and better heuristics remains future work, we show that one of proposed
heuristics is able to compute good joint policies for up to 1000 agents.

5.1 Factored Dec-POMDPs

This section provides the necessary background, by introducing the formal model
of factored Dec-POMDPs and illustrating it with an example.

5.1.1 The Formal Model

The notion of factored Dec-POMDP extends the definition of the regular Dec-
POMDP given by Definition 2.6.

Definition 5.1 (Factored Dec-POMDP). A factored Dec-POMDP is identical to
a normal Dec-POMDP but has a factored state space S = X1 × . . . × X|X |. That

is, S is spanned by X =
{
X1, . . . ,X|X |

}
a set of state variables, or factors. A state

corresponds to an assignment of values for all factors s =
〈
x1, . . . ,x|X |

〉
.

For instance, FireFighting presented in Section 2.3.1 has a factored state
space and thus is a factored Dec-POMDP. This chapter will also consider actions,
observations and policies for subsets of agents. For instance, aJ denotes the joint
action of a subset J ⊆ D of the set of all agents D.

In a factored Dec-POMDP, the transition and observation model can be com-
pactly represented by exploiting conditional independence between variables. In
particular, the transition and observation model can be represented by a dynamic
Bayesian network (DBN) (Boutilier et al., 1999). In such a DBN, arrows represent
causal influence and each node with incoming edges has a conditional probability
table (CPT) associated with it. Although the size of these CPTs is exponential in
the number of parents, the parents are typically a subset of all state factors and
actions, leading to a model exponentially smaller than a flat model.

Similarly, the reward function can often be compactly represented by exploiting
additive separability, which means that it is possible to decompose the reward
function into the sum of ‘smaller’ local reward functions:

R = R1 + · · ·+Rρ. (5.1.1)

Here ‘smaller’ means that the functions are defined over a smaller number of state
and action variables, i.e., the scope of these functions is smaller. We can represent
the smaller functions in the DBN. Such a DBN that includes reward nodes is also
called an influence diagram (ID) (Howard and Matheson, 1984/2005; Boutilier

86 Factored Dec-POMDPs: Exploiting Locality of Interaction

(a) An illustration FFG.

t t+ 1

x1 x′
1

a1 o1

r1

x2 x′
2

a2 o2

r2

x3 x′
3

a3 o3

r3

x4 x′
4 r4

(b) The DBN that represents
FFG.

Figure 5.1: The FireFightingGraph problem. A DBN can be used to represent the
transition, observation and reward function.

et al., 1999). The reward nodes have conditional reward tables (CRTs) associated
with them that represent the smaller reward functions. The local reward functions
should not be confused with individual reward functions in a system with self-
interested agents, such as partially observable stochastic games (Hansen et al.,
2004) and (graphical) BGs (Singh et al., 2004b; Soni et al., 2007). In such models
agents compete to maximize their individual reward functions, while we consider
agents that collaborate to maximize the sum of local payoff functions.

Decision trees (Boutilier et al., 1999; Boutilier, Dearden, and Goldszmidt, 2000)
or algebraic decision diagrams (Hansen and Feng, 2000; Poupart, 2005) can be used
to further reduce the size of representation of both CPTs and CRTs by exploiting
context specific independence. E.g., the value of some factor xi may be of no influ-
ence when some other factor xj has a particular value. These further enhancements
are not considered in this thesis.

5.1.2 An Example: The FireFightingGraph Problem

To illustrate the model we introduce the FireFightingGraph (FFG) problem
as a running example. It is a modification of FireFighting that restricts each
agent to fight fire at one of the two houses in its vicinity. FFG models a team of n
firefighters that have to extinguish fires in a row of nH = n+1 houses. We assume
n = 3, nH = 4 as illustrated in Figure 5.1a. At every time step, each agent i can
choose to fight fires at house i or i + 1. For instance, agent 2’s possible actions
are H2 and H3. As in the regular FireFighting problem, each agent can observe
only whether there are flames, oi = F , or not, oi = N , at its location. Each house
H is characterized by a fire level xH , an integer parameter in [0,Nf), where a level
of 0 indicates the house is not burning. A state in FFG is an assignment of fire

5.1 Factored Dec-POMDPs 87

levels s = 〈x1,x2,x3,x4〉 . Initially, the fire level xH of each house is drawn from a
uniform distribution.

Figure 5.1b shows the DBN for the problem. The transition and observation
model are similar to that of the regular FireFighting problem as described in
Section 2.3.1, although the maximum number of agents at a house is now limited
to 2.

The rewards are also similar, but here we retain the structure of the immediate
reward function. The agents receive a reward of −xH for each house H. In partic-
ular, for each house 1 ≤ H ≤ 4 the rewards are specified by the fire levels at the
next time step rH(x′H) = −x′H . We can reduce these rewards to ones of the form
RH(s,a) as in Definition 2.6 by taking the expectation over x′H . For instance, for
house 1

R1(x{1,2},a1) =
∑

x′
1

Pr(x′1|x{1,2},a1)r
1(x′1), (5.1.2)

where x{1,2} denotes 〈x1,x2〉. This formulation is possible because, as Figure 5.1
shows, x1,x2 and a1 are the only variables that influence the probability of x′1. In
a similarly way, the other local reward functions are given by R2(x{1,2,3},a{1,2}),
R3(x{2,3,4},a{2,3}) and R

4(x{3,4},a3).

5.1.3 Independence Assumptions

Because of the negative complexity results for Dec-POMDPs, much research has
considered special cases that are easier to solve (Becker et al., 2003; Becker, Zilber-
stein, and Lesser, 2004a; Becker et al., 2005; Shen, Becker, and Lesser, 2006; Nair
et al., 2005; Wu and Durfee, 2006; Kim, Nair, Varakantham, Tambe, and Yokoo,
2006; Varakantham et al., 2007; Marecki, Gupta, Varakantham, Tambe, and Yokoo,
2008; Kumar and Zilberstein, 2009). This research has considered models related
to factored Dec-POMDPs but that impose stricter assumptions. We will not con-
sider these additional assumptions in our approach, but treat them here to provide
the necessary background.

First let us introduce the notion of an agent-wise factored state space, that is,
a state consists of an instantiation of an individual state si for each agent i. Also,
there is an ‘external’ state factor s0 that cannot be influenced by any of the agents:
its transitions are specified as

Pr(s′0|s0).

The complete state is given by s = 〈s0,s1, . . . ,sn〉. Although s0 cannot be influenced
by the agents, it may influence the local transitions and observations of each agent.
Formally, the local state ŝi of an agent i is defined as ŝi ≡ 〈s0,si〉. Now, a Dec-
POMDP is said to be transition independent, when the transition probabilities are
factored as

Pr(s′|s,a) = Pr(s′0|s0)
∏

i∈D

Pr(s′i|ŝi,ai,s
′
0). (5.1.3)

88 Factored Dec-POMDPs: Exploiting Locality of Interaction

Similarly, observation independence is expressed by

Pr(o|a,s′) =
∏

i∈D

Pr(oi|ai,ŝ
′
i) (5.1.4)

and reward independence can be expressed by

R(s,a) =
∑

i∈D

Ri(ŝi,ai). (5.1.5)

When all three types of independence hold, we are simply dealing with sep-
arate POMDPs (or MDPs in the case of a Dec-MDP1). However, if one type of
independence is violated, the problem is non-trivial. Some special cases considered
in literature are

• Event-driven Dec-MDPs (Becker et al., 2004a; Witwicki and Durfee, 2009),

• Transition- and observation-independent (TOI) Dec-MDPs (Becker et al.,
2003, 2004b; Wu and Durfee, 2006), and

• ND-POMDPs (Nair et al., 2005; Kim et al., 2006; Varakantham et al., 2007;
Marecki et al., 2008; Kumar and Zilberstein, 2009).

Event driven Dec-MDPs are locally observable (i.e., the agents can observe their
local state ŝi) and reward independent. No full transition and observation inde-
pendence are assumed, but the transitions are assumed to have special structure.

For the class of TOI-Dec-MDPs, Becker et al. (2004b) prove that the complexity
class is NP-complete. Note, however, that the assumption of TOI is a strong
assumption: it requires each agent to have its own local state space that cannot be
influenced whatsoever by another agent. In effect, (because it can be shown that a
TOI-Dec-MDP is locally observable) a TOI-Dec-MDP is equivalent to n separated
MDPs that are coupled only through the joint reward function. Such assumptions
preclude many interesting problems, such as two robots collaborating to transport
an item.

Nair et al. (2005) and subsequent work consider a slightly more general model,
the networked distributed POMDP (ND-POMDP), which can best be understood as
a transition and observation independent Dec-POMDP with additively separated
rewards. Using the structure of the additive immediate reward function Nair et al.
define an interaction (hyper-)graph. In this graph, each local reward function is
a (hyper-) edge e ∈ E , connecting two or more agents (nodes) e = {i,j, . . . } ⊆ D.
Let Ni denote the neighbors of agent i, including i itself, in this graph. Nair et al.
show that in this setting the value can be decomposed into local value functions

V (π) =
∑

e∈E

V e(πe), (5.1.6)

1As explained in Section 2.8.1 Dec-MDP is a Dec-POMDP that is jointly observable, i.e., the
joint observation identifies the state.

5.2 Value Functions for Factored Dec-POMDPs 89

1

2

3 4

V 1(π1,π2)

V 2(π2,π3) V 3(π2,π4)

Figure 5.2: An example interaction graph with 4 agents. The planning problem can be in-
terpreted as a DCOP. The structure can be exploited by, for instance, SPIDER

(Varakantham et al., 2007) in which the agents cycle through their individual
policies in a depth-first manner.

where πe = 〈πe1, . . . ,πe|e|〉 is the profile of individual policies of agents that par-
ticipate in edge e, and define the local neighborhood utility of an agent i as the
expected return for all the edges that contain agent i:

V (πNi
) =

∑

e s.t. i∈e

V e(πe). (5.1.7)

Subsequently, they show that when an agent j /∈ Ni changes its policy, V (πNi
) is

not affected, a property they refer to as locality of interaction.
It is this property that allows a reformulation of the planning problem as a

distributed constraint optimization problem (DCOP) (Liu and Sycara, 1995; Yokoo,
2001; Modi, Shen, Tambe, and Yokoo, 2005), as is illustrated in Figure 5.2: in each
of the nodes (representing agents) a policy is chosen, the goal is to select a joint
policy such that the sum of local value functions is maximized. The sparsity in
the graph can be exploited for more efficient computation. This chapter proposes
to exploit independence between agents in a similar way as described above, but
without assuming transition and observation independence.

Other special cases that have been considered are, for instance, goal oriented
Dec-POMDPs (Goldman and Zilberstein, 2004), Dec-MDPs with time and resource
constraints (Beynier and Mouaddib, 2005, 2006; Marecki and Tambe, 2007) and
agent-wise factored Dec-MDPs with local interactions (Spaan and Melo, 2008).
Like the rest of the models described in this subsection, though, these models also
have limited applicability due to the assumptions they make. Therefore we will
not further consider these models any further in this chapter.

5.2 Value Functions for Factored Dec-POMDPs

This section shows that even in the more general setting without transition and
observation independence, value functions can still be decomposed by analyzing
the independence that is present. In particular, the value can be decomposed into
ρ local value functions (corresponding to the ρ local reward functions) involving

90 Factored Dec-POMDPs: Exploiting Locality of Interaction

h− 3 h− 2 h− 1

x1x1 x1

a1 a1a1 o1 o1

x2x2 x2

a2 a2a2 o2o2

x3x3 x3

a3a3a3 o3o3

x4x4 x4

Figure 5.3: Illustration of the interaction between agents and environment over time in
FFG. In contrast to Figure 5.1b, which represents the transition and observa-
tion model using abstract time steps t and t+1, this figure represents the last
3 stages of a decision problem. Also the rewards are omitted in this figure.
The scope of Q1, given by (5.1.2), is illustrated by shading and increases when
going back in time.

only a subset of agents (although this subset may grow with each stage further
from the last stage t = h−1). Such a decomposed value function is called factored.

5.2.1 Scope, Scope Backup and Interaction Graphs

As an example of a factored Q-value function, we consider the last stage of FFG.
By definition, Qh−1 is equal to the immediate reward function, and thus can be
decomposed in 4 local Q-value functions Q = Q1 + · · · + Q4, where each Qe is
defined over the same subset of variables as Re. This subset of variables is called
the scope of Qe. In order to exploit independence between agents, we discriminate
between the variables that pertain to state factors and those that pertain to agents
(i.e., actions and observations).

Definition 5.2 (Scope). Let I ⊆ {1, . . . ,|X |} be a subset of state factor indices,
and let J ⊆ {1, . . . ,n} be a subset of agent indices, and let us write XI = ×i∈IXi,

AJ = ×i∈JAi, ~Θ
t
J = ×i∈J

~Θti. Then a function q : XI × ~Θt
J ×AJ → R has state

factor scope X(q) = I and agent scope A(q) = J . We also use S(q) ≡ 〈X(q),A(q)〉
to denote the combined scope of q.

This definition has the most general form of value function considered in
this chapter, involving state-factors, action-observation histories and actions. It
also applies when not all of these elements are used. For example, the function
R1(x{1,2},a1) has scope X(R1) = {1,2} and A(R1) = {1}. Note also the difference
between the scope and domain of a function: the domain of the same function R1 is
{〈0,0,H0〉,〈0,0,H1〉, . . . ,〈Nf − 1,Nf − 1,H1〉}, the set of tuples 〈x1,x2,a1〉. So while

5.2 Value Functions for Factored Dec-POMDPs 91

2

31

Q1

Q2

Q3

Q4

(a) t = h− 2.

2

31

Q1 Q2 Q3 Q4

(b) t = h− 1.

Figure 5.4: Interaction graphs for the last two stages of the FFG problem.

the scope is the set of variables of influence, the domain is the set of (tuples of)
values those variables can take.

Now we can formalize the e-th component of the Q-value function for joint
policy π of the last stage h− 1 as follows1

Qeπ(x
h−1
e ,~θh−1

e ,ah−1
e) ≡ Re(xh−1

e ,ah−1
e), e = 1, . . . ,ρ, (5.2.1)

where, even though it is not needed, ~θh−1
e is included in Qeπ because the agent scope

is not empty. Moreover, as we will explain in a moment, the Q-value functions for
earlier stages typically will be dependent on ~θe. For instance, in the FFG problem
Q1
π(x{1,2},~θ

h−1
1 ,a1) ≡ R1(x{1,2},a1) of which the scope is shown in Figure 5.3

at h− 1.
As in Section 5.1.3, this Q-value function can be used to define an interaction

hyper-graph G = 〈D,E〉. In this graph, the nodes correspond to agents and the
ρ hyper-edges e ∈ E (edges that can involve more than two nodes) correspond to
the ρ local Q-value functions Qe,h−1 for stage h − 1.2 In particular, an edge e
connects A(Qe,h−1), the agents involved in Qe,h−1. For example, the interaction
hyper-graph for the last two stages of the FFG problem is shown in Figure 5.4. It
is the independence represented by sparsity of such interaction graphs that we will
exploit to reduce computation costs later on.

Because we do not assume transition and observation independence, the scopes
of Qh−2, the Q-value function at h−2, will typically be larger than those for Qh−1

as given by (5.2.1). In particular, the scopes at h− 2 should include all factors of
influence, i.e., all state factors and agents’ actions that can influence the variables
in the scopes at h− 1. We formalize this intuition by trying to write down the Q-
value function of π at t = h− 2 as follows. Let us write ~θh−1

e = (~θh−2
e ,ah−2

e ,oh−1
e)

for the AOH-profile of the agents in Qe,h−1
π . We then have that Qe,h−2

π is the sum
of the immediate reward and the expected future reward:

Qeπ(x
h−2
I ,~θh−2

J ,ah−2
J) = Re(xh−2

e ,ah−2
e)+

∑

x
h−1
e

∑

o
h−1
e

Pr(xh−1
e ,oh−1

e |·)Qeπ(x
h−1
e ,~θh−1

e ,πe(~θ
h−1
e)) (5.2.2)

1We slightly abuse notation: e denotes both the concerning state factor scope X(Re) and the
agent scope A(Re) of the e-th component of the function under concern. In general it should be
clear from the context what scope is meant.

2We omit the stage index to Q-functions if it is implicit in their arguments, as in (5.2.1).

92 Factored Dec-POMDPs: Exploiting Locality of Interaction

where ~θh−2
e ,ah−2

e are specified by ~θh−2
J ,ah−2

J and where (·) represents any factors
of influence at stage h − 2. Clearly, I and J should include those factors of
influence and therefore these sets change over time. We now formalize these factors
of influence by defining the scope backup.

Definition 5.3 (Scope backup). Given a set K of particular state factors and

observations of particular agents K ⊆
{
X ′

1, . . . ,X
′
|X |,O1, . . . ,On

}
, the scope backup

operator Γ(K) returns the subset of variables
{
X1, . . . ,X|X |,A1 . . . ,An

}
(i.e., from

the left side of the DBN) that are ancestors of variables in K. We discriminate the
state-factor component and the agent component of the scope backup:

ΓX(K) = {j | ∃Y ∈K s.t. Xj = ancestor(Y)} ,

ΓA(K) = {j | ∃Y ∈K s.t. Aj = ancestor(Y)} .

For example, in FFG the probability of xh−1
{1,2},o

h−1
1 depends only on xh−2

{1,2,3}

and actions ah−2
{1,2} as shown at h − 2 in Figure 5.3. When the policy is fixed,

the probability of actions ah−2
{1,2} is determined by oh−2

{1,2}. In turn, it is necessary

to determine Pr(xh−2
{1,2,3},o

h−2
{1,2}|·). For this, we need to consider all variables of

influence at stage h − 3. This set encompasses all state factors and agents, and
therefore the scope of Q1,h−3

π includes all of these, as indicated in Figure 5.3.

5.2.2 Decomposition of Value Functions

This section shows that without assuming transition and observation indepen-
dence, we can still decompose the value function. Recall that (2.5.6) expresses

Pr(st,~θt|b0,ϕt) the probability over states and AOHs given a followed (past) joint
policy. When interested in some arbitrary scopes of state factors (f) and agents
(g), it is possible to marginalize as follows:

Pr(xtf ,
~θtg|b

0,ϕt) =
∑

xt
f̄

∑

~θt
ḡ

Pr(xtf ,x
t
f̄
,~θtg,

~θtḡ|b
0,ϕt), (5.2.3)

Lemma 5.1 (Decomposition last-stage V). The value function V h−1(π) for the
last stage t = h− 1 of a finite-horizon factored Dec-POMDP with additive rewards
is factored. It can be decomposed as

V h−1(π) =
∑

e∈E

V e,h−1(π) =

∑

e∈E

∑

x
h−1
e

∑

~θh−1
e

Pr(xh−1
e ,~θh−1

e |b0,π)Qeπ(x
h−1
e ,~θh−1

e ,πe(~θ
h−1
e)). (5.2.4)

Proof. Similar to (2.5.5), the expected value for the last stage can be written as

V h−1(π) =
∑

~θh−1

∑

s

Pr(s,~θh−1|b0,π)R(s,π(~θh−1)).

5.2 Value Functions for Factored Dec-POMDPs 93

Filling out the definition of additive rewards (5.1.1), using (5.2.1) and swapping
the summations yields (5.2.4).

Such a decomposition is possible for every stage t, as illustrated by the following
theorem. The remainder of this section uses more explicit notation for scopes than
other parts of the chapter: the state factor and agent scope of the Q-value func-
tion under concern are denoted Xe,Ae. That is, Xe ≡ X(Qe,t) and Ae ≡ A(Qe,t).
Similar shorthands X

′
e,A

′
e are used for the next-stage Q-values. For the local im-

mediate reward functions the scope should be clear, so they are simply written as
Re(xte,ae).

Theorem 5.1 (Decomposition of V t(π)). Given an additively factored immediate
reward function, the value V t(π) of a finite-horizon factored Dec-POMDP is de-
composable for any t. That is, for any joint policy π the value function is factored.
V t(π) is defined as

V t(π) =
∑

e∈E

V e,t(π) =
∑

e∈E

∑

xt
Xe

∑

~θt
Ae

Pr(xtXe
,~θtAe
|b0,π)Qeπ(x

t
Xe
,~θtAe

,πAe
(~θtAe

))

(5.2.5)
where, using shorthand notation ΓX = ΓX(xt+1

X′
e
∪ ot+1

A′
e
) and ΓA = ΓA(xt+1

Xe
∪ ot+1

Ae
)

to denote the backup scopes and Xe ≡ X(Re) ∪ ΓX and Ae ≡ A(Re) ∪ ΓA ∪ A
′
e to

denote the scopes of Qe,tπ ,

Qeπ(x
t
Xe
,~θtAe

,aAe
) = Re(xte,ae) +

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|xtΓX ,aΓA)Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
)). (5.2.6)

Proof. The proof is listed in the appendix.

This theorem is important because it implies that an optimal joint policy π∗

induces a factored optimal value function. And, as shall be explained in Section 5.3,
such a factored optimal value function can in turn be used to construct π∗.

Theorem 5.1 also states that the scope of Qe,tπ should contain xtΓX ,aΓA such that

the probability of xt+1
X′

e
,ot+1

A′
e

at the next stage is defined. This means that the

scopes of Qe,tπ as given by (5.4.1) typically grow, as is clear from the definition of
Xe,Ae. The definition of A(Qe,t) implies that the agent scope is non-decreasing when
going back in time.1 This means that the interaction graphs for earlier stages are
denser, as shown in Figure 5.4. In contrast, the state scope is not necessarily non-
decreasing. However, it does also depend on the agent scope through the backup
ΓX(xt+1

X′
e
∪ ot+1

A′
e
). As such the value functions for earlier stages will typically have

larger state factor scopes too.

1Note that it is necessary that A′
e ⊆ Ae, otherwise ~θt+1

A′
e

can be undefined.

94 Factored Dec-POMDPs: Exploiting Locality of Interaction

Example 5.1 (Scopes of FFG). For instance, in FFG for stage h− 2, the scope of
the value function corresponding to reward function 1 is given by

X(Q1,h−2
π) = X(R1) ∪ ΓX({x1,x2,o1})

= {x1,x2} ∪ {x1,x2,x3} = {x1,x2,x3}

A(Q1,h−2
π) = A(R1) ∪ ΓA({x1,x2,o1}) ∪ A(Q1,h−1

π)

= {1} ∪ {1,2} ∪ {1} = {1,2}

We can identify the scopes for the other 3 (e = 2, . . . ,4) value functions Qe,h−2
π

in a similar way. The agent scopes define a new interaction graph for stage h− 2
of the FFG problem, as illustrated in Figure 5.4. The figure clearly shows that
Q2 and Q3 both involve all agents, which means that at this stage there is no
independence between agents.

When one or more components becomes fully coupled, technically, the value
function still is factored. However, at this point the factorization will no longer
provide any benefits and therefore at this point the components can be collapsed
to form a non-factored value function.

5.2.3 Locality of Interaction

When assuming transition and observation independence, as discussed in Sec-
tion 5.1.3, the probability in (5.2.6) reduces easily: each variable st+1

i (representing
a local state for agent i) is dependent only on sti (its own value at the previous
state), and each oi is dependent only on st+1

i . This means that the scope does not
expand and, as a result, the interaction graph for such settings is stationary.

In our more general case, such a notion of locality of interaction over full-length
policies is not properly defined, simply because the interaction graph and hence
agent i’s neighborhood can be different at every stage. However, at a particular
stage t, we can define such a notion. Let us decompose the joint policy π =
(ϕt,δt,ψt) in the past joint policy ϕt that has been followed, the joint decision rule
δt for stage t and a future joint policy ψt.

Corollary 5.1 (Locality of interaction for factored Dec-POMDPs). The value of
the local neighborhood of agent i can be defined as

V t(δtNi
) =

∑

e s.t. i∈A(Qe,t)

∑

xt
e

∑

~θt
e

Pr(xte,
~θte|b

0,ϕt)Qeψt
e
(xte,

~θte,δ
t
e(
~θte)). (5.2.7)

Consequently, locality of interaction holds within each stage.

Proof. We can rewrite (5.2.5) to (5.2.7) by restricting the summation to the edges
in which agent i participates and subsequently observing that 1) the probability
depends only on the past joint policy ϕt, and 2) Qeπ actually depends only on ψte
the future joint policy of the agents in its scope A(Qeπ). (Note that the agent scopes
are non-increasing when going forward in time.) Now because (5.2.7) defines the

5.3 Factored Dec-POMDPs via CGBGs 95

value of the local neighborhood V t(δtNi
) without any dependence on decision rules

δtj of agents j /∈ Ni, locality of interaction holds within stage t.

5.2.4 Approximation of Value Functions

Even when the scope includes all factors and agents with just one backup, the
decomposed value function for the last stage still has limited scope. In the optimal
solution of a Dec-POMDP, the overwhelming majority of time is spent on the last
stage, since it is exponentially harder than the next-to-last stage (Szer et al., 2005).

Therefore we show how this last-stage independence can be exploited in an
optimal algorithm, allowing for a significant speedup of the last stage, and thus
for the entire computation. Still, we expect that the number of applications for
which optimal solutions are feasible is limited. As such, the main emphasis of the
remainder of this chapter is on efficient approximations.

There are two main problems in applying the optimal value function identified
in this section. First, computing the optimal value function itself is intractable.
Second, even if we could compute it, computing an optimal policy with it (as will be
explained in the next section), would be intractable because it is fully coupled for
earlier stages of the Dec-POMDP. Therefore, Section 5.4 concentrates on finding
approximate factored value functions with predetermined scopes. The underlying
idea is as follows. In the TOI case the optimal scopes are fixed throughout: they are
identical to the scopes of the factored immediate reward function. Now if there is
no TOI, but the amount of interaction is limited, we may still be able to determine
a suitable reduced set of scopes for each of the stages such that it is possible to
compute a good approximate solution. Such a predetermined set of scopes may
for example simply specify the immediate reward scopes as the scopes for each
stage. However, one could use any scheme, e.g., the optimal scopes for the last
two stages (i.e., immediate reward scopes for t = h− 1 and the back-projection of
the immediate reward scopes for t = h− 2) and then for the remaining stages also
using the scopes specified for h− 2.

The basic assumption that underlies this approach is that is is possible to find an
approximate factored value function, whose scopes are such that some independence
remains. A similar assumption is made by for instance Guestrin et al. (2003), who
assume that although the value function of a factored MDP is not factored, it is
‘close to factored’, and therefore may be approximated well by a factored value
function. Similar assumptions have also been made in the context of POMDPs
(Guestrin, Koller, and Parr, 2001b).

5.3 Factored Dec-POMDPs via
Collaborative Graphical Bayesian Games

This section provides the tools to exploit the independence between agents as rep-
resented by the interaction graphs (e.g., Figure 5.4), thereby reducing the agent
component n in the complexity of solving a BG for a stage as expressed by Equa-
tion (5.0.1). Specifically, it shows that a factored Dec-POMDP with additively

96 Factored Dec-POMDPs: Exploiting Locality of Interaction

separable rewards can be modeled using a series of collaborative graphical BGs
(CGBGs), which are much more compact and can be solved more efficiently.

5.3.1 Collaborative Graphical Bayesian Games

A collaborative graphical BG is a graphical BG (Singh et al., 2004b; Soni et al.,
2007), in which the agents try to optimize the sum of local rewards, rather than
an individual payoff function.

Definition 5.4 (Collaborative graphical BG). A collaborative graphical Bayesian
game (CGBG), is a tuple 〈D,A,Θ,Pr(Θ), 〈u1,...,uρ〉〉, with:

• D = {1, . . . ,n} is the set of agents.

• A = ×ni=1Ai is the set of joint actions. Ai is the set of actions of agent i.

• Θ = ×iΘi is the set of joint types over which a probability function Pr(Θ)
is given (and is assumed common knowledge).

• u1,...,uρ are local payoff functions.

A CGBG is collaborative, which means that all agents try to maximize the
same payoff. It is also graphical, which means that the payoff can be decomposed
into a sum of local payoff functions, each of which can depend on only a subset
of agents, just like in factored Dec-POMDPs. Formally, a local payoff function is
specified as a mapping from the types and actions of a subset of agents to real
numbers: ue : θe × ae → R, where again we abuse e to denote A(ue) the subset of
agent indices that participate in payoff function e. We also index the local payoff
functions using e, because, as for factored Dec-POMDPs, it is possible to construct
a hyper-graph G = 〈D,E〉 from the set of payoff functions such that the agent scope
of each local payoff function corresponds to a hyper-edge e ∈ E .

Finally, the goal is to maximize the expected sum of rewards:

β∗ = argmax
β

∑

θ∈Θ

Pr(θ)
∑

e∈E

ue(θe,βe(θe)), (5.3.1)

where βe(θe)) = 〈βi(θi)〉i∈e is the joint action of the subset of agents in edge e,
resulting from application of their individual BG-policies βi.

5.3.2 A Dec-POMDP Stage as a CGBG

In a similar fashion to how a BG can model a stage of a (non-factored) Dec-POMDP,
a CGBG can model a stage of a factored Dec-POMDP. For each stage t, we want to
find a joint decision rule which is specified by δt ≡ βt,∗ the solution of the CGBG
for that stage. The actions the agents can take are the same in the Dec-POMDP
and the CGBG. The private information each agent i holds is its action-observation
history ~θ ti , which therefore naturally corresponds to agent i’s type: θi ≡ ~θ ti . The
past joint policy ϕt is available when planning, therefore the probability of joint
types is specified by Pr(~θt|b0,ϕt) =

∑
st Pr(s

t,~θt|b0,ϕt) which is given by (2.5.6).
As such, D,A,Θ,Pr(Θ) have a clear correspondence to the Dec-POMDP.

5.3 Factored Dec-POMDPs via CGBGs 97

Qe=1,t=1(~θ 1
1 ,a

1
1)

~θ 1
1

(H1,F)
H1 −0.25
H2 −1.10

(H1,N)
H1 −0.14
H2 −0.79

Qe=2,t=1(~θ1
{1,2}

,a1
{1,2}

)

~θ 1
2 (H2,F) (H2,N)

~θ 1
1 H2 H3 H2 H3

(H1,F)
H1 −0.55 −1.60 −0.50 −1.50
H2 0 −0.55 0 −0.50

(H1,N)
H1 −0.16 −1.10 −0.14 −1.00
H2 0 −0.16 0 −0.14

Qe=4,t=1(~θ 1
3 ,a

1
3)

~θ 1
3

(H4,F)
H3 −1.50
H4 −0.51

(H4,N)
H3 −1.10
H4 −0.15

Qe=3,t=1(~θ1
{2,3}

,a1
{2,3}

)

~θ 1
2 (H2,F) (H2,N)

~θ 1
3 H2 H3 H2 H3

(H4,F)
H3 −1.10 0 −0.71 0
H4 −1.90 −1.10 −1.70 −0.71

(H4,N)
H3 −1.00 0 −0.58 0
H4 −1.90 −1.00 −1.60 −0.58

Figure 5.5: The CGBG for stage t = 1 of the horizon h = 2 FFG problem for past joint
policy ϕ1 = 〈H1,H2,H4〉. The shading indicates an arbitrary BG-policy for
agent 2.

What is left to be determined is the set of payoff functions. If we assume that
we can find local Q-functions of the general Qe(xte,

~θte,ae)-form as in (5.4.1), we
can, for some past joint policy ϕt, define

ue(θe,ae) ≡ Qeϕt(~θte,ae) =
∑

xt
e

Pr(xte|~θ
t
e,b

0,ϕt)Qe(xte,
~θte,ae). (5.3.2)

As such, the structure of the CGBG is induced by the structure of the used Q-value
function. In Section 5.4, computation of such Q-value functions will be further
discussed.

Example 5.2 (FFG via CGBGs). In Figure 5.5, a CGBG for the last stage t = 1
of the horizon h = 2 FFG problem is shown. The past joint policy ϕ1 is a joint
decision rule for the first stage, which is equivalent to a joint action (in this case
〈H1,H2,H4〉). The figure shows the four local payoff function components. The
two on the left (e = 1,4) involve only one agent (resp. agent 1 and 3), while the two
on the right involve two agents. When two agents go to the same house, the reward
is zero as they are sure the fire is extinguished. Also, the entries corresponding to
histories with no-flame ‘N ’ observations, typically have a higher payoff than those
corresponding to the flame ‘F ’ observations. The figure also has some shaded
entries which indicate an arbitrary β2, a BG-policy for agent 2. This provides
some intuition as to why CGBGs are easier to solve than regular BGs: given such
a fixed β2, agents 1,3 can independently determine a best response to β2.

Modeling factored Dec-POMDPs using CGBGs in principle is exact, because
it is possible to use an optimal payoff function for the BGs. Theorem 5.1 states
that an optimal joint policy π∗ induces an optimal factored Q-value function,

98 Factored Dec-POMDPs: Exploiting Locality of Interaction

Qeπ∗(xte,
~θte,ae), as follows

V t(π∗) =
∑

e∈E

∑

xt
e

∑

~θt
e

Pr(xte,
~θte|b

0,π∗)Qeπ∗(xte,
~θte,π

∗
e(~θ

t
e)) (5.3.3)

with Qeπ∗(xte,
~θte,ae) as given by (5.4.1). Now it is possible to define an optimal

Q-value function of the form of (5.3.2). We can split Pr(xte,
~θte|b

0,π∗) in a marginal
and a conditional. Also π∗ =

(
ϕt,∗,δt,∗,ψt,∗

)
with ϕt,∗,ψt,∗ the optimal past and

future joint policy. This allows us to write:

V t(π∗) =
∑

e∈E

∑

~θt
e

Pr(~θte|b
0,ϕt,∗)Qeπ∗(~θte,δ

t,∗
e (~θte)) (5.3.4)

with
Qeπ∗(~θte,ae) =

∑

xt
e

Pr(xte|~θ
t
e,b

0,π∗)Qeπ∗(xte,
~θte,ae) (5.3.5)

the Q-value function of optimal policy π∗.

Theorem 5.2. When using (5.3.5) as the payoff function for the series of CGBGs
representing a Dec-POMDP, forward-sweep policy computation yields an optimal
policy.

Proof. Following the reasoning from Chapter 3, we only have to show that, given
that an optimal past policy ϕt,∗ is followed, using (5.3.5) as the payoff function of
a CGBG yields an optimal joint decision rule δt,∗.

First note that through (5.3.2) we can reformulate the solution of the CGBG
(5.3.1) as

βt,∗ = argmax
βt

∑

e∈E

∑

~θt
e

Pr(~θte|b
0,ϕt)

∑

xt
e

Pr(xte|~θ
t
e,b

0,ϕt)Qe(xte,
~θte,β

t
e(
~θte)) (5.3.6)

= argmax
βt

∑

e∈E

∑

~θt
e

∑

xt
e

Pr(xte,
~θte|b

0,ϕt)Qe(xte,
~θte,β

t
e(
~θte)). (5.3.7)

When an optimal past policy ϕt,∗ is followed and using (5.3.5) as the payoff func-
tion, applying the same transformation results in an equation similar to (5.3.3):

βt,∗ = argmax
βt

∑

e∈E

∑

~θt
e

∑

xt
e

Pr(xte,
~θte|b

0,ϕt,∗)Qeπ∗(xte,
~θte,β

t
e(
~θte)).

An optimal joint decision rule δt,∗ per definition maximizes the expected value V t,
and because βt,∗ does maximize this value, it is an optimal decision rule.

The implication of this theorem is that modeling a factored Dec-POMDP using
CGBGs is exact. Finding Qeπ∗(xte,

~θte,ae), however, is intractable in the same way
as the non-factored setting described in Section 3.1.5. Therefore we propose to use
approximate factored Q-value functions that are easier to compute.

5.3 Factored Dec-POMDPs via CGBGs 99

5.3.3 Efficiently Constructing Collaborative Graphical BGs

Regular BGs need exponential space with respect to the number of agents. CGBGs,
however, can be represented much more compactly, and therefore are an important
step in scaling up to more agents. Still, there is the matter of how CGBGs can be
constructed efficiently, which is addressed in this section. In particular, the idea is
that each component of the CGBG (i.e., the part corresponding to a local payoff
function e) can be constructed independently. Let us assume at the moment that

a factored Q-value function of the form Qe(xte,
~θte,ae) is available. As illustrated by

(5.3.7) the only other component required for the solution of the CGBG are the

probabilities Pr(xte,
~θte|b

0,ϕt) for each edge e.

These probabilities can be computed exactly by application of (2.5.6) and
(5.2.3), but become costly for larger problems. Alternatively, it is possible to build
upon existing literature and perform exact or approximate inference (filtering) on

a DBN model defined on the joint (s,~θt)-space that we call ~θ-DBN:

Definition 5.5 (~θ-DBN). The ~θ-DBN for a past joint policy ϕt of a factored Dec-
POMDP is the dynamic Bayesian network for stages 0, . . . ,t that has state factors
and action-observation histories as its nodes.

Figure 5.6a shows two stages of the ~θ-DBN for the FFG problem. The dynamics
of the ~θ-DBN follow from the dynamics of the original DBN given ϕt. For instance,
the probability of a particular action-observation history ~θ t+1

i = (~θ ti ,a
t
i,o

t+1
i) for

agent i is given by Pr(~θ t+1
i |xt+1

I ,~θ ti) = Pr(ot+1
i |a

t
i,x

t+1
I) Pr(ati|ϕ

t,~θ ti) Pr(
~θ ti), where

I ⊆ X ′ denotes the subset of factors that has influence on the observation of agent
i. This formulation can be further generalized to allow influence of other agents’
actions and observations on ot+1

i and thus ~θ t+1
i . For ease of explanation, however,

we restrict ourselves to the above simplified setting.

5.3.3.1 Approximate Inference

Exact inference on the ~θ-DBN could be performed by algorithms such as the junc-
tion tree or the frontier algorithm (see Murphy (2002) for a review). When both
the number of states and the number of agents is low, exact inference is feasible.
However, for a larger number of agents and states, exact inference becomes im-
practical. In general, exact inference requires the representation of the probability
distributions over all |S| · |~Θt| (state, joint action-observation history)-pairs. The

number |~Θt| scales exponentially with the number of agents, while |S| scales expo-
nentially with |X | the number of state factors (of which there are usually more in
systems with more agents).

Therefore, we propose to use approximate inference to compute, for all com-
ponents e, the quantities Pr(xte,

~θte|b
0,ϕt) needed to construct the CGBG for stage

t. There are several algorithms for approximate inference on DBNs (Murphy,
2002), such as the algorithm by Boyen and Koller (1998), loopy belief propagation
(Kschischang et al., 2001; Mooij, 2008a), the factored frontier algorithm (Mur-
phy and Weiss, 2001), etc. We choose to use the factored frontier (FF) algorithm

100 Factored Dec-POMDPs: Exploiting Locality of Interaction

t t+ 1

x1 x′
1

~θ1 ~θ′1

x2 x′
2

~θ2 ~θ′2

x3 x′
3

~θ3 ~θ′3

x4 x′
4

(a) The ~θ-DBN.

x1 0 1

x2 0 1 0 1

π1(~θ1) H1 H2 H1 H2 H1 H2 H1 H2

x′
1 = 0 1 1 1 0.2 1 0 0.6 0

x′
1 = 1 0 0 0 0.8 0 1 0.4 1

(b) A compact representation of the CPT asso-
ciated with x′

1.

x′
1 0 1

x′
2 0 1 0 1

π1(~θ1) H1 H2 H1 H2 H1 H2 H1 H2

(~θ1,π1(~θ1),N) 0.8 0.8 0.8 0.5 0.5 0.8 0.5 0.5

(~θ1,π1(~θ1),F) 0.2 0.2 0.2 0.5 0.5 0.2 0.5 0.5

(c) A compact representation of the CPT associated

with ~θ′1.

Figure 5.6: Given a joint policy π the standard DBN from Figure 5.1b can be transformed
to a ~θ-DBN as illustrated here for FireFightingGraph with Nf = 2.

because it is simple and allows computation of some useful intermediate represen-
tations (see next). Other, approximate inference algorithms can also be considered
(Murphy, 2002; Mooij, 2008a).

The FF algorithm works as follows. Consider a general DBN with state factors
X = 〈X1, . . . ,Xk〉.1 FF represents the distribution over states in a fully factored
form. That is, if we write p to denote the maintained probability distributions, we
have that

p(〈X1, . . . ,Xk〉) ≡
k∏

i=1

p(Xi) (5.3.8)

Given such a distribution for a stage t, the next-stage distribution can be approx-
imately computed by directly computing the new marginals on each node Xt+1

i :
the node’s CPT is multiplied by the marginals of its parents Xt

P1
. . . Xt

Pl
and the

parents are marginalized out directly:

p(Xt+1
i) =

∑

Xt
P1
...Xt

Pl

Pr(Xt+1
i |Xt

P1
. . . Xt

Pl
)p(Xt

P1
) . . . p(Xt

Pl
). (5.3.9)

Given the completely factored distribution as computed by FF, we can approx-
imately compute the desired quantities

∀e Pr(xte,
~θte|b

0,ϕt) ≈
∏

i∈X(Qe)

p(xi)
∏

i∈A(Qe)

p(~θ ti). (5.3.10)

Subsequently it is possible to compute both Pr(~θte|b
0,ϕt) and a compact payoff

function ue(θe,ae) (through (5.3.2)) for each edge e, thereby defining the CGBG.

1There are two types of nodes in the ~θ-DBN, but from a DBN perspective these are all
(hidden) state factors. In the following we write Xi for such more abstract state factors.

5.3 Factored Dec-POMDPs via CGBGs 101

5.3.3.2 Using Intermediate Results

The FF algorithm can be used to compute approximate probabilities for the con-
struction of CGBGs if a payoff function of the form Qe(xte,

~θte,a
t
e) is available.

However, such payoff functions will be very large and difficult to compute. As
such, Section 5.4 details how to compute payoff functions of the form Qe(xte,a

t
e).

However, looking at (5.3.2) we see that using a fully factored distribution means

that for all ~θte the specified payoff ue(θe,ae) will be the same.
This problem can be overcome by making use of the intermediate results of the

FF algorithm. It is possible to perform the computation of the new marginals in a
fixed order: first the marginals of all state factors xj , then the marginals of all ~θi.

These latter ~θi marginals, are computed in two phases. The first phase marginalizes
only over the parents in the previous time slice. This leads to a nearly completely
factored distribution p over states and joint action-observation histories. That is,
the state probabilities are represented in a completely factored manner, but the
history probabilities are conditionals of the relevant state-factors:

p(s,~θ) =

|X |∏

j=1

p(xj) ·
n∏

i=1

p(~θi|xI). (5.3.11)

Here, xI denotes the set of state factors from the same time slice that influence
the probability of ~θi. In the second phase also the xI are marginalized out. Now
the problem of constructing a CGBG with a payoff function of the form Qe(xte,a

t
e)

is solved by using the nearly completely factored distribution (5.3.11).

Example 5.3. An example for FFG starts with a fully factored distribution:

p(s,~θ) = p(x1)p(x2)p(x3)p(x4)p(~θ1)p(~θ2)p(~θ3). (5.3.12)

First we directly compute the next-stage state factors. For instance

p(x′
2) =

∑

x1,x2,x3,~θ1,~θ2

Pr(x′
2|x1,x2,x3,~θ1,~θ2)p(x1)p(x2)p(x3)p(~θ1)p(~θ2). (5.3.13)

Subsequently, the next-stage ~θ′i marginals are computed in two phases. In the first
phase, we directly marginalize over the previous-stage parents, for instance the
probability of ~θ′1 = (~θ1,a1,o1) is computed as

p(~θ′1|x
′
1,x

′
2) = Pr(~θ′1|x

′
1,x

′
2,~θ1)p(~θ1). (5.3.14)

Doing this for all agents yields the nearly factored distribution

p(s,~θ) = p(x1)p(x2)p(x3)p(x4)p(~θ1|x1,x2)p(~θ2|x2,x3)p(~θ3|x3,x4), (5.3.15)

which can be used to construct the CGBG for the next stage. Finally, the second
phase finishes the computation of the ~θi-marginals, by marginalizing over the intra-
stage parents, e.g. p(~θ′1) =

∑

x′
1,x

′
2
p′(~θ′1|x

′
1,x

′
2)p(x

′
1)p(x

′
2), thereby defining a new

completely factored distribution, which prepares for a new iteration.

In the more general case, the next-stage observations and thus ~θ′i may depend

102 Factored Dec-POMDPs: Exploiting Locality of Interaction

on the actions of multiple agents. In such a case computing the phase-one ~θ′i
conditionals would require summing over the histories of the subset of other agents,
say G, that are of influence. I.e., in this more general case (5.3.14) becomes

p(~θ′1|x
′
1,x

′
2) =

∑

~θG

Pr(~θ′1|x
′
1,x

′
2,
~θ1,~θG)p(~θ1)p(~θG). (5.3.16)

We note that these formulations can also be extended to include observation de-
pendencies, although we do not explicitly consider those in this chapter.1

A final note is that, except in (5.3.14), all the influence of the previous-stage
~θi’s is through the actions that they induce (given the past joint policy ϕ). As
such, we can gain in efficiency by first computing for all agents, the distributions
over their actions

p(ai) =
∑

~θi s.t.

ϕi(~θi)=ai

p(~θi). (5.3.17)

Subsequently the summations over histories in (5.3.13) and (5.3.16) can be replaced
by summations over actions.

5.4 Approximate Factored Q-Value Functions

So far we have seen that factored Dec-POMDPs with additive rewards can be repre-
sented by CGBGs that can be constructed efficiently using approximate inference.
This section covers the computation of factored Q-value functions that can be used
as the payoff functions for the CGBGs.

For non-factored Dec-POMDPs, Chapter 4 discussed how the Q-value functions
of the ‘underlying MDP’ (QMDP) and ‘underlying POMDP’ (QPOMDP) can be used
as heuristic payoff functions for the (non-factored) BGs. However, in order to
exploit independence between agents using CGBGs, approximate factored Q-value
functions with restricted scopes are needed. Unfortunately, the underlying MDP
and POMDP solution are fully coupled: they are based on the full state st and on
the full joint belief bt respectively as will be explained in Subsection 5.4.1.2

However, many researchers such as Koller and Parr (1999) have considered
factored approximations. Therefore, Subsection 5.4.2 proposes to approximate
QM(s,a), the fully coupled underlying QMDP solution, with a factored value func-
tion, by applying linear regression to find the least-squares factored approximation.
Still, this approach is problematic for larger domains: the underlying MDP of a
factored Dec-POMDP has a number of joint actions that grows exponentially with

1Observation dependencies can be modeled by arrows between observations in the original
DBN of the factored Dec-POMDP (i.e., Figure 5.1b). As long as these dependencies do not form
cycles (and one can always formulate the dependencies in this way) there is an implied ordering

in which the ~θ′i-marginals can be computed.
2An exception is presented by Meuleau, Hauskrecht, Kim, Peshkin, Kaelbling, Dean, and

Boutilier (1998), who heuristically employ the independent value functions of a set of nearly-
independent MDPs (with separate state and action spaces), that are coupled only through the
number of available resources, which acts as an external state variable.

5.4 Approximate Factored Q-Value Functions 103

the number of agents and a number of states that grows exponentially with the
number of state factors. This means that both the solution of the underlying
MDP and the regression problem become intractable. Subsection 5.4.3 shows how
the complete solution of the underlying MDP can be avoided by bootstrapping in
an approximate dynamic programming (ADP) algorithm and how the techniques
introduced by Koller and Parr can be extended to allow for efficient regression.

Finally, a third and completely new way of coming up with a factored value
function is considered. This approach makes use of the solution of smaller source
problems that involve fewer agents. It is referred to as transfer planning and is
introduced in Subsection 5.4.4.

5.4.1 Nearly Factored Underlying MDP Solutions

Even though Subsection 5.2.2 shows that the value function of a Dec-POMDP is
factored (albeit with increasing scopes when moving away from the last stage), the
value function for the underlying MDP is not: it becomes fully coupled in just
one step. This can be explained by considering (5.2.6), repeated here in a slightly
altered form, which gives a description of how the value is being back-propagated:

Qeπ(x
t
e,
~θte,ae) = Re(xte,ae) +

∑

x
t+1

e′

∑

o
t+1

e′

Pr(xt+1
e′ ,ot+1

e′ |x
t
ΓX ,aΓA)Qeπ(x

t+1
e′ ,~θt+1

e′ ,at+1
e′). (5.4.1)

When considering the underlying MDP or POMDP of the Dec-POMDP, value is
propagated in exactly the same way; the only difference is in the next stage action
at+1
e′ determined by the policy we assume for the next stage. In particular, in the

Dec-POMDP case, the value of the next stage that is propagated is determined
by the Dec-POMDP policy at+1

e′ = πe′(~θ
t+1
e′). In contrast, for the optimal policy

π∗
MDP of the underlying MDP, we assume that at the next stage, the problem is

fully observable. As, a result this policy can condition on the nominal state at the
next stage, and at+1

e′ is the restriction to e′ of

at+1 = π∗
MDP(s

′) = argmax
a

∑

e∈E

Qeπ(x
t+1
e′ ,at+1

e′).

(in the MDP setting ∀e∀~θt+1

e′
Qeπ(x

t+1
e′ ,~θt+1

e′ ,at+1
e′) = Qeπ(x

t+1
e′ ,at+1

e′)). Thus, the

‘simplifying’ assumption of observing the nominal state at the next stage effectively
introduces a dependency on this nominal state. The result is that the value function
becomes non-factored at stage h − 2. A similar argument can be made for the
underlying POMDP.

Still, Koller and Parr (1999) argue that, while the exact value function for
a factored MDP is non-factored, it might be close to factored: i.e., it may be
approximated well by a factored value-function. In particular, Koller and Parr
show that

1. using a linear factored value function—defined as the weighted sum of a
number of predefined basis functions with restricted (state factor) scopes—a
least squares approximation of V ∗

MDP over the entire state space can be found,

104 Factored Dec-POMDPs: Exploiting Locality of Interaction

2. this least-squares approximation can be computed efficiently, because the
projection of a factored function with restricted scopes w.r.t. the Euclidean
norm can be computed efficiently, and

3. the resulting approximation can be close to the exact value function V ∗
MDP.

Koller and Parr (2000) propose an approximate policy iteration (API) algorithm
based on these ideas. In subsequent work, Guestrin, Koller, and Parr (2001a);
Guestrin et al. (2003) show how also the max-norm L∞ can be used for efficient
projections, by compactly representing the constraints of a linear program, and
adapt API to make use of it. The max-norm projection brings theoretical advan-
tages, because convergence guarantees of policy iteration are based on the max-
norm. Szita and Lörincz (2008) propose a similar modification of approximate
value iteration (AVI). Both Schuurmans and Patrascu (2002) and Guestrin et al.
(2003) improved a related technique called approximate linear programming (ALP),
first introduced by Schweitzer and Seidman (1985), that directly approximates the
factored MDP with a linear program. Performance bounds for this approach are
given by de Farias and Van Roy (2003). Similar ideas were also transferred to the
solution of multiagent MDPs (Guestrin, Koller, and Parr, 2002a) and POMDPs
(Guestrin et al., 2001b).

While this shows that there are a number of papers that address efficient so-
lutions for factored MDPs, they all consider the approximate solution of factored
MDPs over an infinite horizon and, to this end, compute stationary factored value
functions (V). In contrast, the problem considered in this section is different: it is
to determine a non-stationary (finite-horizon) factored Q-value function (Q) for a
factored multiagent MDP. The rest of this section uses the tools developed in the
mentioned papers, and applies them to the computation of a factored finite-horizon
Q-value function. First, we introduce a straightforward approach and introduce
some necessary concepts, subsequently we discuss a second approach that is based
on the same concepts but more efficient, because it builds on the techniques devel-
oped by Koller and Parr (1999).

5.4.2 Factored QMDP: A Naive Approach using Linear Re-
gression

The simplest approach to computing a non-stationary factored Q-value function
considered in this chapter is called naive regression (NR). It first computes the
full non-stationary non-factored Q-value function, QMDP = (Q0

M, . . . ,Q
h−1
M), by

solving the underlying MDP with standard dynamic programming (DP) techniques
(Puterman, 1994). Next, it computes the approximate factored Q-value function
for each stage separately by using the found QtM as targets in regression.

Naive regression is outlined in Algorithm 5.1. As input it requires for each
stage t = 0, . . . ,h − 1 the desired scopes of the local Q-functions. The scopes of
the e-th local Q-function at stage t are denoted X(e,t),A(e,t) here. As mentioned,
Step 1 can be performed by standard dynamic programming. Step 2 performs the
regression for each stage t separately. This involves defining, given some scope, a
set of basis functions, one for each ‘local state-action pair’.

5.4 Approximate Factored Q-Value Functions 105

Algorithm 5.1 Factored QMDP through Naive Regression

Input: The underlying MDPM of the Dec-POMDP.
Input: The desired scopes for each stage X(e,t),A(e,t).
1: SolveM: compute QtM(s,a) for all t and s =

〈
x1, . . . ,x|X |

〉
.

2: For each stage t, solve the following linear regression problem:

∀s∀a QtM(s,a) ≈
∑

e∈E

Qe,t(xX(e,t),aA(e,t)). (5.4.2)

The found factored value function is employed by setting ∀~θt
e
Qe(xte,

~θte,a
t
e) =

Qe(xte,a
t
e). Subsequently (5.3.2) is used to combine the values into a heuristic fac-

tored payoff function for the CGBGs.

5.4.2.1 Local State-Action Pairs and Indicator Functions

Formalizing the decomposition of the QMDP function into a factored Q-value func-
tion through regression requires the formalization of several concepts. In particular,
linear regression is effectively a projection onto a set of basis functions, so these
basis functions on which QtM(s,a) is projected need to be defined in such a way
that the resulting approximation is of the desired form: a factored Q-value func-
tion with the desired scopes. To this end we propose to use induced indicator basis
functions. Here we provide only the intuition, for a rigorous formalization, please
consult Appendix C.

Let us write N for the number of state-(joint)action pairs (s,a). The desired
factored Q-value function has components Qe,t(xX(e,t),aA(e,t)) that are defined over
what we call local state-action pairs (xX(e,t),aA(e,t)). The total number of such local

state-action pairs is denoted with N̂ and is the sum of the number of local state-
action pairs for each component e. Note that for a typical problem N ≫ N̂ . Let us
use 1 ≤ l ≤ N̂ as an index over such a local state-action pair for all components e.
An induced indicator basis function hl for each local state-action pair l takes global
state-action pairs z = (s,a) as its argument and indicates whether the supplied z
is consistent with l. That is, hl(z) = 1 if and only if z is consistent with local state
action pair indicated by l, and 0 otherwise.

5.4.2.2 Formulation of the Regression Problem

Using the notation from the previous section we can rephrase the regression problem
(5.4.2) in terms of basis functions: we want to find a weight vector w for which



h1(z1) . . . hl(z1) . . . hN̂ (z1)

...
...

...
h1(zN) . . . hl(zN) . . . hN̂ (zN)







w1

...
wl
...
wN̂



≈



Q(z1)

...
Q(zN)


 (5.4.3)

106 Factored Dec-POMDPs: Exploiting Locality of Interaction

is a good approximation. In matrix notation we write:

Hw ≈ Q (5.4.4)

where H is the matrix of the N̂ basis functions:

H =



| |
h1 . . . hN̂
| |


 . (5.4.5)

In the setting considered here, there is no particular need for max-norm projec-
tions (Guestrin et al., 2001a, 2003). Also, although a weighted norm can improve
the approximation of a value-function, it may be unsuitable to use such a value
function to define a policy as discussed by Koller and Parr (1999).1 Moreover, it is
unclear how to select such weights, which is why we use an unweighted least-squares
approximation:

min
w
||Hw −Q||2 (5.4.6)

This is accomplished by selecting w such that Hw is the orthogonal projection
of Q into subspace H = span(H), the subspace spanned by H. This projection is
standard linear algebra (Hefferon, 2008) and is given by

projH(Q) = H(HTH)−1HTQ, (5.4.7)

where T denotes transpose and −1 inverse. Equating the desired result to the
projection

Hw = H(HTH)−1HTQ, (5.4.8)

derives
w = (HTH)−1HTQ. (5.4.9)

as the w that minimizes the error. This is exactly the operation as it is implemented
by any linear regression package.

5.4.2.3 Scalability of Naive Regression

The outlined approach works well for small problems, but it scales poorly with the
number of agents and number of state factors, as computing all the non-factored
QMDP values and performing linear regression—which requires the explicit con-
struction of H—becomes intractable. Fortunately, because all basis functions have
a restricted induced scope, construction of H can be avoided and (HTH)−1 can be
computed efficiently, because the inner products of basis functions can be computed
efficiently (Koller and Parr, 1999). The work of Koller and Parr is extended by
showing that this computation is particularly efficient for induced indicator basis
functions, as detailed in Appendix C.2. Still computation of the full Q and the
inner product HTQ cannot be avoided in naive regression.

1When selecting a greedy policy from a value function, it is more important that the relative
values of all states are preserved than that the absolute values are approximated accurately.
However, weighting means that the error can be quite different for different states, and therefore
the relative values can be perturbed.

5.4 Approximate Factored Q-Value Functions 107

Algorithm 5.2 Approximate DP.

Input: The underlying factored MDPM of the Dec-POMDP.
Input: The desired scopes for each stage S(e,t) = 〈X(e,t),A(e,t)〉.
Output: The factored approximate value function forM.
1: if immediate reward scopes do not match desired scopes ∃e S(Re) 6= S(e,t)

then
2: compute Qh−1 through projection:

∀s
∑

e∈E

Qe,h−1(xX(e,t),aA(e,t)) ≈
∑

e∈ER

Re(xe,ae). (5.4.10)

3: else
4: Qh−1←R
5: end if
6: for t = h− 1 to 1 do
7: Qt−1←ComputePreviousStageQ(Qt,M,S(t− 1))
8: end for

A solution would be to consider a sample-based approach. Rather than comput-
ing the full non-factored QMDP-function, it generates a set of targets by sampling
state-action pairs and estimates their value by performing backups (also based on
sampling) from the factored QMDP values for stage t + 1. That is, the factored
approximation for t is estimated directly, or bootstrapped, from the approximation
for t + 1. One difficulty in the setting of approximate value function for a Dec-
POMDP is how to select these samples. Drawing them uniformly might be quite
wrong, since the true distribution may be quite different: it is based on the past
policy, which is unknown. Note that such a sample-based method would be closely
related to reinforcement learning (Sutton and Barto, 1998), and it may be possible
to reuse methods explicitly designed to work with factored Q-value functions (Kok
and Vlassis, 2006). Section 5.4.3 adopts a different approach building upon the
work by Guestrin et al. (2003).

5.4.3 Factored QMDP: Approximate Dynamic Programming

For large problems, it is more efficient and elegant to interleave the projection
steps with backup steps. That is, the approximate Q-value function of a stage t is
bootstrapped from the approximation for stage t+ 1. This means that errors may
accumulate. However, when the state space gets very large there seems to be no
other option for the computation of QMDP than to resort to such a scheme, because
computation of the flat QMDP solution is no longer possible.

To implement this idea of bootstrapping to compute a non-stationary factored
Q-value function, we propose a straightforward algorithm, which we refer to as
approximate dynamic programming (ADP).1 The algorithm is closely related to

1Arguably, approximate dynamic programming is an inconvenient name since in the opera-
tions research community (e.g., see Powell, 2007) it is used to describe the techniques that the

108 Factored Dec-POMDPs: Exploiting Locality of Interaction

the factored value iteration approach of Szita and Lörincz (2008), but computes
non-stationary value functions and materializes the desired factored Q-value func-
tion for each step. ADP is shown in Algorithm 5.2. Lines 1–5 correspond to
the initialization and are run only once. Its main component is a subroutine
ComputePreviousStageQ, shown in Algorithm 5.3, that computes Qt from Qt+1.

ADP starts by checking whether the scope of the immediate reward function
is the same as the scope desired for the factored Q-value function of the last stage.
Algorithm 5.2 uses E to denote the set of components (or edges of the corresponding
interaction hyper-graph) of Qh−1. The ρ components of the immediate reward are
denoted by ER. If the scopes for Qh−1 are not equal to the immediate reward
scopes, a projection is first performed using the equivalent of (5.4.9)

w = (HTH)1HTR, (5.4.11)

which results in a factored value function Qh−1 = Hw that is the the least-squares
approximation of R. Because H is the matrix of induced indicator basis functions
and R is factored, (5.4.11) can be computed efficiently as detailed in Appendix C.

Subsequently, ADP computes the factored Q-value function for the remaining
stages h − 2, . . . ,0 by calling ComputePreviousStageQ. This function is shown in
Algorithm 5.3. Note that the set of components of Qt+1 is denoted using Et+1 while
the set of components of Qt (induced by the desired scopes S(e,t)) are denoted using
Et. The function consists of three steps.

In the first step, Qt+1 is converted to a factored value function V t+1. In general,
this is a complicated procedure that requires a maximization for each state and that
results in a non-factored value function V t+1 which consequently has to be factored
by projection. This would mean that again the resulting algorithm will not scale
well. To overcome this problem, we propose to make a fast approximation by
maximizing each component independently, similar in spirit to the approximation
used by Kumar and Zilberstein (2009). That is we use

∀e∈Et+1 V e,t+1(xX(e,t+1))← max
aA(e,t+1)

Qe,t+1(xX(e,t+1),aA(e,t+1)). (5.4.12)

Clearly this is a crude approximation and will result in an overestimation of the
value. However, it may be the case that the relative values will be largely preserved,
as a similar overestimation is made for each local state. Another option would be
to perform this step in a sample-based fashion, as for instance proposed by Szita
and Lörincz (2008).1 Still, such sample-based approaches typically require a lot of
samples and are therefore slow in practice, which is why we have not considered this
option further. Note that in such a case, the state factor scopes of the components
V e,t+1(xX(e,t+1)) need not be the same as those of Qe,t+1.

The second step back-projects each of the components V e,t+1 through the tran-
sition model, constructing the components ge,t. In the algorithm ΓX, ΓA are

AI community calls Reinforcement Learning. Nevertheless we choose the term ADP in order to
be consistent with the naming for API and ALP.

1Szita and Lörincz (2008) show PAC-bounds for performing uniform sampling for this step:
using only polynomially many samples (in the representation of the factored MDP) with high
probability the approximate solution of this step has low error.

5.4 Approximate Factored Q-Value Functions 109

Algorithm 5.3 ComputePreviousStageQ(Qt+1,M,S(t))

Input: Qt+1, the factored Q-value of the next stage.
Input: The underlying factored MDPM of the Dec-POMDP.
Input: The desired scopes for stage t S(e,t) = 〈X(e,t),A(e,t)〉.
Output: Qt, the factored Q-value for stage t.
1: Compute a restricted scope factored value function V t+1 from Qt+1 such that

∀s
∑

e∈Et+1

V e,t+1(xX(e,t+1)) ≈ max
a

∑

e∈Et+1

Qe,t+1(xX(e,t+1),aA(e,t+1)). (5.4.13)

2: Compute ge,t the back-projection of V e,t+1 for all e ∈ Et+1:

∀x
ΓX ,aΓA

ge,t(xΓX ,aΓA) = γ
∑

x′
e

Pr(x′
e|xΓX ,aΓA)V e,t+1(x′

e). (5.4.14)

3: Compute Qt as the least-squared error approximation:

∀s
∑

e∈Et

Qe,t(xX(e,t),aA(e,t)) ≈
∑

e∈ER

Re(xe,ae) +
∑

e∈Et+1

ge,t(xΓX ,aΓA). (5.4.15)

shorthand for the state factor and agent backup of the next-stage state scope
ΓX(X(V e,t+1)), ΓA(X(V e,t+1)).

Step 3 requires another projection, but this time no maximization is involved.
Again, because both the left-hand and the right-hand side of (5.4.15) are factored
functions with restricted induced scopes, this projection can be computed effi-
ciently, as described in Appendix C. Note that, when using a different method for
step 1, it may be possible to choose the scopes of V e,t+1 in such a way that the
back-projected ge,t(xΓX ,aΓA) can be immediately combined with immediate reward
components Re to form Q-functions of the desired form. This would make the
projection in Step 3 unnecessary.

5.4.4 Transferring Q-value Functions

The high-level goal of entire Section 5.4 is to come up with some meaningful heuris-
tic for each component e of the CGBG that has the form Qeϕt(~θte,ae). Subsec-

tions 5.4.2 and 5.4.3 did this by searching for a heuristic of the form Qe(xte,
~θte,ae)

and transforming it to the former form using (5.3.2). This subsection proposes a
different approach that directly tries to find heuristic values

Qeϕt(~θte,ae) ≡ Qs(~θt,a) (5.4.16)

by solving smaller, but similar, source tasks and using their value functions Qs.
These source tasks and their correspondence to the original problem are manually
specified as will be detailed in Subsection 5.4.4.1, but this may be automated in
the future.

110 Factored Dec-POMDPs: Exploiting Locality of Interaction

This idea is closely related to inductive transfer or transfer learning, in which
a set of tasks is used to bias the learning process on a new task (Thrun, 1996;
Thrun and Pratt, 1998; Baxter, 2000; Torrey, Walker, Shavlik, and Maclin, 2005;
Rosenstein, Marx, Kaelbling, and Dietterich, 2005). In this line of research learn-
ing a target task is bootstrapped from a simpler source task. This way the target
task can be learned more efficiently. Also, specific source tasks may be designed
such that the total time needed to first learn the source task and then the target
task is less than when learning the target task directly. Many such methods have
been proposed within a more general machine learning context. Within the field
of sequential decision making, inductive transfer has mostly been applied to rein-
forcement learning (Selfridge, Sutton, and Barto, 1985; Singh, 1992; Wilson, Fern,
Ray, and Tadepalli, 2007; Taylor, Stone, and Liu, 2007; Taylor, Kuhlmann, and
Stone, 2008; Taylor and Stone, 2009). Typically, a policy or value function learned
on a source task is used to construct an initial policy for the target task, which is
then refined by further learning. In contrast, the method proposed here considers
a planning task and uses the value function of multiple source tasks as a heuristic.
We refer to this method as transfer planning (TP) and the resulting approximate
Q-value function as QTP.

5.4.4.1 Formalization of Multiagent Transfer Planning

The goal of transfer planning is to compute an approximate factored Q-value func-
tion by identifying a source problem for each component, or edge. The basic idea
is that it is possible to directly use the Q-value function of a source task as a
component Qe. As before, we assume that the desired structure of the factored
Q-value function in terms of scopes is known, i.e., for all stages and all edges
S(e,t) = 〈X(e,t),A(e,t)〉 is specified. To simplify the discussion, the following as-
sumes some particular stage t.

TP is defined using the following components:

• S—the set of source problems s ∈ S

• Ds = {1s, . . . ,ns} —the set of agents of source problem s.

• E—a function that maps each edge e to a source problem E(e) = s ∈ S. We
require that A(e) the agent scope of e for the considered stage contains at
least as many agents as the assigned source problem: |A(e)| ≥ nE(e).

• Ae—for each edge e we define a mapping Ae : A(e)→ DE(e) that maps agent
indices in the target task i ∈ A(e) to indices Ae(i) = js ∈ Ds in the source
task s for that particular edge s = E(e). Note that Ae is surjective, such that
all js ∈ Ds are pointed to.

With some abuse of notation Ae is overloaded to also work on profiles of agents,
actions and histories. E.g.,

Ae(~θte) = Ae(〈. . . ,~θ ti , . . . 〉i∈e) = 〈. . . ,~θ
t
Ae(i), . . . 〉i∈e =

~θtAe(e). (5.4.17)

This allows us to formally define the transfer we apply as follows.

5.5 Solution of Collaborative Graphical BGs 111

e A(Re) X(Re)

1 {1} {1,2}
2 {1,2} {1,2,3}
3 {2,3} {2,3,4}
4 {3,4} {3,4,5}
5 {4,5} {4,5,6}
6 {5} {5,6}

(a) Original Scopes.

e A(e) X(e)

1 {1,2} {1,2,3}
2 {2,3} {2,3,4}
3 {3,4} {3,4,5}
4 {4,5} {4,5,6}

(b) Reduced Scopes.

Table 5.1: The scopes of the immediate reward functions of 5-agent FFG.

Definition 5.6 (QTP). Given a set of source problems that satisfy the above
requirements, and some (heuristic) Q-value functions for them,

QeTP(
~θte,ae) ≡ Qs(~θtAe(e),aAe(e)), s = E(e). (5.4.18)

This means that it is only necessary to define source problems and the corre-
sponding mapping Ae for each edge e and to find a good heuristic Q-value function
Qs(~θt,a) for each of the source problems. Since the source problems are typically
selected to be small, it is possible to treat them as non-factored and use the heuristic
QMDP, QPOMDP and QBG value functions as discussed in Chapter 4.

Example 5.4 (Q
TP

for the FFG problem.). This illustrates the application of Q
TP

to the 5-agent FFG problem. In this problem there are 6 houses. However, the
immediate reward scopes of the first and last house are sub-scopes of other scopes
as illustrated in Table 5.1a and as such we can reduce them such that the desired
Q-value function will be factored as shown in Table 5.1b.
Now, for each of the 4 components e it is necessary to 1) define a source task E(e),
2) define a mapping Ae and 3) compute a (heuristic) Q-value function for the source
task such that we can transfer using (5.4.18). We propose to use 2-agent FFG as
the source task for each of the four components. The agent mapping is defined
such that the agent with the lower index is mapped to 1s and the agent with the
higher index to 2s. E.g., for e = 3, Ae(3) = 1s,Ae(4) = 2s. Finally, computation
of the underlying centralized QMDP function for 2-agent FFG provides the values
to define Qe

TP using (5.4.18).

5.5 Solution of Collaborative Graphical BGs

The previous sections discussed how a factored Dec-POMDP can be represented
as a series of CGBGs, how such CGBGs can be efficiently constructed and how
we can compute approximate payoff functions for them. This section explains how
CGBGs can be solved efficiently. Since the results for this section are not specific to
CGBGs used to model Dec-POMDPs, we abstract away the Dec-POMDP context.

112 Factored Dec-POMDPs: Exploiting Locality of Interaction

The solution of a CGBG is given by

βt,∗ = argmax
βt

∑

e∈E

∑

~θt
e

Pr(~θte|ϕ
t,b0)Qe,t(~θte,β

t
e(
~θte))

= argmax
β

∑

e∈E

∑

θe

Pr(θe)ue(θe,βe(θe)) (5.5.1)

where e = A(Qe,t). The second equation ignores the Dec-POMDP context.

5.5.1 Nonserial Dynamic Programming

Optimal solution of regular BGs requires evaluating all joint BG policies. In con-
trast, CGBG can be optimally solved more efficiently using non-serial dynamic
programming (NDP) (Bertele and Brioschi, 1972; Rosenthal, 1977), also known as
variable elimination (Guestrin et al., 2002a; Vlassis, 2007). This technique works
by iteratively eliminating agents (variables) from the maximization. Let us define,
for all edges e, the value for all local BG-policies βe

ue(βe) ≡
∑

θe

Pr(θe)ue(θe,βe(θe)). (5.5.2)

Using this formulation, (5.5.1) can be rewritten as

βt,∗ = argmax
βt

∑

e∈E

ue(βe). (5.5.3)

Example 5.5 (NDP for the FFG example of Figure 5.5). The maximization we are
performing in this case is

max
β

[

u1(β1) + u2(β{1,2}) + u3(β{2,3}) + u4(β3)
]

. (5.5.4)

It is possible to isolating the functions in which agent 1 participates

max
β{2,3}

[

u3(β{2,3}) + u4(β3) + max
β1

[

u1(β1) + u2(β{1,2})
]

]

,

This inner maximization can now be written as f1(β2) a function representing the
best-response value contributed by agent 1 when agent 2 selects β2. This allows
us to isolate the maximization for the policy of agent 2:

= max
β3

[

u4(β3) + max
β2

[

u3(β{2,3}) + f1(β2)
]

]

= max
β3

[

u4(β3) + f{1,2}(β3)
]]

.

Here f{1,2} is the function that will compute the maximizing (best-response) contri-
bution of agents 1 and 2, given β3. Now it is easy to determine β∗

3 the maximizing
β3 by just looping over all possible options. Subsequently, f{1,2} can be used to
determine β∗

2 and f1 can be used to determine β∗
1 . At this point we have found

β∗ = 〈β∗
1 ,β

∗
2 ,β

∗
3 〉 without looping over the space of joint BG-policies.

5.5 Solution of Collaborative Graphical BGs 113

Conceptually, the ue functions from (5.5.4) define a graphical normal-form
game, which is then solved by NDP. This normal-form game does not need to
be constructed explicitly, however.

The time needed by NDP is exponential in the induced width of the interaction
graph (Guestrin et al., 2002a), i.e., the maximum number of agents that are par-
ticipating in any function ue or f . Let us denote this width w, then we have that
the complexity of solving the last stage CGBG is

O
(
n · |A∗|

w(|O∗|
h−1)

)
, (5.5.5)

yielding an exponential speedup over (5.0.1) as long as n≫ w.

5.5.2 CGBGs as Factor Graphs

The agents in a CGBG are collaborative and try to optimize the same global payoff
function. As such it is possible to interpret a CGBG in the more general paradigm
of factor graphs (Kschischang et al., 2001; Loeliger, 2004). This section introduces
two factor graph representations of CGBGs.

5.5.2.1 Policy Factor Graphs

Section 5.1 introduced interaction graphs and how they model independence be-
tween agents. In particular, two agents in an interaction graph are connected when
there is a component of the value function that involves the policies of both those
agents. Like many graphical models, interaction graphs can be seen as a special
case of factor graphs. In particular, the factor graph makes explicit the components
of the value functions as factors and the variables that influence them.

Definition 5.7 (Factor Graph). A factor graph (FG) is a bipartite graph with a
set of factors F =

{
F1, . . . ,F|F|

}
and variables V =

{
V1, . . . ,V|V|

}
. Each factor is a

function Fi defined over a subset S ⊆ V of the variables: Fi(vS). A factor Fi and
variable Vj are connected if and only if the variable is in the scope of the factor
Vj ∈ S(Fi).

A CGBG can be represented as a factor graph with individual BG-policies as
variables, and a factored payoff function defined over these policies. In particular,
the description of the solution of the CGBG as given by (5.5.3) corresponds to
a factor graph, dubbed the policy factor graph (PFG). The PFG for the CGBG
from Figure 5.4b is illustrated in Figure 5.7a. Because this CGBG contains payoff
components of which the agent scopes are sub-scopes of others, it can be reduced
as in Exampe 5.4. The PFG for this reduced CGBG is shown in Figure 5.7b. In
the Dec-POMDP context, ue(βe) should be interpreted as V e,tϕt (β

t
e), a heuristic for

the future value as expressed by (5.2.7).

5.5.2.2 Type-Action Factor Graphs

The policy factor graph introduced above is a very intuitive formulation and re-
lates directly to interactions graphs and the discussion of locality of interaction in

114 Factored Dec-POMDPs: Exploiting Locality of Interaction

(s)

u1(β1) u2(β1, β2)u3(β2, β3) u4(β3)

β1 β2 β3

(a) A policy factor graph for a CGBG of the FFG

problem. The variables correspond to the BG-
policies βi for the agents. Note the correspondence
to the interaction graph of Figure 5.4b.

u2(β1, β2)u3(β2, β3)

β1 β2 β3

(b) The PFG for the same, but
reduced CGBG.

a11 a21 a12 a22 a13 a23

u
〈1,1〉
1 u

〈1,2〉
1 u

〈2,1〉
1 u

〈2,2〉
1 u

〈1,1〉
2 u

〈1,2〉
2 u

〈2,1〉
2 u

〈2,2〉
2

(c) The type-action factor graph (TAFG) representation of the
same (reduced) CGBG.

Figure 5.7: Factor graph representations of CGBGs. The factors are displayed as black
squares. The variables are circles.

5.5 Solution of Collaborative Graphical BGs 115

Section 5.1 and 5.2. However, there is some independence that this representation
does not model.

In particular, an individual BG policy specifies an action for each type. Now,
as illustrated by Figure 5.7c, such a chosen action ai for some type θi of agent i
does not directly influence the contribution of a different action a′i chosen for a
different type θ′i of the same agent. This section introduces a second factor graph
formulation, dubbed the type-action factor graph (TAFG), that models this inde-
pendence.

In the following aki will denote the action agent i selects for its k-th type θki .
I.e.,

aki ≡ βi(θ
k
i) ≡ δti(

~θ ti,k). (5.5.6)

For each local joint type θe, a payoff function is defined as follows:

uθe
(ae) ≡ Pr(θe)ue(θe,ae) (5.5.7)

We also write u
〈1,1〉
e for uθe=〈1,1〉(in Figure 5.7c). Using this notation, it is possible

to express the solution of the CGBG as

β∗ = argmax
β

∑

e∈E

∑

θe

uθe
(βe(θe)) (5.5.8)

= argmax
β

∑

e∈E

∑

θe

uθe
(〈ak1e1 , . . . ,a

k|e|
e|e| 〉) (5.5.9)

where ei denotes the i-th agent in e and ki denotes the index of its individual type

as specified by θe = 〈θ
k1
e1
, . . . ,θ

k|e|
e|e| 〉.

In effect, we are trying to maximize a function which contains a factor for each
local joint type θe and this function can be represented by a type-action factor
graph, as illustrated in Figure 5.7c.

5.5.3 Maximization over a Factor Graph using Max-Plus

In the previous section it was shown that a CGBG can be represented as a factor
graph in two ways. In order to find the solution for a CGBG, however, it is necessary
to find the configuration of variables that maximizes the sum of the factors. This
can be done using the Max-Plus algorithm (Pearl, 1988; Wainwright, Jaakkola,
and Willsky, 2004; Kok and Vlassis, 2005; Vlassis, 2007), which is a distributed
algorithm based on message passing. It was originally proposed to compute the
maximum a posteriori probability configurations in Bayesian networks and is a
special case of the sum-product algorithm (Kschischang et al., 2001)—also referred
to as belief propagation in probabilistic domains.

On an intuitive level, Max-Plus works by iteratively sending messages between
factors and variables. These messages encode how much payoff the sender Fi
expects to be able to contribute to the total payoff, given each of the possible
values j the receiving variable Vj can take on. To estimate this value, the sending
factor Fi makes use of the incoming messages sent by all variables to which it is
connected except Vj .

116 Factored Dec-POMDPs: Exploiting Locality of Interaction

In the following these messages are formalized. To ease notation we use up-
percase for factors and lowercase for variables and write µi→I = µVi→FI

for the
message sent from variable i to factor I, etc. We use i to denote both the variable
and the value it can take. The context should make clear what is meant in each
case. The messages sent from variables to factors are defined as

µi→I(i) =
∑

FJ∈N (Vi)\FI

µJ→i(i), (5.5.10)

where N (Vi) is the set of neighbors of variable Vi. Effectively, variable Vi performs
an element-wise addition of the incoming messages from other factors FJ and sends
the resulting vector µi→I to FI .

Now we consider a factor FI(i,j1, . . . ,jk) which, per definition, is connected
to variables Vi,Vj1 , . . . ,Vjk . The message µI→i that FI sends to Vi should be a
summary of the expected reward it can contribute and depends on the incoming
messages from Vj1 , . . . ,Vjk . These messages however can have different sizes, which
is resolved by introducing ⊕ to add vector messages to the consistent entries of a
factor.

Definition 5.8 (Factor-message addition ⊕). For a factor FK(a,b,c) we have that

∀a,b,c (FK ⊕ µb→K)(a,b,c) ≡ FK(a,b,c) + µb→K(b). (5.5.11)

Example 5.6. For instance, if we have a factor FK(x,y) that depends on two vari-
ables x and y with respectively 3 and 2 values:

FK =





FK(1,1) FK(1,2)
FK(2,1) FK(2,2)
FK(3,1) FK(3,2)



 .

Suppose all FK ’s entries are 0 and we have a message µx→FK
(x) = (1,2,3)T , then

FK ⊕ µx→FK
=





0 0
0 0
0 0



⊕





1
2
3



 =





1 1
2 2
3 3



 .

Similarly, for a message µy→FK
(y) = (4,5)T , the result is

FK ⊕ µy→FK
=





0 0
0 0
0 0



⊕

(

4
5

)

=





4 5
4 5
4 5



 .

Combining above expressions yields

FK ⊕ µx→FK
⊕ µy→FK

=





1 1
2 2
3 3



⊕

(

4
5

)

=





5 6
6 7
7 8



 .

Now the message µI→i is defined as

µI→i(i) = max
j1,...,jl

(
(FI ⊕ µj1→I ⊕ · · · ⊕ µjk→I)(i,j1, . . . ,jk)

)
. (5.5.12)

5.6 Algorithms 117

Max-Plus proceeds to iteratively send these messages over the edges of the
FG. Within each iteration, the messages can be assumed to be sent in parallel,
or sequentially with some fixed or random ordering. When run on a FG without
any cycles (i.e., a tree), the algorithm is guaranteed to converge to an optimal
fixed point (Pearl, 1988; Wainwright et al., 2004). In FGs with cycles, such as
the ones defined in the Section 5.5.2, there are no guarantees that Max-Plus will
converge. However, experimental results have demonstrated that it works very
well in practice (Kschischang et al., 2001; Kok and Vlassis, 2006; Kuyer, White-
son, Bakker, and Vlassis, 2008). Also, it is possible to use more recent variants
of message passing that guarantee convergence (Globerson and Jaakkola, 2008).
However, regular Max-Plus suffices for the setting considered in this chapter and
therefore incorporating such modifications is deferred to future work.

To get regular Max-Plus to work in FGs with cycles, one needs to normalize
the messages to prevent them from growing bigger and bigger. This is typically
done by subtracting from each sent message the average of the incoming messages.
Another technique that is applied to increase convergence rates is damping: taking
a weighted sum of the newly calculated messages and the old ones.

5.5.4 Other Solution Methods for CGBGs

In essence the maximization over a factor graph as introduced in this section is a
distributed constraint optimization (DCOP) problem (Modi et al., 2005). As such,
any (approximate) algorithm for DCOPs can be used to find an (approximate) so-
lution for the CGBG (Liu and Sycara, 1995; Yokoo, 2001; Modi et al., 2005; Pearce
and Tambe, 2007). In particular, methods that are employed for transition and
observation independent Dec-POMDPs may be reused for the solution of CGBGs
(Nair et al., 2005; Varakantham et al., 2007).

Alternatively, it is possible to convert a CGBG G to a regular graphical BG
(GBG) G′ (Singh et al., 2004b) by defining an individual payoff function for each
agent analogous to (5.1.7):

∀i∈D ui(θi,aNi
) ≡

∑

e s.t. i∈e

∑

θe

Pr(θe|θi)ue(θe,ae). (5.5.13)

The resulting GBG G′ is non-collaborative and each agent tries to optimize its
individual payoff function. However, each Bayes-Nash equilibrium will correspond
to a local optimum of the original CGBG G. As such any solution methods for
regular GBGs (Singh et al., 2004b; Soni et al., 2007) may also be used to find
locally optimal solutions.

5.6 Algorithms

In this section, all the different components treated in this chapter are tied together.
The CGBG approach to Dec-POMDPs matches seamlessly with the method for
policy search in Dec-POMDPs using regular BGs as was described in Chapter 4.
As such, this new work defines not a single algorithm, but a family of algorithms

118 Factored Dec-POMDPs: Exploiting Locality of Interaction

Algorithm 5.4 Expand(ϕt)—Exploit last stage independence ELSI

1: if t < h− 1 then
2: {Perform regular MAA

∗ for t = 0,...,h− 2 }
3: Φt+1 = construct all policies ϕt+1 as in Algorithm 4.2.
4: return Φt+1

5: else
6: {For t = h− 1 exploit independence }
7: G = ConstructCGBG(ϕh−1,b0)
8: δh−1 = NDPSolve(G)
9: π = (ϕh−1,δh−1)

10: return π

11: end if

to which we refer as Factored GMAA
∗. Within this family we discriminate

between an optimal algorithm and approximate algorithms.

5.6.1 Optimal Methods: Exploiting Last-stage Independence

Computation of an optimal Q-value function is intractable. As such it is not
practical to use FSPC for an optimal algorithm. Rather we will use k-GMAA

∗

with k =∞ (i.e., MAA
∗) to compute optimal policies.

This chapter did not prove for any of the proposed factored value functions that
they are guaranteed overestimates, and as such, applying them in a MAA

∗-setting
makes no immediate sense. Moreover, in order to guarantee finding the optimal
joint policy it is required that all joint policies are expanded for intermediate stages,
so efficiently solving the CGBGs for those stages also does not make direct sense:
all joint BG policies will have to be constructed anyway.

However, for the last—and most computationally demanding—stage:

1. the factored optimal Q-value function is available: it is given by the immedi-
ate reward function.

2. only the best solution of the CGBG is needed (i.e., there is no need to expand
all full-length joint policies).

Therefore we can modify GMAA
∗ to exploit the last-stage independence (ELSI).

The resulting method, GMAA
∗-ELSI, is described by Algorithms 4.1 and 5.4

jointly. For stages 0, . . . ,h − 2 regular MAA
∗ is used with a non-factored Q-

value function as described in Chapter 4. For the last stage t = h − 1, a CGBG
is constructed rather than a regular BG by using the factored immediate reward
function as the factored payoff function. This CGBG is then optimally solved using
NDP and the solution of this CGBG used to construct a full-length joint policy π.

Even though GMAA
∗-ELSI may provide significant speed-up for some prob-

lems, it is not likely to scale to much higher number of agents, because in the
intermediate stages no independence is exploited. It is non-trivial to extend the
algorithm to also exploit independence in those stages because MAA

∗ depends on

5.7 Experiments 119

the generation of all intermediate policies in order to guarantee optimality. It might
be possible to circumvent this problem by incrementally constructing the set of ex-
panded policies. I.e., rather than only expanding the k heuristically best-ranked
policies, it may be possible to first expand the k best-ranked policies and expand
the rest later only when needed. This idea remains subject to further investigation.

5.6.2 Approximate Methods

Factored FSPC and Factored k-GMAA
∗ are the approximate algorithms ex-

amined in this chapter. They are direct extensions of FSPC and k-GMAA
∗ from

Chapter 4, modified to construct and solve CGBGs rather than BGs. In par-
ticular, Factored k-GMAA

∗ repeatedly solves CGBGs and returns the k best-
ranked policies to be expanded in new partial policies. Factored FSPC is the
case where k = 1.

Apart from k there are three other main dimensions that can be changed: the
used scopes, the CGBG solver and the heuristic Q-value function. The desired
scopes can be determined before-hand and determine the form of the Q-value func-
tion that will be used as a heuristic and thus the form of the corresponding CGBGs.
Changing CGBG solvers is fairly trivial: any CGBG solution method, as well as
regular BG methods may be used. For these methods we can use any of the methods
to compute a factored Q-value function discussed in Section 5.4: we can compute a
factored approximation of the QMDP value function though naive regression (NR)
and approximate dynamic programming (ADP), or compute an approximate QTP

function through transfer planning.

Since exact construction for CGBGs also becomes infeasible for larger prob-
lems, Factored FSPC and Factored k-GMAA

∗ use approximate inference as
detailed in Section 5.3.3. A side-effect of this, however, is that V 0...t−1(ϕt), the
past reward that a past joint policy ϕt achieves over stages 0, . . . ,t− 1 becomes an
estimate.

5.7 Experiments

This section presents the results of an empirical evaluation of some members of
the proposed Factored GMAA

∗ family. First, Factored FSPC is compared
against other state-of-the-art methods. Next, some of the approximations made in
Factored GMAA

∗ methods are analyzed.

5.7.1 Problem Domains and Experimental Setup

The empirical evaluation is performed on two problem domains: the FFG prob-
lem described in Section 5.1.2, and a new problem called Aloha, which is first
introduced.

120 Factored Dec-POMDPs: Exploiting Locality of Interaction

(a) An illustration of Aloha.

tt t+ 1t+ 1

x1x1 x′
1x′

1

a1a1 o1

x2x2 x′
2x′

2

a2a2 o2

x3x3 x′
3x′

3

a3
a3 o3

x4x4 x′
4x′

4

a4 a4 o4

(b) The DBN that represents Aloha, split in two
for clarity: left the transition model, right the
observation model.

Figure 5.8: The Aloha problem, showing the problem instance with four islands arranged
in a square.

5.7.1.1 The Aloha Problem

The Aloha problem can be seen as a generalization of the Broadcast Channel

benchmark problem (Hansen et al., 2004), and was inspired by a similar problem
domain defined in the context of single-agent POMDPs (Cassandra, 1998). The
problem consists of a number of islands, each equipped with a radio tower that is
used to transmit messages to its local population. Figure 5.8a shows an illustration
of the Aloha problem with four islands in a square configuration. Each island has
a backlog of messages that it needs to send, and at each time step it can decide
to send one message or to not send. Even though the messages of a radio tower
are only of interest to the residents of that same island, given the proximity of
some islands, communications from neighboring islands interfere, as indicated by
the transmission ranges (dashed circles in Figure 5.8a). This means that when in a
particular time slot two neighboring islands attempt to send, a collision occurs (and
the messages will have to be resent). The left DBN in Figure 5.8b shows that each
island’s backlog is affected by the island’s action, as well as by the backlogs and
actions of neighboring islands. Each island starts with no packages in its backlog,
and with probability 0.6 a new packet arrives (i.e., the backlog increases by 1), until
the maximum backlog has been reached (set to 2 in these experiments). In general
the size of an island may influence the frequency with which messages arrive, but
we do not consider this here. The DBN on the right in Figure 5.8b shows the
structure of the observation model. Each island can observe noisily whether the
channel it shares with its neighbors was idle, had a successful transmission or a

5.7 Experiments 121

collision occurred (it has a 90% chance of getting the correct observation, the other
10% is uniformly divided between the two other observations). For each packet
that is present in the backlog of an island at t+1, the system receives a penalty of
1, i.e., Ri(x′i) = −xi. Therefore the goal of the system can be described as trying
to minimize the number of waiting packets. Apart from the square configuration
shown in Figure 5.8a, also several ‘in-line’ variants, where a number of islands is
connected in a line configuration, are considered. Because the immediate reward
functions depend on a back-projection similar to (5.1.2), and because the transition
model is more densely connected than FFG, the immediate reward scopes of the
considered Aloha problems contain 3 agents.

5.7.1.2 Experimental Setup

The empirical evaluation is performed on systems with a 3.4 GHz Xeon processor
and 4GB memory, running 64bit Debian GNU/Linux. Reported timing results are
CPU times with a resolution of 0.01s. For all the evaluations reported below, the
different methods are given 2 hours of wall-clock time within which they have to
compute solutions for all considered horizons (typically h = 2, . . . ,5 or 6).

In the experiments reported here, immediate reward scopes are used unless men-
tioned otherwise. Before computing the factored Q-value functions, these scopes
are reduced, i.e., scopes that form a proper sub-scope of another one were removed
as in Exampe 5.4.

In the experiments using the factored QMDP function computed through naive
regression (NR), the flat transition, reward and observation model are cached,
because NR makes full sweeps over the state space. This caching is only possible
for relatively small problems. For ADP and QTP we do not perform such caching.
To solve the linear systems in the factored QMDP methods we use the UMFPACK

library (Davis, 2004), exploiting the sparsity of our systems. For the computation
of QTP for the FFG problem, the 2-agent FFG is used as the source problem. The
agent mapping function maps the lower agent index in a scope A(e,t) to agent 1
and the higher to agent 2, as described in Section 5.4.4. For the Aloha problem,
the 3-island in-line variant is used as the source problem. For the other ‘in line’
variants, we perform a similar mapping as for FFG: i.e., the lowest agent index
in a scope is mapped to agent 1, the middle index is mapped to agent 2 and the
highest index is mapped to agent 3. For both FFG and Aloha we used the QMDP

heuristic for the source problems.

The CGBGs are solved by runningMax-Plus on the corresponding type-action
factor graph. The implementation of Max-Plus makes use of libDAI (Mooij,
2008b). In the experiments Max-Plus runs until convergence with a maximum
of 25 iterations and using a damping factor of 0.5. Max-Plus uses a sequential
random message passing scheme and performs 10 restarts for each CGBG, also the
other BG solution methods are restarted 10 times in each stage. The reported
statistics are means over 10 restarts of GMAA

∗. Finally, 10,000 simulation runs
are performed to evaluate the true value of the joint policies found.

122 Factored Dec-POMDPs: Exploiting Locality of Interaction

V ∗ TGMAA∗ TGMAA∗-ELSI

h = 2 −5.213685 ≤ 0.01 s 0.03 s
h = 3 −6.654551 0.15 s 0.46 s
h = 4 −7.462685 4834.07 s 12.67 s

Table 5.2: Results for the FFG for horizon 2, 3, and 4. Column V ∗ indicates the value of an
optimal policy, TGMAA∗ the computation time for the plain GMAA

∗ algorithm,
and TGMAA∗-ELSI the computation time for our proposed method.

5.7.2 Comparison to Other Methods

Here we compare some instantiations of the proposed family of Factored GMAA
∗

solution methods against existing algorithms. In particular we evaluate the per-
formance of the optimal GMAA

∗-ELSI algorithm and Factored FSPC, and
compare the Max-Plus solution method using type-action factor graphs against
performing alternating maximization (AM) (Emery-Montemerlo et al., 2004). AM

iteratively selects one agent to improve (maximize) its individual policy while keep-
ing the policies of the other agents fixed, thus climbing to a local maximum.

5.7.2.1 Exact Results: Last-stage Independence

In contrast to the other results presented, the results for the experiment reported
here are obtained on 32bit machines using 2GB of memory. Table 5.2 compares
results for GMAA

∗-ELSI with regular GMAA
∗ (that solves a regular BG also for

the last stage) for FFG, introduced in Section 5.1.2. We used QBG as the heuristic
Q-value function for all time steps of GMAA

∗, and for time steps 0 . . . h − 2 of
GMAA

∗-ELSI. As both methods are optimal, they compute identical optimal
policies, whose values are shown in the first column. The remaining two columns
show computation time of both methods. The timing results displayed are for
the GMAA

∗-phase and do not include the time needed to compute the heuristic
(which is the same for both algorithms).

For the low horizons, we can see that GMAA
∗ is faster, as the Bayesian games

to be solved are small, and not worth the overhead caused by the construction and
solution of CGBGs and the bookkeeping of the non-serial dynamic programming
used in GMAA

∗-ELSI’s last time step. However, for horizon 4 a dramatic speedup
is provided by exploiting the local interactions in this factored Dec-POMDP.

5.7.2.2 Evaluation of Factored FSPC

In order to evaluate Factored GMAA
∗ and its scaling behavior with respect to

the number of agents, it is compared against some other methods for (approx-
imately) solving Dec-POMDPs. In particular it is tested against two regular,
non-factored, GMAA

∗ methods: FSPC and MAA
∗. We compare with direct

cross-entropy (Dice) policy search (Oliehoek et al., 2008a), the only other method
that has been demonstrated to work on Dec-POMDPs that are not transition and
observation independent (TOI) with more than 3 agents.

5.7 Experiments 123

The performance of Factored FSPC is evaluated using the three factored
Q-value heuristics described in Section 5.4. For all three, fixed immediate reward
scopes are used for all stages. Note that the scopes of the local reward function
associated with the first and last house are sub-scopes of those associated with the
house next to them. The result is that the number of components of the factored
Q-value functions is NH − 2, and in each of them 2 agents participate.

The (non-factored) FSPC algorithm uses alternating maximization with 10
restarts to solve the BGs. For Dice two parameter settings are employed: one
that gives good results according to Oliehoek et al. (2008a) (Dice-normal), and
one that should be faster (Dice-fast).1

Finally, as a baseline we also included the performance of the random joint
policy in which each agent selects each action with uniform probability and the
performance of the best joint policy in which each agent always selects a same
fixed action. That is, the result of a brute-force search over all joint policies in
which each agent is restricted to always select the same action. So the agents do
not have to select the same action, but one particular agent should always perform
the same action for all its possible histories.

Figure 5.9 shows the results of the comparison on the FFG domain. We see
that, although it does not always find the very best value, QTP performs very well:
it achieves a value as good as or better than Dice-normal at a fraction of the
time, and it achieves a value significantly higher than Dice-fast and is faster. The
figure shows that ADP is also fast and has good scaling w.r.t. time, but finds bad
policies, worse than random in some cases and generally not better than the fixed
action baseline. Naive regression, on the other hand, generally achieves reasonable
to very good values, except for 4 agents.2 However, it scales bad w.r.t. the number
of agents as confirmed in the runtime plots. MAA

∗ is able to compute the optimal
solution only for h = 3 with 2–4 agents. For these settings, we see that FSPC,
Dice-normal and QTP also perform (near-)optimal. Dice-normal performs fairly
well with respect to the achieved value, especially for h = 3, for h = 5 the quality of
the found policies is somewhat less than the solutions found by QTP. However, in
terms of runtime Dice-normal performs poorly. For Dice-fast we see the opposite:
it has somewhat poor performance in terms of value, but much better runtime
results. Note that it is outperformed by the fixed action baseline for h = 3 as
shown in Figure 5.9a.3 In general, runtime of the Dice methods scales well with
respect to the number of agents. However they run out of memory for more than
7 agents for h = 5.

We ran similar experiments for the Aloha problems. Figure 5.10 shows the

1Both variants perform 10 restarts, use a learning rate of 0.2 and perform what Oliehoek
et al. (2008a) refer to as ‘approximate evaluation’ of joint policies. Dice-normal performs 300
and Dice-fast 100 simulations per joint policy. Dice-normal performs I = 50 iterations, in each
of which N = 100 joint policies are sampled of which Nb = 5 policies are used to update the
maintained distribution. Dice-fast uses I = 15, N = 40, Nb = 2.

2Further investigation revealed that the resulting linear system is badly conditioned and the
found solution is poor.

3Of course, for shorter horizons, the fixed action baseline is relatively good: only after been
in the same house for some stages, the expected value of switching becomes higher, since in this
house, the probability of having fire becomes near zero.

124 Factored Dec-POMDPs: Exploiting Locality of Interaction

-18

-16

-14

-12

-10

-8

-6

 2 3 4 5 6 7 8 9 10

 TP
 ADP

 NR
 (Non-fac) FSPC
 (Non-fac) MAA*

 DICE-normal
 DICE-fast

 Random
 Fixed Action

V
a
lu
e

Number of agents

(a) Expected value for h = 3.

10-2

10-1

100

101

102

103

104

 2 3 4 5 6 7 8 9 10

ti
m
e
(s
)

Number of agents

(b) Runtime for h = 3.

-30

-25

-20

-15

-10

-5

 2 3 4 5 6 7 8 9 10

V
a
lu
e

Number of agents

(c) Expected value for h = 5.

10-2

10-1

100

101

102

103

104

 2 3 4 5 6 7 8 9 10

ti
m
e
(s
)

Number of agents

(d) Runtime for h = 5.

Figure 5.9: A comparison of Factored FSPC with different heuristics and other methods
on the FFG problem.

results of this comparison. In the value plots we omit the results for MAA
∗ and

Dice-fast; FSPC achieved the same value for these experiments as the former and
Dice-normal performed better than the latter. Again, we see that QTP performs
very well, both in terms of quality and speed: it finds near-optimal solutions for
all ‘in-line’ instances (h = 2, 3–6 islands) for which it was possible to compute
the optimal policy (remember that the FSPC results illustrated in Figure 5.10a
achieved the same value as MAA

∗). Also, these experiments confirm the results
found for FFG in that ADP is fast but can result in bad quality policies, NR

performs better but scales poorly and Dice performs adequately (for h = 2,3).
However, we also see thatDice is the only method to complete the 5-island problem
for h = 4. For more agents, it runs out of memory. For h = 4, Factored FSPC is
quite slow. Even though the increase in runtime from 3 to 4 agents is less dramatic
than for FSPC, the runtime for 3 agents is already quite high.

Further analysis revealed that the difficulty is that the number of local joint

5.7 Experiments 125

-12

-10

-8

-6

-4

-2

0

3-line 4-line 4-square 5-line 6-line 7-line

 TP
 ADP

 NR
 (Non-fac) FSPC

 DICE-normal
 Random

 Fixed Action

V
a
lu
e

Island configuration

(a) Expected value for h = 2.

10-2

10-1

100

101

102

103

104

3 4 5 6 7

 TP
 ADP

 NR
 (Non-fac) FSPC
 (Non-fac) MAA*

 DICE-normal
 DICE-fast

ti
m
e
(s
)

Num. agents (inline configuration)

(b) Runtime for h = 2.

-20

-15

-10

-5

0

3-line 4-line 4-square 5-line 6-line 7-line

V
a
lu
e

Island configuration

(c) Expected value for h = 3.

10-1

100

101

102

103

104

3 4 5 6 7

ti
m
e
(s
)

Num. agents (inline configuration)

(d) Runtime for h = 3.

-25

-20

-15

-10

-5

0

3-line 4-line 4-square 5-line

V
a
lu
e

Island configuration

(e) Expected value for h = 4.

100

101

102

103

104

3 4 5

ti
m
e
(s
)

Num. agents (inline configuration)

(f) Runtime for h = 4.

Figure 5.10: A comparison of Factored FSPC with different heuristics and other meth-
ods on the Aloha problem. Plots on the left-hand side show expected values
for all tested configurations. Plots on the right-hand side show runtime re-
sults for the ‘in line’ configurations.

126 Factored Dec-POMDPs: Exploiting Locality of Interaction

-2000

-1500

-1000

-500

0

10 50 100 200 300 400 500 750 1000

 fac.FSPC, h=2
 Random, h=2

 fac.FSPC, h=3
 Random, h=3

 fac.FSPC, h=4
 Random, h=4

V
a
lu
e

Number of agents

(a) Expected value for h = 2, . . . ,4.

-600

-500

-400

-300

-200

-100

0

 10 20 30 40 50 75 100 150 200 300

 fac.FSPC, h=5
 Random, h=5

 fac.FSPC, h=6
 Random, h=6

V
a
lu
e

Number of agents

(b) Expected value for h = 5,6.

10-2

10-1

100

101

102

103

10 50 100 200 300 400 500 750 1000

 fac.FSPC, h=2
 fac.FSPC, h=3
 fac.FSPC, h=4
 fac.FSPC, h=5
 fac.FSPC, h=6

ti
m
e
(s
)

Number of agents

(c) Runtime for h = 2, . . . ,6.

Figure 5.11: Factored FSPC results for large number of agents.

types for each edge grows quickly in the Aloha problem. In these problems the
immediate reward scopes contain 3 agents and these agents have 3 observations.
This leads to 33 = 27 observation histories (and thus type-action variables) per
agent and 273 = 19,683 local joint types (and thus factors) associated with each
edge of a CGBG for the last stage t = 3. So the fact that Factored FSPC

performs slow, is the result of the combination of larger immediate reward scopes
together with the fact that the proposed methods do not scale well with respect
to the horizon, unless some other techniques (such as clustering of the types, see
Emery-Montemerlo et al. (2005) and Chapter 6 of this thesis) are applied. A last
note is that the fixed action baseline performs quite well for some instances.

Since Factored FSPC using QTP performed very well and the computation
of the heuristic for the FFG problem does not scale with the number of agents,
QTP is used to evaluate the results on much larger numbers of agents. The results
are shown in Figure 5.11. In particular, Figure 5.11a shows that it is possible to
compute solutions for up to 1000 agents for h = 2,3 and 750 agents for h = 4.
For h = 5 the maximum number of agents is 300 and even for h = 6 is is possible

5.7 Experiments 127

-40

-35

-30

-25

-20

-15

-10

-5

0

 2 3 4 5 6 7 8 9 10 11

 MP h=2
 AM h=2
 MP h=3
 AM h=3
 MP h=4
 AM h=4
 MP h=5
 AM h=5
 MP h=6
 AM h=6

V
a
lu
e

Number of agents

(a) Expected value.

10-3

10-2

10-1

100

101

102

103

104

 2 3 4 5 6 7 8 9 10 11

G
M
A
A

∗
T
im

e(
s)

Number of agents

(b) Runtime.

Figure 5.12: Max-Plus compared against AM of the FFG problem.

to compute a solution for the 100-agent problem, as shown in Figure 5.11b. An
interesting detail is that for the computed entries for h = 6 the expected value
is roughly equal to h = 5. This implies that probability of any fire remaining
at stage t = 5 is close to zero. The reason the methods could not scale up any
further is not computation time, but insufficient memory. The runtime results are
shown in Figure 5.11c and increase linearly with respect to the number of agents.
Note that the fixed action baseline is not included in Figure 5.11, as that becomes
intractable: it performs simulation of all considered fixed action joint policies and
these simulations become relatively expensive for many agents. Moreover, the
number of fixed action joint policies grows exponentially with the number of agents.

5.7.2.3 Max-Plus vs. Alternating Maximization

In order to test the efficiency of the proposed Max-Plus algorithm to solve CG-
BGs, it is compared against AM, which has been the standard for approximately
solving BGs for Dec-POMDPs (Emery-Montemerlo et al., 2004, 2005). The re-
sults reported in this section are obtained via FSPC using the ADP heuristic with
immediate reward scopes. To present a clear comparison, the timing results are
shown for the GMAA

∗ phase in which the CGBGs are actually solved, excluding
times for initialization and computation of the Q-value function.

For the FFG problem the results are shown in Figure 5.12. Figure 5.12a shows
that the expected value of Max-Plus and AM is roughly the same. Figure 5.12b,
however, shows that for n > 2, AM is significantly outperformed for all horizons
but horizon 2. In contrast, for the 2-agent case, AM actually performs almost 10
times better than Max-Plus. This can be understood by the fact that in this case,
there actually is only one component of the Q-function, and thus the problem is
not factored at all. As such there is not enough independence to be exploited by
Max-Plus.

The same comparison is performed for the Aloha problems. Figure 5.13a

128 Factored Dec-POMDPs: Exploiting Locality of Interaction

-25

-20

-15

-10

-5

0

3-line 4-line 4-square 5-line 6-line 7-line

 MP, h=2
 5-iter.MP, h=2

 AM, h=2
 MP, h=3

 5-iter.MP, h=3
 AM, h=3
 MP, h=4

 5-iter.MP, h=4
 AM, h=4

V
a
lu
e

Island configuration

(a) Expected value.

10-4

10-3

10-2

10-1

100

101

102

103

104

3 4 5 6 7

 MP, h=2
 5-iter.MP, h=2

 AM, h=2
 MP, h=3

 5-iter.MP, h=3
 AM, h=3
 MP, h=4

 5-iter.MP, h=4
 AM, h=4

G
M
A
A

∗
T
im

e(
s)

Num. agents (inline configuration)

(b) Runtime.

Figure 5.13: Max-Plus compared against AM on the ‘in line’ Aloha problems.

shows that also for these problems, the solution methods are roughly equal in
solution quality, although there are some differences at some points. The runtime
results, shown in Figure 5.13b tell a more subtle story. We see that Max-Plus is
significantly outperformed for three islands. This can be expected because, as in
2-agent FFG, this problem only has one Q-function component with all 3 agents
in its agent scope and thus has no independence to exploit. However, also for the
two 4-island problems, we see that Max-Plus is outperformed by AM, especially
for h = 4. Apparently the amount of independence is not yet enough to pay off in
Max-Plus. For the 5–7 islands problems of h = 2,3 however, Max-Plus performs
better than AM, because its runtime grows more gradually with the number of
agents. For h = 4, none of the methods was able to compute results for these
larger problems.

As mentioned before, the problem is that the number of local joint types (i.e,
joint observation histories) grows very fast for the Aloha problems. Further anal-
ysis revealed that for these large CGBGs, the messages of Max-Plus do not con-
verge within 25 iterations. However, for these large CGBGs the maximizing con-
figuration is usually found very fast: within a few iterations. As such, is possible
to speed up Max-Plus by reducing the number of iterations. Figure 5.13 also in-
cludes results for Max-Plus with 5 iterations. This variant runs a constant factor
faster than regular Max-Plus, which allows it to compute results for all problems,
without paying a huge penalty in estimated value.

5.7.3 Analysis of Factored GMAA∗ Methods

Here we report experiments that perform an analysis of different choices one can
make in Factored GMAA

∗ methods.

5.7 Experiments 129

-14

-12

-10

-8

-6

-4

2 3 4 5 6

 NR - imm. reward
 NR - 1-step backup

 NR - optimal
 ADP - imm. reward

 ADP - 1-step backup
 ADP - optimal

V
a
lu
e

Horizon

(a) Expected value for varying scopes for 3-
agent FFG.

-18

-16

-14

-12

-10

-8

-6

2 3 4 5 6

 NR - imm. reward
 NR - 1-step backup

 NR - optimal
 ADP - imm. reward

 ADP - 1-step backup
 ADP - optimal

V
a
lu
e

Horizon

(b) Expected value for varying scopes for 5-
agent FFG.

Figure 5.14: A comparison of different scopes is non-conclusive.

t e A(e,t) X(e,t)

h− 3 1 {1,2,3,4,5} {1,2,3,4,5,6}

h−2
1 {1,2,3,4} {1,2,3,4}
2 {2,3,4,5} {2,3,4,5,6}

h−1

1 {1,2} {1,2,3}
2 {2,3} {2,3,4}
3 {3,4} {3,4,5}
4 {4,5} {4,5,6}

Table 5.3: Optimal scopes for 5-agent FFG. For stages t ≤ h − 3 the problem becomes
fully coupled.

5.7.3.1 Comparing Scopes

In order the establish the influence of using different scopes, using immediate reward
scopes was compared to using larger scopes, but the results are inconclusive. The
general findings are that, almost always the value found for optimal scopes (OS)
and 1-step back projected scopes (1SB) are the same. This can be understood by
realizing that for many problem instantiations OS and 1SB actually specify exactly
the same scopes: starting from only 5 agents in FFG is 1SB not fully coupled.
This means that only for n ≥ 5,h ≥ 3 OS and 1SB actually specify a different
scopes structure, which allows for different values as illustrated by Table 5.3. Still
Figure 5.14b shows that also for these settings, the performance is often the same.
Furthermore, the performance of varying scopes under ADP was unpredictable.
For NR using optimal or 1SB scopes usually performed better than immediate
reward scopes, as in Figure 5.14a. However, in some cases we also found the
opposite, for instance as shown in Figure 5.14b.

130 Factored Dec-POMDPs: Exploiting Locality of Interaction

5.7.3.2 k-GMAA∗ Results

This subsection reports on experiments performed to investigate the added perfor-
mance of Factored k-GMAA

∗. Figure 5.15 shows the expected value for k = 10
compared to Factored FSPC (i.e., k = 1) for different FFG problems. The con-
clusions that can be drawn from these plots is that in some cases using k-GMAA

∗

can significantly improve the results, but not always, and the improvement usually
is not enough to reach the best found value (i.e., the result of the best heuristic
with k = 1). There are two reasons that can explain this behavior:

1. Max-Plus typically only finds a few solutions, especially for the smaller
CGBGs (for earlier stages). Therefore some branches of the search space
are never explored. I.e., Max-Plus is very fast and results in good policies
when the heuristic is good. However, when the heuristic is bad, only limited
back tracking will take place and chances are that the value is not improved
substantially.

2. The used factored Q-functions are not guaranteed to be over-estimations (i.e.,
it is not certain they are admissible heuristics). As such parts of the search
space containing (near-) optimal policies may be pruned.

A more detailed analysis per heuristic follows below.

ADP Figure 5.16 shows the influence of k on Factored FSPC using ADP.
Since the runtimes increase with k, it is clear that that more policies evaluated.
As such the influence of reason 2 is perhaps minor. This is to be expected as the
component-wise maximization typically renders the heuristic admissible, although
we have not proven so. Since ADP still does not reach very good values in many
cases, we suspect that the influence of reason 1 is very important for this heuristic.
I.e., because Max-Plus finds only a few (perhaps just 1) solution for the CGBGs
of the first stages, the heuristic search never considers parts of the joint policy
space which contains much better policies.

NR The comparison for naive regression gives similar results to ADP. The run-
times are slightly lower, which indicates that more pruning takes place, which can
be explained by two things. First, Factored FSPC with NR typically finds bet-
ter policies, and thus a higher lower bound, which allows for more pruning. Second,
the Q-function found by NR does not overestimate by performing maximization
over the components. As such, this heuristic may give less of an overestimation,
and in fact an underestimation of the value. I.e., reason 2 may also apply here.

QTP A similar evaluation for QTP resulted in values that are (near-)identical,
and no significant differences in run times. QTP is not guaranteed to be an admis-
sible heuristic and in our experiments definitely is not. In particular, the effect of
applying the underlying value function of a source problem is that the influence
of reward function components is overcounted. Since the rewards in the problems
considered are negative, this means that we are overcounting negative rewards, and

5.7 Experiments 131

-14

-12

-10

-8

-6

-4

2 3 4 5 6

 NR - k1
 ADP - k1

 TP - k1
 NR - k10

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(a) Expected value for 3-agent FFG.

-16

-14

-12

-10

-8

-6

2 3 4 5 6

 NR - k1
 ADP - k1

 TP - k1
 NR - k10

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(b) Expected value for 4-agent FFG.

-18

-16

-14

-12

-10

-8

-6

2 3 4 5 6

 NR - k1
 ADP - k1

 TP - k1
 NR - k10

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(c) Expected value for 5-agent FFG.

-25

-20

-15

-10

-5

2 3 4 5 6

 NR - k1
 ADP - k1

 TP - k1
 NR - k10

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(d) Expected value for 6-agent FFG.

-22

-20

-18

-16

-14

-12

-10

-8

2 3 4 5 6

 ADP - k1
 TP - k1

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(e) Expected value for 7-agent FFG.

-25

-20

-15

-10

-5

2 3 4 5 6

 ADP - k1
 TP - k1

 ADP - k10
 TP - k10

V
a
lu
e

Horizon

(f) Expected value for 8-agent FFG.

Figure 5.15: Comparison for different k on the FFG problem for different heuristics.
Higher k may result in better policies, but not always so.

132 Factored Dec-POMDPs: Exploiting Locality of Interaction

-25

-20

-15

-10

-5

2 3 4 5 6

 ADP - k1
 ADP - k2
 ADP - k3
 ADP - k5

 ADP - k10

V
a
lu
e

Horizon

(a) Expected value for 6-agent FFG.

10-2

10-1

100

101

102

103

2 3 4 5 6

 ADP - k1
 ADP - k2
 ADP - k3
 ADP - k5

 ADP - k10

G
M
A
A

∗
T
im

e(
s)

Horizon

(b) Runtime for 6-agent FFG.

-22

-20

-18

-16

-14

-12

-10

-8

2 3 4 5 6

 ADP - k1
 ADP - k2
 ADP - k3
 ADP - k5

 ADP - k10

V
a
lu
e

Horizon

(c) Expected value for 7-agent FFG

10-2

10-1

100

101

102

103

104

2 3 4 5 6

 ADP - k1
 ADP - k2
 ADP - k3
 ADP - k5

 ADP - k10

G
M
A
A

∗
T
im

e(
s)

Horizon

(d) Runtime for 7-agent FFG.

Figure 5.16: A typical comparison for different k on the FFG problem when using ADP

to compute the heuristic. Although higher k do results in searching more
policies, and in some cases this also results in a significant better policy, this
is not always the case.

5.7 Experiments 133

-14

-12

-10

-8

-6

-4

2 3 4 5 6

 exact h=2
 approx h=2

 exact h=3
 approx h=3

 exact h=4
 approx h=4

 exact h=5
 approx h=5

V
a
lu
e

Number of agents

(a) Expected value.

10-3

10-2

10-1

100

101

102

103

104

2 3 4 5 6

 exact h=2
 approx h=2

 exact h=3
 approx h=3

 exact h=4
 approx h=4

 exact h=5
 approx h=5

G
M
A
A

∗
T
im

e(
s)

Number of agents

(b) Runtime of GMAA
∗ phase.

Figure 5.17: Comparing the influence of exact vs. approximate inference.

thus underestimating the value. As a result, many policies are pruned rather than
expanded. This effect could be reduced by trying to apply some scaling to the QTP

value function. Alternatively, it is possible to estimate how much the underesti-
mation is and introduce a slack variable that indicates how much worse a policy
needs to be than the best found policy before it is allowed to be pruned.

5.7.3.3 Exact vs. Approximate Inference

In order to test the influence of using approximate inference, we compare against a
variant of Factored FSPC that uses exact inference. For this comparison the NR

heuristic is used, because it gives fairly good results while depending on Pr(xe,~θe),
i.e., on inference of both the states factors and histories to compute the resulting
heuristic.1

Figure 5.17 shows the results of the comparison. Figure 5.17b clearly shows that
exact inference indeed suffers from exponential scaling with respect to the runtime
and that approximate inference behaves much better. Figure 5.17a shows that this
increase in runtime efficiency comes at little cost: typically there is little or no
loss in value, except for 4 agents. As mentioned earlier, for 4 agents the resulting
linear systems become ill conditioned and the solution makes little sense: there are
quite a few local Q-values that are really large. Thus, a change in inference can
have a dramatic impact on the solution. However, Figure 5.17 also shows that this
dramatic change can go in either direction: we see that for h = 5 exact inference
is much better, but approximate inference actually performs better for h = 3,4.

1QTP, in contrast only uses the probabilities of local joint types Pr(~θe) and therefore we
expect the influence of approximate inference to be less.

134 Factored Dec-POMDPs: Exploiting Locality of Interaction

5.8 Summary and Conclusions

This chapter formalized the interaction of several agents under uncertainty as a
factored Dec-POMDP with an additively factored immediate reward function. For
such models, the structure of the immediate reward function is not preserved in the
value function, unless assuming transition and observation independence (TOI).
Without this assumption, the scopes of the factored value function grow when
going back in time, and will become fully coupled at some point. Nevertheless,
it was shown that locality of interaction holds at each stage given the scopes of
the value function for that stage. This analysis strengthens our belief that general
Dec-POMDPs should be tackled per stage, rather than trying to find individual
full-length policies in an iterative fashion.

Subsequently, the chapter showed how a factored Dec-POMDP can be repre-
sented by a series of collaborative graphical Bayesian games (CGBG). These have
a compact representation that can be exponentially smaller than that of regular
Bayesian games. However, constructing them exactly requires the probabilities
Pr(s,~θ), which means that it is necessary to perform exact inference over the space
of states and joint histories, whose size is exponential in the number of state factors
and the number of agents respectively. To counter this source of intractability we
proposed to construct them using approximate inference. In particular, interme-
diate steps of computation of the factored frontier algorithm (Murphy and Weiss,
2001) were exploiting to construct the CGBGs.

To use CGBGs in the solution of factored Dec-POMDPs, a factored Q-value
function is needed as payoff function for the CGBGs. Using the optimal Q-value
function is implausible for two reasons. First, it is intractable to compute. Second,
because its scopes grow when moving away from the last stage it becomes fully
coupled. This means that the CGBGs for these earlier stages reduce to regular
BGs which are exponentially larger and therefore much harder to solve. To over-
come these problems, we proposed to compute approximate value function given a
predetermined scope structure that specifies the scopes for each stage for each com-
ponent of the factored Q-value function. Two methods to compute a factored ap-
proximation of the QMDP (underlying MDP) value function were considered: naive
regression (NR) and approximate dynamic programming (ADP). The former first
computes the non-factored QMDP value function and then finds the Q-value of the
desired factorization that is closest in Euclidean sense. ADP does not first compute
the centralized QMDP value function, but rather bootstraps its approximation for
stage t from the approximation already computed for stage t + 1. The projection
to factored value functions of a predetermined scopes can be performed by defining
induced indicator basis functions, and this projection is particularly efficient be-
cause the inner product can be computed very efficiently (shown in appendix C).
A third way of computing an approximate Q-value function proposed in this chap-
ter is transfer planning (TP). TP computes an approximate (e.g., QMDP) value
function for a smaller source problem that involves a smaller number of agents and
use this value function as a component of the factored Q-value function of the orig-
inal problem (the target problem). We refer to the resulting approximate Q-value
function as QTP.

5.8 Summary and Conclusions 135

Given the probabilities Pr(s,~θ) and a payoff function for the CGBGs, the rep-
resentation of a factored Dec-POMDP as a series of CGBGs is complete. To effi-
ciently solve the CGBGs it is possible to employ non-serial dynamic programming
that scales exponentially in the induced width of the interaction graph (w). In
the worst case, w is equal to the number of agents (n), but in typical settings
the interaction graphs are sparse and n ≫ w yielding an exponential speedup.
Another option is to convert a CGBG to a type-action factor graph and to use
Max-Plus—a method based on belief propagation that finds a maximum through
message passing—to find an approximate solution.

Making use of the components defined and building upon Chapter 4, it is possi-
ble to define a family of algorithms, which we refer to as Factored GMAA

∗.
GMAA

∗-ELSI is an optimal algorithm and approximations can be found us-
ing Factored FSPC and Factored k-GMAA

∗ using the approximate Q-value
functions mentioned above as heuristic.

An empirical evaluation showed that for 3 agents GMAA
∗-ELSI obtains a

speedup of two orders of magnitude compared to regular GMAA
∗ that does not

exploit last-stage independence. To the author’s knowledge, these were the first
experimental results for general factored (i.e., non-TOI) Dec-POMDPs with more
than 2 agents. Also, Factored FSPC was compared against the state-of-the-art
methods for solving Dec-POMDPs.

The remainder of the evaluation analyzed some of the proposed approximations
and also tested the influence of increasing k in Factored k-GMAA

∗. The results
showed that Factored GMAA

∗ methods are efficient and scale well with respect
to the number of agents, but that the quality of the found solutions depends very
much on the used heuristic. In particular, the ADP achieved disappointing re-
sults. Since, NR generally did perform much better, this is likely to be caused by
the independent maximization of the components (perhaps in combination with
bootstrapping). However, also NR was in some cases outperformed by transferring
the QMDP value of smaller source problems. This suggests that for the task at
hand there may be a better similarity measure than Euclidean distance. I.e., it
might be better to have a factored QMDP value function, that is not globally clos-
est to the non-factored QMDP value function in Euclidean sense, but that better
preserves structure at a local level. In general, though, NR found good solutions,
but the computation of this heuristic itself does not scale well. However, QTP

consistently performed very well, finding (near-) optimal policies in little time.
Comparing to Dice, the only other method that has been demonstrated on non-
TOI Dec-POMDPs with more than 3 agents, Factored FSPC found equal or
better policies in similar or less time. In particular using QTP as the heuristic it
was possible to compute good policies for up to 1000 agents in a matter of seconds.
A comparison between Max-Plus and alternating maximization to solve CGBGs
revealed that Max-Plus scales much better with respect to the number of agents.
However, it is very sensitive to the number of local joint types and therefore scales
badly with the horizon and the size of the agent scopes. As a result, AM still
outperforms Max-Plus for larger horizons with few agents. The influence of using
approximate inference seems negligible, while it avoids an exponential dependence
of the runtime on the number of agents and state factors. The influence of us-

136 Factored Dec-POMDPs: Exploiting Locality of Interaction

ing larger scopes was also investigated, but the results were inconclusive. The
investigation of k-GMAA

∗ revealed that larger k typically finds better policies,
but because the heuristics are no longer guaranteed over-estimations and because
Max-Plus only finds few solutions, the amount of improvement is usually limited.

5.9 Discussion and Future Work

The work presented in this chapter provides scaling only with respect to the number
of agents, not with respect to the horizon. In order to allow scaling to larger hori-
zons, the proposed methods should be combined for instance with pruning (Emery-
Montemerlo et al., 2004) or clustering of histories (Emery-Montemerlo et al., 2005;
Oliehoek et al., 2009). Chapter 6 will further discuss such clustering methods for
regular BGs and how they can be applied in GMAA

∗. Extending these methods
to CGBGs and incorporating these clustering techniques in Factored GMAA

∗

is non-trivial and an important branch of future work.

Other future work should investigate other methods to compute factored QMDP

approximations. A first starting point would be to replace the independent max-
imization step in ADP by a sample-based projection similar to the approach of
Szita and Lörincz (2008). Also, we hope to develop methods to compute factored
QPOMDP, QBG approximations. Since the use of tighter heuristics can be quite
beneficial as was demonstrated in Chapter 4, the efficient computation of such
value functions is especially important.

Another direction of future work would be to consider dynamically changing
interaction graphs, as for instance considered by Guestrin, Venkataraman, and
Koller (2002b); Kok and Vlassis (2006). An added difficulty in our setting is that
the environment it partially observable. Perhaps this problem may be overcome
by adding a particular state variable that determines the shape of the interaction
graph and can be observed by all agents.

The theory of Dec-POMDPs could be extended by unification of the methods
described here with the SPIDER algorithm (Varakantham et al., 2007). On the
one hand, GMAA

∗ and its variants search over joint policies which are partially
specified with respect to time (e.g., a policy only specified for the first stage). On
the other hand, SPIDER searches over joint policies that are partially specified
w.r.t. the individual agents (e.g., a joint policy only specifying an individual policy
for agent 1). Factored GMAA

∗ takes a step towards this unification: intuitively
the GMAA

∗-phase corresponds to the former, while solution of the CGBGs (e.g.,
with NDP) corresponds to the latter. Future algorithms may truly unify the two
approaches.

Finally, the newly identified method of transfer planning seems to open up
an exciting new direction of research. In particular, our approach as proposed is
closely related to transfer via inter-task mappings by Taylor et al. (2007) and it
may be possible to consider transferring from tasks where there are different action
and/or observation spaces by building on their work. Another interesting idea is
automatic identification of source tasks and investigating methods for automatically
finding the mapping between agents in the source and target tasks, for instance

5.9 Discussion and Future Work 137

using qualitative DBNs (Liu and Stone, 2006). A last question in this direction is
whether it is possible to perform some scaling or transforming of the QTP functions
such that they become admissible.

138 Factored Dec-POMDPs: Exploiting Locality of Interaction

Chapter 6

Lossless Clustering of Histories

The Generalized MAA
∗ (GMAA

∗) algorithm introduced in Chapter 4 can find
(optimal) solutions for Dec-POMDPs by repeatedly solving Bayesian games (BGs)
for different stages. However, the cost of solving these BGs grows exponentially
with the number of agents n and doubly-exponentially with the horizon h. That
is, for a BG for the last stage, the number of joint policies, and thus the cost of
optimally solving it, is expressed by (5.0.1), repeated here for convenience:

O
(
|A∗|

n(|O∗|
h−1)

)
,

where A∗ and O∗ denote the largest individual action and observation sets. Chap-
ter 5 introduced techniques to provide scaling with respect to the number of agents.
This chapter addresses scaling with respect to the horizon.

In a BG for a stage t, an individual type corresponds to an action-observation
history (AOH). However, given that a deterministic past joint policy ϕt is followed,
it also corresponds to a single observation history (OH), because the actions can
be inferred from ϕt. The problem is that the number of individual types (i.e., the
number of individual observation histories) grows exponentially over time and thus
the BGs also grow exponentially.

To counter the exponential growth of the BGs this chapter proposes to clus-
ter the individual AOHs in a way that does not compromise solution quality. It
is straightforward to exploit this result in optimal policy search. In particular,
Section 6.4 shows how to cluster histories within the GMAA

∗ algorithm.

This chapter empirically demonstrates that the proposed technique can pro-
vide a speed-up of multiple orders of magnitude, allowing the optimal solution of
significantly longer horizons. For instance, we solve the well-known benchmark
decentralized tiger (Dec-Tiger) problem for horizon h = 5 (in which case there
are 3.82e29 joint policies) and the BroadcastChannel problem for horizons as
large as h = 20. To the best of our knowledge, such results were not obtainable
previously. Empirical analysis of the generality of the clustering method suggests
that it may also be useful in other (approximate) Dec-POMDP solution methods.

139

140 Lossless Clustering of Histories

6.1 Clustering Types in BGs

The idea of clustering histories in BGs is not new. Emery-Montemerlo et al. (2004)
already proposed to prune types with low probabilities. In subsequent work Emery-
Montemerlo et al. (2005) replaced this pruning by clustering types, based on the
profiles of the payoff functions of the BGs, thereby increasing the quality of the
found policies. However, since the payoff functions are heuristics, this method
is somewhat ad-hoc: even when providing a bound on the error of clustering two
types in a BG, as long as this bound is with respect to the heuristic payoff function,
this will guarantee nothing with respect to the optimal solution of a Dec-POMDP.
As such performing clustering based on the heuristic payoff function causes an
increased dependence on heuristic, while providing no guarantees whatsoever.

This chapter also considers clustering of AOHs. In contrast, however, it does
not consider a lossy clustering scheme based on the heuristic payoff function Q̂
of the BGs. Rather, a criterion for clustering AOHs is introduced based on the
probability these histories induce over histories of the other agents and over states.
The nice thing of this criterion, which we refer to as probabilistic equivalence (PE),
is that clustering histories that satisfy this criterion is lossless : the solution for
the clustered BG can be used to construct the solution for the original BG and
the values of the two BGs are identical. Thus, the criterion allows for clustering of
AOHs in BGs that represent Dec-POMDPs without compromising solution quality,
i.e., optimality is preserved.

The main contribution of this chapter is that it established that when two
histories in a Dec-POMDP are PE, they can be clustered together without loss in
value. In the proof, some other contributions are made. In the following we outline
the proof and these other contributions.

Section 6.2 introduces two concepts: reduction of BGs through commitment and
best-response equivalence for BGs. The former states that if an agent is committed
to select the same action for two of its types, the BG can be reduced by clustering
these types. The latter says when a rational agent is committed to select the
same action for two of its types, namely when those types are guaranteed to have
the same best-response action, i.e., if if the two types are best-response equivalent
(BRE). These results, although applied in the context of Dec-POMDPs in this
chapter, may be useful more generally.

Next, Section 6.3 applies these results in the Dec-POMDP context. In partic-
ular, it formally introduces probabilistic equivalence and demonstrates that if it
holds for two histories, then they are BRE. This is proven by showing that if PE
holds, the two conditions necessary for BRE, as will be identified by Lemma 6.1,
hold.

6.2 Best-Response Equivalence for BGs

This section considers Bayesian games as introduced in Section 2.1.1.2 and inves-
tigates when it is possible to cluster individual types in BGs.

6.2 Best-Response Equivalence for BGs 141

Theorem 6.1 (Reduction through commitment). Given that in a Bayesian game
B agent i is committed to select a policy that assigns the same action for two of its
types θai ,θ

b
i , i.e., to select a policy βi such that

βi(θ
a
i) = βi(θ

b
i), (6.2.1)

then the BG can be reduced to a smaller one without loss in value for any of the
agents. I.e., the two types can be substituted by a new type θci such that

∀θ 6=i
Pr(θci ,θ 6=i) = Pr(θai ,θ 6=i) + Pr(θbi ,θ 6=i) (6.2.2)

∀j∀a u(〈θci ,θ 6=i〉 ,a) =

Pr(θai ,θ 6=i)u(〈θ
a
i ,θ 6=i〉 ,a) + Pr(θbi ,θ 6=i)u(

〈
θbi ,θ 6=i

〉
,a)

Pr(θai ,θ 6=i) + Pr(θbi ,θ 6=i)
. (6.2.3)

The result is a new BG B′ in which the expected value is the same as in the original
BG: V B

′

= V B.

Proof. We show that the expected value of any joint policy (βi,β 6=i) that sat-
isfies condition (6.2.1) is the same in both B and B′. Using short-hand a =
〈βi(θi),β 6=i(θ 6=i)〉,

V B(βi,β 6=i) =
∑

θ 6=i

[(Pr(θai ,θ 6=i)+Pr(θbi ,θ 6=i))u(〈θci ,θ 6=i〉,a)
︷ ︸︸ ︷
Pr(θai ,θ 6=i)u(〈θ

a
i ,θ 6=i〉 ,a) + Pr(θbi ,θ 6=i)u(

〈
θbi ,θ 6=i

〉
,a)

+
∑

θi∈Θi\{θai ,θ
b
i
}

Pr(θi,θ 6=i)u(〈θi,θ 6=i〉 ,a)

]

=
∑

θ 6=i

[
Pr(θci ,θ 6=i)u(〈θ

c
i ,θ 6=i〉 ,a) +

∑

θi∈Θ′
i
\{θc

i
}

Pr(θi,θ 6=i)u(〈θi,θ 6=i〉 ,a)

]

=V B
′

(βi,β 6=i)

which is the expected value of (βi,β 6=i) as computed in the reduced BG.

This theorem tells us that given that agent i is committed to taking the same
action for its types θai ,θ

b
i , we can reduce the Bayesian game B to a smaller one B′

and translate the joint BG-policy β′ found for B′ back to a joint BG-policy β in
B. This does not necessarily mean that β =

(
βi,β 6=i

)
also is a solution (Bayesian

Nash-equilibrium) for B, because the best-response of agent i against β 6=i may not

select the same action for θai ,θ
b
i . Rather βi is the best-response against β 6=i given

that the same action needs to be taken for θai ,θ
b
i . For instance, when θ

a
i ,θ

b
i are BRE

as we detail below.
The preceding showed that reduction through clustering is possible if an agent

is committed to select the same action for two of its types. In the following we will

142 Lossless Clustering of Histories

identify when an agent is committed to select the same action for two of its types
through the notion of best-response equivalence. I.e., the following demonstrates
when the best-response for two types is the same. In a general BG, a best-response
β∗
i for agent i’s type θi against some fixed policy profile β 6=i is given by

β∗
i = argmax

βi

∑

θi

Pr(θi)
∑

θ 6=i

Pr(θ 6=i|θi)ui(〈θi,θ 6=i〉 ,〈βi(θi),β 6=i(θ 6=i)〉),

or, alternatively, we can compose β∗
i as the best response β∗

i (θi) for each type θi:

β∗
i (θi) = argmax

ai

∑

θ 6=i

Pr(θ 6=i|θi)ui(〈θi,θ 6=i〉 ,〈ai,β 6=i(θ 6=i)〉).

It is this latter formulation we use in the following lemma, identifying best-response
equivalence.

Lemma 6.1 (Best-response equivalence). When for two types θi,a,θi,b it holds that

∀θ 6=i
Pr(θ 6=i|θi,a) = Pr(θ 6=i|θi,b) (6.2.4)

and

∀a∀θ 6=i
u(θi,a,θ 6=i,a) = u(θi,b,θ 6=i,a), (6.2.5)

then the best-response policy for agent i will always select the same action for
θi,a,θi,b.

Proof. We can simply derive

β∗
i (θi,a) = argmax

ai

∑

θ 6=i

Pr(θ 6=i|θi,a)u(θi,a,θ 6=i,ai,a 6=i)

= argmax
ai

∑

θ 6=i

Pr(θ 6=i|θi,b)u(θi,b,θ 6=i,ai,a 6=i)

which is equal to β∗
i (θi,b).

Remark. This lemma states sufficient, but not necessary conditions for best re-
sponse equivalence. This is easy to understand by considering a randomly gener-
ated BG with many types, but few actions per agent. Because the probabilities
and utilities are randomly generated, conditions (6.2.4) and (6.2.5) typically will
not hold. However, as there are many types and few actions, any policy (so also a
best-response policy) will need to select the same action for many types.

By combination of Theorem 6.1 and Lemma 6.1, it is clear that individual
types θi,a,θi,b can be clustered if the conditions in the lemma are satisfied. Note
that although these results are presented in the context of identical payoff BGs,
it is trivial to generalize them to BGs with individual payoff functions. As such,
these results may perhaps also be used in more general methods for solving BGs.

6.3 Lossless Clustering in Dec-POMDPs 143

6.3 Lossless Clustering in Dec-POMDPs

This section makes the bridge to the Dec-POMDP context. In particular it shows
when two histories in a Dec-POMDP are BRE and can therefore be clustered
together in a BG representing a stage of a Dec-POMDP.

6.3.1 Probabilistic Equivalence Criterion

A particular stage t of a Dec-POMDP can be represented as a BG. For such a BG
we can cluster two individual histories ~θi,a,~θi,b when they satisfy the probabilistic
equivalence criterion as we define here.

Criterion 6.1 (Probabilistic Equivalence). Two AOHs ~θi,a,~θi,b for agent i are
probabilistically equivalent (PE) when the following holds:

∀~θ 6=i
∀s Pr(s,~θ 6=i|~θi,a) = Pr(s,~θ 6=i|~θi,b). (6.3.1)

Remark. Alternatively, the criterion can be rewritten to the following two:

∀~θ 6=i
Pr(~θ 6=i|~θi,a) = Pr(~θ 6=i|~θi,b), (6.3.2)

∀~θ 6=i
∀s Pr(s|~θ 6=i,~θi,a) = Pr(s|~θ 6=i,~θi,b). (6.3.3)

These equations give a natural interpretation: the first says that the probability
distribution over the other agents’ AOHs must be identical for both ~θi,a,~θi,b. The
second demands that the resulting joint beliefs are identical.

Remark. The above probabilities are not well defined without the initial state
distribution b0 and past joint policy ϕt. However, since we consider clustering
of histories within a particular BG (for some stage t) and because this BG is
constructed for a particular b0,ϕt, they are implicitly specified. Therefore we drop
these arguments, clarifying the notation.

Remark. Probabilities as defined in (6.3.1) appear somewhat similar to beliefs in
POMDPs, but are substantially different. In a Dec-POMDP it is not possible for an
agent to maintain beliefs as in POMDPs. The probabilities here are not sufficient
statistics. Only a ‘multiagent belief’ specified over states and future policies of
other agents has been shown to be a sufficient statistic (Hansen et al., 2004). Our
notion of PE is specified over states and AOHs given only a past joint policy. Thus
establishing conditions for equivalence in Dec-POMDPs is a non-trivial extension
over the POMDP case.

Probabilistic equivalence has a convenient property: if it holds for a particular
pair of histories, then it will also hold for all identical extensions of those histories,
i.e., the property propagates forwards regardless of the policies the other agents
use.

Definition 6.1 (Identical extensions). Given two AOHs ~θ ti,a,
~θ ti,b, their respective

extensions ~θ t+1
i,a = (~θ ti,a,ai,oi) and

~θ t+1
i,b = (~θ ti,b,a

′
i,o

′
i) are called identical extensions

if and only if ai = a′i and oi = o′i.

144 Lossless Clustering of Histories

Lemma 6.2 (Propagation of PE). Given ~θ ti,a,
~θ ti,b that are PE, regardless of βt6=i

the policy the other agents use, identical extensions are also PE:

∀at
i
∀ot+1

i
∀βt

6=i
∀st+1∀~θt+1

6=i

Pr(st+1,~θt+1
6=i |

~θ ti,a,a
t
i,o

t+1
i ,βt6=i) =

Pr(st+1,~θt+1
6=i |

~θ ti,b,a
t
i,o

t+1
i ,βt6=i) (6.3.4)

Proof. Assume an arbitrary ati,o
t+1
i , βt6=i,s

t+1 and ~θt+1
6=i = (~θt6=i,a

t
6=i,o

t+1
6=i)). We

have that

Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti,a,a
t
i,β

t
6=i)

=
∑

st

Pr(ot+1
i ,ot+1

6=i |a
t
i,a

t
6=i,s

t+1) Pr(st+1|st,ati,a
t
6=i) Pr(a

t
6=i|~θ

t
6=i,β

t
6=i) Pr(s

t,~θt6=i|~θ
t
i,a)

=
∑

st

Pr(ot+1
i ,ot+1

6=i |a
t
i,a

t
6=i,s

t+1) Pr(st+1|st,ati,a
t
6=i) Pr(a

t
6=i|~θ

t
6=i,β

t
6=i) Pr(s

t,~θt6=i|~θ
t
i,b)

= Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti,b,a
t
i,β

t
6=i)

Because we assumed an arbitrary st+1,~θt+1
6=i ,o

t+1
i , we have that

∀
st+1,~θt+1

6=i
,ot+1

i

Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti,a,a
t
i,β

t
6=i) =

Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti,b,a
t
i,β

t
6=i) (6.3.5)

In general we have that

Pr(st+1,~θt+1
6=i |

~θ ti ,a
t
i,o

t+1
i ,βt6=i) =

Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti ,a
t
i,β

t
6=i)

Pr(ot+1
i |

~θ ti ,a
t
i,β

t
6=i)

=
Pr(st+1,~θt+1

6=i ,o
t+1
i |

~θ ti ,a
t
i,β

t
6=i)∑

st+1,~θt+1
6=i

Pr(st+1,~θt+1
6=i ,o

t+1
i |

~θ ti ,a
t
i,β

t
6=i)

Now, because of (6.3.5), both the nominator and denominator are the same when

substituting ~θ ti,a,
~θ ti,b in this equation. This means we can conclude

Pr(st+1,~θt+1
6=i |

~θ ti,a,a
t
i,o

t+1
i ,βt6=i) = Pr(st+1,~θt+1

6=i |
~θ ti,b,a

t
i,o

t+1
i ,βt6=i)

Finally, because ati,o
t+1
i ,βt6=i,s

t+1,~θt+1
6=i were all arbitrarily chosen we can conclude

(6.3.4).

6.3.2 Identical Values Allow Lossless Clustering of Histories

Since we want to show that two PE histories can be clustered under the optimal
policy, we need to show (6.2.5) holds and thus that their optimal Q-values are the
same.

6.3 Lossless Clustering in Dec-POMDPs 145

Lemma 6.3 (Q∗ equivalence). When two histories in a BG for a Dec-POMDP
~θi,a, ~θi,b satisfy Criterion 6.1, then they have equal Q-values according any joint
policy π

∀~θt
6=i

∀a Qπ(~θ
t
i,a,
~θt6=i,a) = Qπ(~θ

t
i,b,
~θt6=i,a). (6.3.6)

Proof. The proof is by induction backwards in time (i.e., from the last time step
t = h − 1 to the first t = 0). However, to prove the induction step we employ
Lemma 6.2, which ensures propagation forward through time of the PE criterion
on identical extensions.

The base case is given by the last stage t = h − 1 of the Dec-POMDP. In this
case we have that

∀a∀~θt
6=i

Qπ(~θi,a,~θ 6=i,a) =
∑

s∈S

R(s,a) Pr(s|~θi,a,~θ 6=i) =

∑

s∈S

R(s,a) Pr(s|~θi,b,~θ 6=i) = Qπ(~θi,b,~θ 6=i,a)

because of (6.3.3) in Criterion 6.1. For stages 0 ≤ t < h− 1 the Qπ is given by

Qπ(~θ
t,a) = R(~θt,a) +

∑

ot+1∈O

Pr(ot+1|~θt,a)Qπ(~θ
t+1,π(~θt+1)).

The induction hypothesis is as follows: If at t + 1 the criteria hold for any two
~θ t+1
i,a ,~θ t+1

i,b , then they have equal Q-values:

∀~θt+1
6=i

∀at+1 Qπ(~θ
t+1
i,a ,~θt+1

6=i ,a
t+1) = Qπ(~θ

t+1
i,b ,~θt+1

6=i ,a
t+1). (6.3.7)

Assume: some stage 0 ≤ t < h − 1, that the criteria hold for ~θ ti,a,
~θ ti,b and an

arbitrary a = 〈ai,a 6=i〉 and ~θ
t
6=i. Now we need to show that

Qπ(~θ
t
i,a,
~θt6=i,a) = Qπ(~θ

t
i,b,
~θt6=i,a) (6.3.8)

I.e.:

R(~θ ti,a,
~θt6=i,a) +

∑

ot+1∈O

Pr(ot+1|~θ ti,a,~θ
t
6=i,a)Qπ(

~θt+1
a ,π(~θt+1

a)) =

R(~θ ti,b,
~θt6=i,a) +

∑

ot+1∈O

Pr(ot+1|~θ ti,b,~θ
t
6=i,a)Qπ(

~θt+1
b ,π(~θt+1

b)) (6.3.9)

where

~θt+1
a = (〈~θ ti,a,~θ

t
6=i〉,a,o

t+1) = 〈(~θ ti,a,ai,o
t+1
i),(~θt6=i,a 6=i,o

t+1
6=i)〉 = 〈

~θ t+1
i,a ,~θt+1

6=i 〉

~θt+1
b = (〈~θ ti,b,~θ

t
6=i〉,a,o

t+1) = 〈(~θ ti,b,ai,o
t+1
i),(~θt6=i,a 6=i,o

t+1
6=i)〉 = 〈

~θ t+1
i,b ,~θt+1

6=i 〉

To prove the equality of (6.3.9), we have to show that:

146 Lossless Clustering of Histories

1. The immediate rewards are equal: R(~θ ti,a,
~θt6=i,a) = R(~θ ti,b,

~θt6=i,a). This clearly
is the case (similar to the proof of the last stage).

2. ∀ot+1 Pr(ot+1|~θ ti,a,
~θt6=i,a) = Pr(ot+1|~θ ti,b,

~θt6=i,a). Equal observation proba-
bilities. This is also evident given that the criterion holds: if the underlying
state distribution is the same, the next joint observation probabilities are also
identical.

3. The relevant next-stage Q-values are identical. I.e.:

∀ot+1∀at+1 Qπ(~θ
t+1
a ,at+1) = Qπ(~θ

t+1
b ,at+1). (6.3.10)

To prove this, we show that the induction hypothesis applies: We can rewrite
the demonstrandum (6.3.10) to

∀ot+1
i
∀
o
t+1
6=i
∀at+1 Qπ(~θ

t+1
i,a = (~θ ti,a,ai,o

t+1
i),~θt+1

6=i ,a
t+1) =

Qπ(~θ
t+1
i,b = (~θ ti,b,ai,o

t+1
i),~θt+1

6=i ,a
t+1).

This is proven (by application of the induction hypothesis) if we can show that

the criterion holds for ~θ t+1
i,a ,~θ t+1

i,b . Since ~θ t+1
i,a ,~θ t+1

i,b are identical extensions

of PE histories ~θ ti,a,
~θ ti,b, they themselves are PE by application of Lemma

6.2. Therefore the induction hypothesis applies which means that (6.3.10)
holds.

Theorem 6.2 (Lossless clustering). When two histories ~θi,a,~θi,b are PE, then they
are best-response equivalent and can be clustered as one history without loss in
value.

Proof. We first prove that PE implies BRE. The criterion itself entails (6.2.4).
Lemma 6.3 asserts that, for a BG constructed using an optimal Q-value function
Qπ∗ , (6.2.5) holds. Now, given that PE implies BRE, we can apply Theorem 6.1

to prove that ~θi,a,~θi,b can be clustered without loss in value.

Remark. Again, the criterion gives a sufficient, but not necessary condition. In
particular given a policy of the other agents, many types are BRE and can be
clustered. However, as far as we know, only if the criterion holds we can guarantee
that two histories have the same best-response against any policy of the other
agents.

6.4 GMAA∗-Cluster

Knowledge of which individual histories can be clustered together without loss of
value may potentially be employed by many algorithms. In this paper, we focus
on its application within the GMAA

∗ framework.
Emery-Montemerlo et al. (2005) showed how clustering can be incorporated at

every stage in their algorithm: when the BG for a stage t is constructed, first a

6.4 GMAA
∗-Cluster 147

Algorithm 6.1 ΦExpand = ConstructAndSolveBG-Cluster(ϕt,b0)

1: if BootstrappedClustering then
2: BGt← ConstructExtendedBG(BGt−1,ϕt)
3: else
4: BGt← ConstructBG(ϕt,b0)
5: end if
6: BGt←ClusterBG(BGt)
7: for all joint BG-policies βt do
8: ϕt+1←(ϕt,βt)

9: V̂ (ϕt+1)←V 0...t−1(ϕt) + V̂ (βt)
10: ΦExpand←ΦExpand ∪ϕ

t+1

11: end for

clustering of the individual histories (types) is performed and only afterward the
(reduced) BG is solved. The same thing can be done within GMAA

∗, leading to
an algorithm we dub GMAA

∗-Cluster. In particular, GMAA
∗-Cluster replaces

the function ConstructAndSolveBG from Algorithm 4.1 with Algorithm 6.1.
The actual clustering is performed by Algorithm 6.2, which performs a pairwise

comparison of all types of each agent to see if they satisfy the criterion. This means
that

O(|Θi|
2
)

are performed for each agent i. If there is a large number of states some, efficiency
may be gained by first checking (6.3.2) and then checking (6.3.3), rather than
looping over all 〈s,θ 6=i〉 as is done in line 5.

Also note that the algorithm shown assumes that the heuristic used as the payoff
function u is admissible (i.e., is an upper bound to the optimal value). Therefore,
rather than using (6.2.3), we can take the lowest upper bound in line 15.1 In
general this might increase the tightness of the heuristic, which can have a great
effect on the performance as demonstrated in Chapter 4.

6.4.1 Bootstrapped Clustering

Because PE of AOHs propagates forwards (i.e., identical extensions of PE histories
are also PE), we do not have to construct all |Oi|

t
possible AOHs at every stage

t (given the past policy ϕti of agent i). Instead of clustering this exponentially
growing set of types, we can simply extend the already clustered types of the
previous stage’s BG, as shown in Algorithm 6.3.

That is, given Θi, the set of types of agent i at the previous stage t − 1, and
βt−1
i the policy agent i took at that stage, the set of types at stage t, Θ′

i, can be
constructed as

Θ′
i =

{
θ′i = (θi,β

t−1
i (θi),o

t
i) | θi ∈ Θi,o

t
i ∈ Oi

}
. (6.4.1)

1For the heuristics we employed there is no difference, because their heuristic value is also
guaranteed to be the same if the criterion holds.

148 Lossless Clustering of Histories

Algorithm 6.2 BG = ClusterBG(BG)

1: for each agent i do
2: for each individual type θi ∈ BG.Θi do
3: for each individual type θ′i ∈ BG.Θi do
4: isEquivalent← true
5: for all 〈s,θ 6=i〉 do
6: if Pr(s,θ 6=i|θi) 6= Pr(s,θ 6=i|θ′i) then
7: isEquivalent← false
8: break
9: end if

10: end for
11: if isEquivalent then
12: BG.Θi←BG.Θi\θ′i {Remove θ′i from BG:}
13: for each a ∈ A do
14: for all θ 6=i do
15: { take the lowest upper bound }

u(θi,θ 6=i,a)←min(u(θi,θ 6=i,a),u(θ
′
i,θ 6=i,a))

16: Pr(θi,θ 6=i)←Pr(θi,θ 6=i) + Pr(θ′i,θ 6=i)
17: Pr(θ′i,θ 6=i)← 0
18: end for
19: end for
20: end if
21: end for
22: end for
23: end for

This means that the size of this newly constructed set is

|Θ′
i| = |Θi| · |Oi| (6.4.2)

If the typeset Θi at the previous stage t − 1 was much smaller than the set of all
histories |Θi| ≪ |Oi|

t−1
, then the new typeset Θ′

i is also much smaller: |Θ′
i| ≪ |Oi|

t
.

This way, we bootstrap the clustering at each stage and spend significantly less time
clustering.

The above is possible only because we perform an exact, value preserving, clus-
tering for which Lemma 6.2 tells us that identical extensions will also be clustered
without loss in value. When performing the same procedure in a lossy clustering
scheme (e.g., as in Emery-Montemerlo et al. 2005) errors might accumulate and
thus it might be better to re-cluster from scratch at every stage. Still, this will
mean that a resulting algorithm only has limited scalability. Since lossy clustering
is beyond the scope of this chapter, only bootstrapped clustering is considered.

6.4.2 Complexity

Optimally solving a BG takes exponential time w.r.t. the number of types, as there

are O(|A∗|
n|Θ∗|) joint BG-policies. Clustering involves a pairwise comparison of all

6.5 Experiments 149

Algorithm 6.3 BGt = ConstructExtendedBG(BGt−1,βt−1)

1: t←BGt−1.t+ 1
2: pBG←BGt−1

3: pPol←βt−1

4: for each agent i do
5: BGt.Θi = ConstructExtendedTypeSet(i)
6: end for
7: for each joint type θ = (θt−1,at−1,ot) ∈ BGt.Θ do
8: for each state st ∈ S do
9: Compute Pr(st|θ)

10: end for
11: Pr(θ)←Pr(ot|θt−1,at−1) Pr(θt−1)
12: for each a ∈ A do
13: q←∞
14: for each history ~θt represented by θ do
15: q←min(q,Q̂(~θt,a)) { if Q∗ ≤ Q̂ we can take the lowest upper bound }
16: end for
17: u(θ,a)← q
18: end for
19: end for

types of each agent and each of these comparisons needs to check O(|Θ∗|
n−1 |S|)

numbers for equality to verify (6.3.1). The total cost of clustering can therefore be
written as

O(n |Θ∗|
2 |Θ∗|

n−1 |S|),

which is only polynomial in the number of types. When clustering decreases the
number of types |Θ∗|, it can therefore significantly reduce the overall time needed.
However, when no clustering is possible, some overhead will be incurred.

From an implementation perspective, it is important to avoid reconstructing
flat Dec-POMDP policies, as they can cause an exponential blow up in space re-
quirements. Instead, we maintain a pointer to the previous joint policy ϕt =
(ϕt−1,βt−1). A downside is that either extensive pointer administration is neces-
sary to determine whether some previous policy ϕt−1 is still needed (i.e., still being
pointed to by some ϕt in the policy pool), or all constructed ϕt−1 must be kept in
memory. For convenience, our current implementation uses the latter solution.

6.5 Experiments

This section first presents a comparison of the optimal solution of several problems
with and without clustering, followed by an analysis of the generality of lossless
clustering, also for larger horizons for which optimal solutions are infeasible to
compute.

GMAA
∗-Cluster is evaluated on a range of benchmark problems. All timing

results mentioned in this chapter are CPU times with a resolution of 0.01s, and

150 Lossless Clustering of Histories

Dec-Tiger (QBG)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 −4.0000 ≤ 0.01 ≤ 0.01 4 4.00

3 5.1908 0.02 ≤ 0.01 16 9.00

4 4.8028 3,069.4 1.50 64 23.14

5 7.0265 − 130.82 256 40.43

BroadcastChannel (QMDP)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 2.0000 ≤ 0.01 ≤ 0.01 4 1.00

3 2.9900 ≤ 0.01 ≤ 0.01 16 1.00

4 3.8900 3.22 ≤ 0.01 64 1.00

5 4.7900 − ≤ 0.01 256 1.00

6 5.6900 − ≤ 0.01 1024 1.00

7 6.5900 − ≤ 0.01 4096 1.00

8 7.4900 − ≤ 0.01 16384 1.00

9 8.3900 − ≤ 0.01 65536 1.00

10 9.2900 − ≤ 0.01 2.62e5 1.00

15 13.7900 − ≤ 0.01 2.68e8 1.00

20 18.3132 − 0.08 2.75e11 1.00

25 22.8815 − 1.67 2.81e14 1.00

GridSmall (QBG)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 0.9100 ≤ 0.01 ≤ 0.01 4 4.00

3 1.5504 4.21 0.71 16 12.00

4 2.2416 − 30.17 64 25.00

Cooperative Box Pushing (QMDP)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 17.6000 0.05 ≤ 0.01 25 4.00

3 66.0810 − 4.55 625 25.00

Table 6.1: Results of GMAA
∗ on several problems. Listed are the run times of regular

GMAA
∗ and GMAA

∗-Cluster, and the size of the BGs solved at each time
step, with and without clustering.

were obtained on 3.4GHz Intel Xeon processors with 2GB memory. The timings
exclude time needed to parse the problem and compute the heuristic (which can
be amortized).

6.5.1 Optimal Solutions using Clustering

For all considered problems we compared GMAA
∗ against GMAA

∗-Cluster using
the QBG or QMDP heuristic Oliehoek et al. (2008b), depending on problem size and
planning horizon. Regardless of the particular heuristic, both methods compute an
optimal policy, but we expect GMAA

∗-Cluster to be more efficient when lossless
clustering is possible in the domain. The obtained results are shown in Table 6.1
and Table 6.2, which detail the optimal value V ∗ and the running time TGMAA∗ for

6.5 Experiments 151

Recycling Robots (QMDP)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 6.8000 ≤ 0.01 ≤ 0.01 4 4.00

3 9.7647 0.02 ≤ 0.01 16 9.00

4 11.7264 23052.5 0.02 64 8.67

5 13.7643 − 0.10 256 9.00

6 15.5760 − 0.19 1024 9.00

7 17.2126 − 0.67 4096 9.00

8 18.6839 − 1.28 16384 9.00

9 20.0085 − 2.72 65536 9.00

10 21.2006 − 4.92 2.62e5 9.00

11 22.2734 − 9.83 1.05e6 9.00

12 23.2390 − 17.11 4.19e6 9.00

13 24.1080 − 30.61 1.68e7 9.00

14 24.8901 − 50.12 6.71e7 9.00

15 25.5940 − 81.46 2.68e8 9.00

Hotel 1 (QBG)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 9.5000 ≤ 0.01 0.02 16 4.00

3 15.7047 − 0.07 256 16.00

4 20.1125 − 1.37 4096 32.00

FireFighting 〈nh = 3,nf = 3〉 (QBG)

h V ∗ TGMAA∗(s) Tcluster(s) |BGt| |cBGt|

2 −4.3825 0.03 0.03 4 4.00

3 −5.7370 0.91 0.70 16 16.00

4 −6.5789 5605.3 5823.5 64 64.00

Table 6.2: Results of GMAA
∗ on several problems. Listed are the run times of regular

GMAA
∗ and GMAA

∗-Cluster, and the size of the BGs solved at each time
step, with and without clustering.

GMAA
∗ and Tcluster for GMAA

∗-Cluster. Entries marked ‘−’ indicate that no
solution was found within 8 hours. Furthermore, the tables list the number of joint
types in the BGs constructed for the last stage without clustering, |BGt|, and with,
|cBGt|. The former is constant while the latter is an average, as the algorithm can
form BGs for different past policies, leading to clusterings of different sizes. For the
Dec-Tiger problem, the solution time needed by GMAA

∗-Cluster is more than 3
orders of magnitude less for horizon h = 4. For h = 5 this test problem has 3.82e29
joint policies. To our knowledge, no other method has been able to optimally solve
h = 5 Dec-Tiger. GMAA

∗-Cluster, however, is able to solve Dec-Tiger for
h = 5 in reasonable time.

For the FireFighting problem, no lossless clustering is possible at any stage,
and as such, we incur some overhead for the clustering. This is clearly shown for
h = 4. For horizon 3, GMAA

∗-Cluster is actually a bit faster. Analysis revealed
that for this horizon the cost of attempting to cluster is negligible. GMAA

∗-Cluster
is faster because constructing the BGs using bootstrapping from the previous BG

152 Lossless Clustering of Histories

takes less time than constructing a BG from scratch.

For GridSmall, Cooperative Box Pushing, and Hotel 1 the results are
comparable to those for Dec-Tiger: substantial clustering is possible, resulting in
significant speedups. Because the solution of BGs takes time exponential in their
size, even small reductions in size would yield a big increase in efficiency. The
substantial amounts of clustering found in these problems, therefore allow optimal
solutions for longer horizons than have have been presented before.

For BroadcastChannel, GMAA
∗-Cluster achieves an even more dramatic

increase in performance, allowing the solution of up to horizon h = 25. Analysis
reveals that the BGs constructed for all stages are fully clustered: they contain
only one type for each agent. Consequently, the time needed to solve each BG
does not grow with the horizon. The solution time, however, still increases super-
linear because of the increased amount of backtracking and memory management.
The Recycling Robots problem can also be clustered to a relatively constant
number of approximately 9 joint types per stage, allowing for optimal solving to
high horizons. Both the BroadcastChannel and Recycling Robots problem
run out of (2GB of) memory for higher horizons.

The fact that the BroadcastChannel problem exhibits full clustering can be
explained as follows. When constructing a BG for t = 1, there is only one joint
type for the previous BG, so given β0, the solution for the previous BG, there is
no uncertainty with respect to the previous joint action a0. The crucial property
of BroadcastChannel is that the (joint) observation tells us nothing about the
new state, but only about what joint action was taken (e.g., ‘collision’ if both agent
chose to ‘send’). As a result, the observation does not convey any information and
the different individual histories can be clustered. In a BG constructed for stage
t = 2, there will again be only one joint type in the previous game. Therefore, given
the past policy, the actions of the other agents can be perfectly predicted. Again
the observation will convey no information so this process repeats. Consequently,
the problem can be considered a special form of a non-observable Dec-POMDP;
lossless clustering automatically exploits this property.

Another special class of problems that exhibits full clustering are those with a
known start state and deterministic actions. Again in this case, the observations
convey no information (because we can perfectly predict everything), and all histo-
ries can be clustered. This can be described as a special case of a fully observable
problem which clustering automatically exploits.

The FireFighting problem does not allow any clustering. This can be under-
stood as follows: given a (heuristically) good past joint policy, each agent typically
visits different houses (cf. Figure 2.4 on page 28). As such, each different observa-
tion history will typically induce a different belief over the global state.

The other problems are harder to analyze. In Dec-Tiger a key property is that
opening the door resets the problem. Such resets invalidate the history, allowing
for clustering. Another factor is that the observations are taken independently
given the new state only. I.e., Pr(o|a,s′) = Pr(o1|s

′) Pr(o2|s
′), which means that all

information regarding the history of the other agent is obtained through estimation
of the state.

6.6 Conclusions 153

6.5.2 General Clustering Performance

The reduction in BG-size in GMAA
∗-Cluster leads to significant gains in efficiency,

showing that heuristically high-ranked partial policies lead to BGs that allow for
much clustering. To test the general applicability of the clustering method, we
investigated how much clustering can be done in BGs constructed for random past
policies. If substantial clustering is possible on random policies, not just those
encountered by GMAA

∗-Cluster, then the approach may be useful for a much
broader set of methods. The results are shown in Figure 6.1, which shows the
median number of joint types |cBGt| in the Bayesian games (constructed for 1,000
random past policies) for different stages after clustering.

The FireFighting problem, which could not be clustered when searching for
an optimal policy, does allow for some clustering given randomly selected policies
(Figure 6.1g). In both the Recycling Robots and the Hotel 1 problem the
growth in BG size appears to stabilize, while in Dec-Tiger, GridSmall, and
Cooperative Box Pushing |cBGt| keeps growing in the planning horizon. Even
so, |BGt| grows faster resulting in high clustering ratios also for these problems.

These experiments imply that the proposed clustering technique can provide
significantly smaller policy representations without loss of value at a relatively
low computational cost, for the benefit of optimal and approximate algorithms
alike. Also this technique gives insight into how many future policies an agent
should consider: if at some stage and given a past policy an agent has only k
types, this means that it maximally needs to consider k future policies from that
situation. The memory bounded dynamic programming (MBDP) algorithm and
its variants (e.g., Seuken and Zilberstein, 2007b; Carlin and Zilberstein, 2008)),
discussed in Section 2.6.5.1, have a parameter controlling the number of future
policies considered, but until now there has been no principled way of estimating
good values for this parameter. As such we expect that this clustering technique
can have a big impact on new and existing, exact and approximate algorithms.

6.6 Conclusions

This chapter introduced a method for lossless clustering of action-observation his-
tories in Dec-POMDPs, which can be applied in GMAA

∗ policy search for Dec-
POMDPs via Bayesian games. Rather than applying an ad-hoc clustering of these
BGs, a probabilistic equivalence criterion was identified that guarantees that, given
a particular past joint policy ϕt, two action-observation histories ~θ ti of agent i at
stage t have the same optimal Q-values and therefore can be clustered without loss
in solution quality. Empirical evaluation of GMAA

∗ demonstrated that for several
domains speedups of multiple orders of magnitude are achieved by clustering. We
also investigated the amount of clustering possible for random past policies ϕt, the
result of which suggests that our clustering methods may also be exploited in other
algorithms, such as IMBDP (Seuken and Zilberstein, 2007b).

154 Lossless Clustering of Histories

t
2 4 6 8

40

20

0

|c
B
G
t
|

(a) Dec-Tiger

t
2 4 6

0

5000

|c
B
G
t
|

(b) GridSmall

t
2 4 6

0

4000

2000

|c
B
G
t
|

(c) C. Box Pushing

t
2 4 6 8

0

200

100

|c
B
G
t
|

(d) Hotel 1

t
2 4 6 8

20

0

10

|c
B
G
t
|

(e) Recycling Robots

t

2

2

4

4

4 6
0

× 10

|c
B
G
t
|

(f) FireFighting

D-T (a) GS (b) CBP (c) H1 (d) RR (e) FF (f)
65,536 8.127 4.90e6 8.59e8 32,768 1.42

(g) Median clustering ratios
|BGt|
|cBGt|

for last time step.

Figure 6.1: Empirical clustering performance given random joint policies, for several prob-
lems, based on 1,000 independent samples. Plots (a)–(f) show the median size
of the Bayesian games at each stage after clustering |cBGt|, and the errorbars
show the 0.25 and 0.75-quantile. Table (g) shows their median clustering ratio
|BGt|
|cBGt|

for the last time step tested.

6.7 Discussion and Future Work 155

6.7 Discussion and Future Work

The empirical results shown in this chapter demonstrate that lossless clustering
offers dramatic performance gains on a diverse set of problems. However, since some
domains cannot be clustered in this way, it remains unclear in exactly what types
of problems lossless clustering is effective. This is a hard question, as it requires
an analysis of the subclasses of Dec-POMDPs, a matter about which relatively
few results are known. Most research has focused on analysis of methods, rather
than of properties of Dec-POMDP problems, notable exceptions being (Pynadath
and Tambe, 2002a; Goldman and Zilberstein, 2004). Although a detailed analysis
is beyond the scope of this chapter, some observations based on empirical results
have been provided.

Boularias and Chaib-draa (2008) also present an algorithm that improve effi-
ciency of optimal solutions by a form of compression. The performance of their
algorithm, however, stays behind when compared to GMAA

∗-Cluster. Although
a more careful analysis is needed, there are two main reasons that can explain this.
First, the compression of Boularias and Chaib-draa works on the exponentially
larger space of policies, while GMAA

∗-Cluster works on an exponentially smaller
space of histories. Second, GMAA

∗-Cluster can exploit knowledge of the initial
state distribution b0.

The criterion for clustering is quite strict and there will also be many problems
in which little or no lossless clustering is possible. In the future, we plan to consider
approximations for such cases. In particular, one idea is to cluster approximately
PE histories, e.g., if Kullback-Leibler divergence is below some threshold. Another
idea is to cluster histories that induce the same individual belief over states:

Pr(s|~θi) =
∑

~θ 6=i

Pr(s,~θ 6=i|~θi). (6.7.1)

Such individual beliefs literally summarize the criterion and may therefore perform
quite well in practice. Further investigation is needed to determine for which classes
of problems such approximations might work.

156 Lossless Clustering of Histories

Chapter 7

Conclusions and Discussion

This final chapter presents conclusions and summarizes some of the contributions
made. Section 7.2 discusses in how far the presented research meets its goals and
what the most important issues are that are left for future work.

7.1 Conclusions

This section first describes the big picture presented in this thesis. Subsequently,
we list the contributions per chapter in more detail. We also take a brief moment
to reflect on what the current state of Dec-POMDP solution methods is after four
years of research by both others and ourselves in Subsection 7.1.3.

7.1.1 The Big Picture

The work described in this thesis is motivated by the desire to increase the per-
formance of human decision making with the aid of decision support systems. Es-
pecially in complex dynamic environments in which multiple agents interact, as
encountered in crisis management for instance, there is substantial room for im-
provement and the payoff of even slight improvements can be great. One of the
most challenging requirements of such decision support systems is the capability to
generate plans for teams of agents collaborating in a highly uncertain environment,
and this has been the core topic of this thesis.

In particular, we adopted the framework of the decentralized partially observable
Markov decision process (Dec-POMDP) to formalize the decision making process
of a team of agents in a stochastic, partially observable environment. A Dec-
POMDP provides a principled way to tackle the uncertainties in an environment,
but this expression power comes at a cost: optimally solving a Dec-POMDP is
NEXP-complete. For computing a bounded approximation the same worst case
complexity result holds. This means that in order to have any chance of scaling
to large problems, efficient unbounded approximations have to be developed that

157

158 Conclusions and Discussion

work well in practice. Still, this thesis also considered optimal methods for Dec-
POMDPs, as we believe that those form the basis for such efficient approximations.

This thesis introduced a framework of value-based planning for Dec-POMDPs
facilitated by interpreting them as series of Bayesian games (BGs). Forward-sweep
policy computation (FSPC) is a technique that solves these BGs one stage at a time
starting with t = 0 and was first introduced by Emery-Montemerlo et al. (2004).
By showing that there exists an optimal Q-value function Q∗ that can be used as
the payoff function for the BGs, and that doing so will result in an optimal joint
policy, Chapter 3 showed that such modeling using BGs is exact.

Since computation of Q∗ is intractable, Chapter 4 introduced approximate Q-
value functions. These can be employed in value-based policy search, that gener-
alizes FSPC by allowing backtracking. As such, this framework unifies the previ-
ous solution methods by Emery-Montemerlo et al. (2004) and Szer and Charpillet
(2005) and presents a generalized ‘forward perspective’ of Dec-POMDPs. The so-
lution method, dubbed generalized multiagent A∗ (GMAA

∗), can be considered a
generalized ‘top-down approach’, as opposed to the ‘bottom-up’ dynamic program-
ming approaches proposed by Hansen et al. (2004) and derivative works.

Even though GMAA
∗ provides a way to compute both approximate and exact

solution methods, scaling is limited: the BGs that represent a Dec-POMDP grow
exponentially with respect to both the number of agents and the planning hori-
zon. These sources of intractability were addressed independently of each other in
Chapters 5 and 6 respectively.

When all agents in a Dec-POMDP closely interact, there is little hope of effi-
ciently computing solutions for a large number of agents. However, in many prob-
lems interaction is sparse, meaning that each agent will only interact with a rela-
tively small number of other agents. Such independence is exploited in Chapter 5
using factored Dec-POMDPs with additive rewards. In particular, it was shown
that such models can be represented as series of collaborative graphical BGs (CG-
BGs), that can be much more compact than regular BGs. The solution methods of
Chapter 4 can be transferred to this new setting, leading to Factored GMAA

∗.
In order to make this possible, the chapter explained how to efficiently 1) construct
CGBGs, 2) compute factored Q-value functions to be used as a heuristic payoff
function in the CGBGs, and 3) solve CGBGs. An extensive empirical evaluation
demonstrated the potential of this approach, solving problems with up to 1000
agents, where the maximum number of agents previously considered in a general
Dec-POMDP (i.e., without imposing assumptions of transition and observation
independence) was 5.

The planning horizon is the second source of intractability for the GMAA
∗

algorithm, because the size of the BGs depend on the number of types, i.e., (ac-
tion) observation histories, for each agent and the number of such histories grows
exponentially in the planning horizon. In Chapter 6, we reduced the computa-
tional costs of GMAA

∗ by clustering histories. This idea was first considered by
Emery-Montemerlo et al. (2005), however, their approach uses an ad-hoc heuristic
to determine which histories to cluster and consequently finds only approximate
solutions. By contrast, we identified a criterion that guarantees that two individ-
ual histories have the same optimal value, allowing lossless clustering and therefore

7.1 Conclusions 159

faster optimal solutions of Dec-POMDPs. Chapter 6 showed how this result can
be exploited in optimal policy search and demonstrates empirically that it can pro-
vide a speed-up of multiple orders of magnitude, allowing the optimal solution of
significantly larger problems.

Throughout the entire thesis we have considered variants of both Dec-POMDPs
and Bayesian games and established a close relation between these two. In partic-
ular we established that given a past joint policy the expected value of continuing
optimally afterwards can be represented by a BG. It was also explained how this
relates to the notion of sequential rationality in extensive games with imperfect in-
formation. As such, we established strong links between Dec-POMDPs and game
theory, and provided a basis for establishing similar links between game theory and
partially observable stochastic games (POSGs).

7.1.2 Specific Contributions

In the following we treat in more detail the most important contributions made in
each chapter.

Chapter 2. In this chapter, an in-depth introduction to finite-horizon Dec-
POMDPs and their solution methods is provided. As such, it can serve as an
introductory text to Dec-POMDPs. An alternative introduction is given by Seuken
and Zilberstein (2008), who give a broader overview of different decentralized mul-
tiagent models and their solution methods, but provide less examples and details
on the Dec-POMDP itself. Also, Chapter 2 includes background on relevant game-
theoretic models.

Chapter 3. This chapter provided a framework of Q-value functions for Dec-
POMDPs providing a significant contribution to fill this gap in Dec-POMDP the-
ory. The main contributions are for the setting without communication, where
it is shown how an optimal joint policy π∗ induces an optimal Q-value function
Qπ∗(~θt,a) and how it is possible to construct an optimal joint policy π∗ using
forward-sweep policy computation. Because Qπ∗ implicitly depends on the opti-
mal past joint policy, there is no clear way to compute it directly. To overcome
this problem, we introduced a different description of the optimal Q-value function
that makes the dependence on the past joint policy explicit. This new descrip-
tion of Q∗ can be computed using dynamic programming and can then be used to
construct π∗.

Another important contribution of this chapter is that it shows that a decrease
in communication delay cannot lead to a decrease in expected return. That is,
shorter communication delays are not harmful. Although this result is intuitively
obvious, to the author’s knowledge a formal proof had been lacking thus far. Fi-
nally, the chapter has presented a unified overview of the optimal value functions
under various delays of communication and discussed how they relate to each other.

Chapter 4. Computing the optimal Dec-POMDP Q-value function Q∗ is com-
putationally too expensive, therefore Chapter 4 examined approximate Q-value

160 Conclusions and Discussion

functions that can be calculated more efficiently and we discussed how they re-
late to Q∗. This chapter covered QMDP, QPOMDP, and QBG, which was recently
proposed by Oliehoek and Vlassis (2007a). Also, using the fact that decreasing
communication delays in decentralized systems cannot decrease the expected value
we established that Q∗ ≤ QBG ≤ QPOMDP ≤ QMDP.

Additionally we showed how the approximate Q-value functions can be used
as heuristics in a generalized policy search method GMAA

∗, thereby presenting
a unified perspective of forward-sweep policy computation and the recent Dec-
POMDP solution techniques of Emery-Montemerlo et al. (2004) and Szer et al.
(2005).

Finally, an empirical evaluation of GMAA
∗ shows significant reductions in

computation time when using tighter heuristics to calculate optimal policies. Al-
though there are no guarantees of any sort, using QBG generally leads to better
approximate solutions in forward-sweep policy computation and the ‘k-best joint
BG policies’ variant (k-GMAA

∗).

Chapter 5 introduced factored Dec-POMDPs with additive rewards. For such
models, the scopes of the factored value function grow when going back in time,
and will become fully coupled at some point. Nevertheless, Chapter 5 showed that
locality of interaction holds at each stage given the scopes of the value function for
that stage.

Subsequently, we showed how a factored Dec-POMDP can be represented by a
series of collaborative graphical Bayesian games (CGBG). However, constructing
them exactly requires performing exact inference over the space of states and joint
histories, whose size is exponential in the number of state factors and the number of
agents respectively. Therefore, we proposed to construct them using approximate
inference and in particular the factored frontier algorithm, exploiting intermediate
steps of computation to construct the CGBGs.

To use CGBGs in the solution of factored Dec-POMDPs, we needed a factored
Q-value function to serve as payoff function for the CGBGs. Using the optimal
Q-value function is impractical, because it is computationally too expensive and
because it is fully coupled for earlier stages. Therefore we proposed to compute
approximate value function given a predetermined scope structure that specifies
the scopes for each stage for each component of the factored Q-value function.
In particular we proposed two methods to compute a factored approximation of
the QMDP value function: naive regression (NR) and approximate dynamic pro-
gramming (ADP). We discussed that projection to factored value functions with
predetermined scopes can be performed by defining induced indicator basis func-
tions, and that this projection is particularly efficient because the inner product
can be computed very efficiently. We also proposed a third way of computing an
approximate Q-value function, namely transfer planning (TP) that uses an ap-
proximate (e.g., QMDP) value function for a smaller source problem that involves a
smaller number of agents. We refer to the resulting approximate Q-value function
as QTP.

To optimally solve the CGBGs it is possible to employ non-serial dynamic
programming that scales exponentially in the induced width of the interaction

7.1 Conclusions 161

graph (w). In the worst case, w is equal to the number of agents (n), but in
typical settings n ≫ w yielding an exponential speedup. Another option is to
convert a CGBG to a type-action factor graph and to use Max-Plus—a method
based on belief propagation that finds a maximum through message passing—to
find an approximate solution. These results may also be used in settings other than
Dec-POMDPs.

Based on this framework, we proposed an optimal algorithm that can exploit
last-stage indepencence, called GMAA

∗-ELSI. Approximations can be found
using Factored FSPC and Factored k-GMAA

∗ using the approximate Q-
value functions mentioned above as heuristic. Empirical evaluation showed that
GMAA

∗-ELSI computed an optimal solution two orders of magnitude faster than
regularGMAA

∗. To our knowledge, these are the first optimal experimental results
for general (factored) Dec-POMDPs with more than 2 agents. Factored FSPC

was compared against the state-of-the-art methods for solving Dec-POMDPs. The
results showed it is efficient and scales well with respect to the number of agents,
but that the quality of the found solutions depends very much on the used heuris-
tic. QTP consistently performed very well, finding (near-) optimal policies in little
time. For instance, we were able to compute good policies for up to 1000 agents in
a matter of seconds.

Chapter 6. We introduced a method for lossless clustering of action-observation
histories in Dec-POMDPs, which can be applied in GMAA

∗ policy search for Dec-
POMDPs via Bayesian games.

This chapter showed in the context of general BGs that commitment, i.e., when
an agent is determined to select the same actions for two of its types, allows for
the reduction of a BG. It also showed when such commitments are sensible. In
particular, a rational agent is committed to take the same actions for two types
when 1) the probability distributions they induce over the types of the other agents
are the same and 2) if they specify the same payoffs. These results may also be
used outside the context of Dec-POMDPs.

Subsequently, these results were used within the context of Dec-POMDPs.
Rather than applying an ad-hoc clustering of the types in the BGs representing
a Dec-POMDP, a probabilistic equivalence criterion was identified that guarantees
that, given a particular past joint policy, two action-observation histories of an
agent at stage t have the same optimal Q-values and therefore can be clustered
without loss in solution quality. The optimal algorithm resulting from applying
such clustering within GMAA

∗ is referred to as GMAA
∗-Cluster.

Empirical evaluation ofGMAA
∗-Cluster demonstrated that for several domains

a speedup of multiple orders of magnitude is achieved by clustering. It also inves-
tigated the amount of clustering possible for random past policies ϕt, the result
of which suggests that our clustering method may also be exploited in other algo-
rithms. Also it may perhaps help to determine the number of policies one should
retain in methods as MBDP (Seuken and Zilberstein, 2007a) and its variants.

162 Conclusions and Discussion

7.1.3 Current State of Affairs

Both the work described in this thesis and other research performed on Dec-
POMDPs in the last four years have significantly increased the size of problems that
can be addressed. Especially, clustering within BGs (Emery-Montemerlo et al.,
2005) and MBDP (Seuken and Zilberstein, 2007a) and its variants have signifi-
cantly extended the horizons over which approximate solutions can be found. On
the other hand, the research in this thesis contributes to allow scaling in the num-
ber of agents (both in exact and approximate settings), and the horizon in optimal
settings.

At this point it may be possible to employ Dec-POMDP techniques in simple
real-world problems. For instance, simple load balancing tasks may closely resem-
ble the FireFightingGraph benchmark problem. Also, settings such as simple
sensor networks, in which assumptions such as transition and observation indepen-
dence hold, may be candidate for employing Dec-POMDP technology in the near
future.

Application in more complex sensor networks and cooperative robotics settings,
are still problematic at this point. Especially continuous state, action and obser-
vation spaces, which typically enter the picture in these settings, are still not ad-
dressed by current Dec-POMDP research. The same holds for applications within
crisis management settings, although it may be possible to use Dec-POMDPs or
other DTP methods for small parts of the problem as suggested for RoboCup Res-
cue (see Section 1.6) or recently tested in a field exercise (Maheswaran, Rogers,
Sanchez, Szekely, Gati, Smyth, and VanBuskirk, 2009).

7.2 Discussion and Future Work

In this section we self-criticize the research performed and discuss the value of
the Dec-POMDP model and decision-theoretic planning (DTP) in general. The
statements made here, more than in other parts, express the opinion of the author.
Future work is discussed in Subsection 7.2.4.

7.2.1 Scalability of Dec-POMDPs

Scalability issues are always point of criticism for decision-theoretic planning meth-
ods, and even more so for Dec-POMDPs, since even finding a bounded approxi-
mation is NEXP complete. As such, there really is not much hope of scaling up
(ǫ-approximate) solutions for general Dec-POMDPs and one can be inclined to
believe that “it will never work in real settings”. Although—this is a matter of
faith more than science—there is no definite answer to this question, this does not
decrease the value of this line of research.

In particular, getting DTP and especially Dec-POMDPs to work on larger real-
world problems is a difficult, but important problem and much research is still
to be performed. This thesis makes a contribution to this work. Even if in the
end Dec-POMDPs turn out to be impractical for some of the tasks we would like
them to solve, this knowledge itself will be valuable. Also, single-agent POMDPs

7.2 Discussion and Future Work 163

were also considered intractable beyond any hope some years ago. However, in
recent years POMDPs have been applied on robots, e.g., see Simmons and Koenig
(1995); Roy, Gordon, and Thrun (2005); Spaan and Lima (2009), and in human-
computer interaction settings (Roy, Gordon, and Thrun, 2003; Boger, Poupart,
Hoey, Boutilier, Fernie, and Mihailidis, 2005; Hoey, von Bertoldi, Poupart, and
Mihailidis, 2007; Doshi and Roy, 2008). And even the Dec-POMDP algorithm of
Emery-Montemerlo (2005) has been run on real robots.

7.2.2 Robustness and Flexibility

Still, there are valid points of criticism with respect to Dec-POMDPs, as exposed by
the following question: which of the motivating properties of multiagent systems
in Section 1.3 are actually satisfied? Clearly, at this point there is no speedup
due to asynchronous and parallel computation, although such method may still be
developed.

However, in the author’s opinion a more critical problem is that the Dec-
POMDP does not facilitate robustness and flexibility: a plan is constructed for
exactly n agents and if one fails the plan becomes useless. This weakness seems
to be coupled with the focus on optimal plans, since it provides all the tools to
compute an optimal plan for exactly n agents. Providing robustness and flexibility
will necessarily come at the cost of optimality.

7.2.3 The No-Communication Assumption

This thesis considered planning for MASs in a stochastic partially observable envi-
ronment and it assumed that no explicit communication between agents is possible.
It is a reasonable question to ask whether these assumption are not too harsh. Es-
pecially the assumption with respect to communication may be debated since in
most settings communication may be available.

Of course, there are some true non-communicative settings. Problems in which
no communication is possible can for instance be found in space exploration, mili-
tary domains and espionage and in games (e.g., bridge). Another example is given
by communication networks, since meta-level communication may be prohibitively
expensive, they are also candidate to be modeled as Dec-POMDPs. Still, the
number of applications without any communication may be limited. However, as
was explained in Section 2.8.3, a Dec-POMDP with communication (Dec-POMDP-
Com) can be transformed to a regular Dec-POMDP. Therefore, more accurately
stated, the assumption is that there is no mechanism specified to process the se-
mantics of messages. Rather the found policy determines (embeds) the optimal
meaning of the sent messages. As such, communication networks where some
meta-level messages are possible are also a good candidate for being modeled as
a Dec-POMDP. Actually in almost all settings communication is something one
would want to optimize, as in nearly no setting is communication completely with-
out cost: it consumes resources such as time and battery power. However, it is not
clear whether treating communication in the ‘embed-the-optimal-meaning’ sense is
useful for all these domains.

164 Conclusions and Discussion

Nevertheless, the Dec-POMDP model may still be of substantial influence also
for such other domains. For instance, no-communication periods may be embedded
within communicative settings: in a lot of settings, there will be some communica-
tion possible, but typically not at every time step and the amount of information
transferred may be limited. This limitation may follow from saturation of the
communication network or there simply being not enough time (for instance, con-
sider the communication that takes place between soccer players during a match).
As such, it is reasonable to think that agents may act independently for several
time-steps in between communications (Goldman and Zilberstein, 2008).

Finally, decision-theoretic models such as Dec-POMDPs can contribute in the
analysis of other approaches. For instance, they can be used to evaluate and
subsequently improve policies resulting from other multiagent frameworks, such as
BDI frameworks. An example is given by Nair and Tambe (2005) who analyze the
allocation of roles. Other research has analyzed existing communication policies
(Pynadath and Tambe, 2002b; Xuan et al., 2001). Closely related, Dec-POMDPs
also lend themselves very well to perform an analysis of the value of communication
in particular settings. I.e., the no-communication (Dec-POMDP) setting gives
a baseline performance for any method that does use communication, because
using communication should increase this performance. In fact, special types of
Dec-POMDPs have been used to determine when to communicate (Beynier and
Mouaddib, 2005, 2006; Becker et al., 2005; Carlin and Zilberstein, 2009). Also, it is
well conceivable that Dec-POMDP frameworks can help to determine the impact
of different information, and thus can help identifying what to communicate.

7.2.4 Future Work

This section briefly discusses what the author considers to be the most important
directions of future research. More detailed ideas for future work were presented
at the end of the chapters.

An obvious, but important point of future work is the integration of factored
Dec-POMDPs (i.e. Factored GMAA

∗) and clustering (GMAA
∗-Cluster). This

line of work is not without challenges. When considering approximate clustering
based on the heuristic payoff function, we now need to account for the fact that
this heuristic is factored. When extending optimal clustering to these settings the
criterion can be adapted to

∀~θN(i)
∀s Pr(s,~θN (i)|~θi,a) = Pr(s,~θN (i)|~θi,b), (7.2.1)

where N (i) are the neighbors of agent i as specified by the scopes of the optimal
value function, because locality of interaction holds. Still, in such settings it will be
hard to scale up the horizon, since that will mean that the intermediate scopes will
become fully connected, and thus evaluating (7.2.1) will need to check a number of

joint histories ~θN (i) that is exponential in the number of agents. This means that
for large number of agents, we most likely need to settle for approximate clustering,
which also needs more research. In particular, it is important to try and establish
bounds on approximate clustering schemes and it would be interesting to see how
well using individual beliefs over states can do in different problems.

7.2 Discussion and Future Work 165

Also, it is important to test whether for longer horizons, approximation with
smaller scopes will still work. Since dependence spreads over time, the approxima-
tion may become worse with the number of stages. On the other hand, in a similar
way to how bounded approximation are possible for inference (Boyen and Koller,
1998), this may also be the case for values.

Another issue for future work is the identification of tighter (admissible) heuris-
tics and how to compute them efficiently. Although such improvements are often
considered incremental, Chapter 4 showed that the impact of tighter heuristics can
be major. Therefore this, in the author’s opinion, is a very important direction of
future work.

Finally, as discussed above, the current work in Dec-POMDPs aims at optimal
behavior given n agents, which does not provide any robustness if one agent fails.
Future work should consider more flexible extensions of Dec-POMDPs, that allow
for adding and removing agents by having a flexible model specification and so-
lution methods. In particular, we hope to build upon the factored Dec-POMDPs
framework by decomposing two-stage dynamic Bayesian networks into modules
that can be combined on the fly to form the DBN specifying the model.

166 Conclusions and Discussion

Summary

Situations in which multiple decision makers influence an environment arise in
many important current and future real-world problems such as crisis management,
network control, robotic teams and distributed software applications. Making de-
cisions in such multiagent systems is of crucial interest to artificial intelligence and
related fields.

This thesis is concerned with the task of computing a plan for a team of cooper-
ative agents. Many real-world planning tasks for such teams of agents are subject
to uncertainty: both the outcome of the actions and the perception of the current
state of the environment may be uncertain and each of the agents may have a
different partial view of this environment. Also, the agents may be uncertain with
respect to each other’s actions. Such settings can be captured by the decentralized
partially observable Markov decision process (Dec-POMDP), a decision-theoretic
model that allows a principled treatment of the mentioned uncertainties. Unfor-
tunately, computing an optimal plan, or joint policy, that specifies for each agent
what to do in each possible situation is proven to be intractable and even finding
a bounded approximation to the optimal solution is NEXP-complete. This means
that for many interesting problems we have to resort to approximation methods
that will not be able to guarantee a bound on the quality of the joint policy.

One option is to apply optimization methods such as genetic algorithms or cross
entropy to find a joint policy. However, such methods do not exploit the structure
of the problem nor do they provide any insight in how the found approximation
relates to an optimal solution. Therefore, this thesis describes a value-based ap-
proach. For single-agent planning (as formalized by the Markov decision process)
many algorithms exist that find an (approximate) solution by constructing an op-
timal value function that represents the expected cumulative reward from each
state, and subsequently extracting an optimal policy from the value function. This
thesis discusses how a similar procedure can be applied in decentralized settings by
identifying optimal value functions for Dec-POMDPs. By using the optimal value
function as the payoff function in a series of Bayesian games (BGs) the optimal
policy can be found, thereby extending the solution method of Emery-Montemerlo
et al. (2004), to which we refer as forward-sweep policy computation (FSPC), to
include the exact setting.

It may come as no surprise that computing an optimal value function is also
intractable, therefore this thesis proposes to use approximate value functions that
are easier to compute. In particular, it covers QMDP and QPOMDP and proposes

167

168 Summary

a new approximation QBG and applies them in a heuristic policy search method
dubbed generalized multiagent A∗ (GMAA

∗). GMAA
∗ unifies FSPC and multia-

gent A∗ (MAA
∗) (Szer et al., 2005) and works by solving BGs for different stages.

In a BG for a particular stage t, each agent has to select an action for each of its
possible histories. By setting a parameter k to 1 GMAA

∗ reduces to FSPC and
gives an approximate solution, while for k =∞ the behavior is identical to MAA

∗

and the method is exact. Still, the scalability of GMAA
∗ is limited by the fact

that the BGs grow exponentially with respect to the number of agents and time
(because the number of histories grows exponentially with time).

To counter the first type of growth, the thesis explores how independence be-
tween agents can be exploited: in typical problems not all agents will have to
interact at the same time which leads to sparseness in interaction. We propose
to exploit this sparseness by using collaborative graphical Bayesian games (CG-
BGs), which can be represented much more compactly than the regular BGs. For
these CGBGs it is possible to efficiently find approximate solutions by converting
them to a factor-graph and applying Max-Plus, a message passing algorithm that
operates on this graph.

To reduce the growth induced by the number of histories, we consider clustering
histories, an idea first introduced by Emery-Montemerlo et al. (2005). However,
their approach uses an ad-hoc heuristic to determine which histories to cluster and
consequently finds only approximate solutions. By contrast, the work presented in
this thesis identifies a criterion that guarantees that two individual histories have
the same optimal value, allowing lossless clustering and therefore faster optimal
solutions of Dec-POMDPs and solutions over longer horizons.

The thesis closes with some general conclusions and a discussion of the main
directions of future work for practical Dec-POMDP solutions.

Samenvatting

Er zijn veel situaties denkbaar waarin meerdere actoren, of agents, een gezamenlijke
omgeving bëınvloeden met hun acties. Voorbeelden zijn te vinden in crisismanage-
ment, netwerkregeling, teams van robots en gedistribueerde software applicaties.
Deze zogenaamde multi-agent systemen zijn van cruciaal belang voor de verdere
ontwikkeling van kunstmatige intelligentie.

Dit proefschrift heeft het plannen voor teams van samenwerkende agenten als
onderwerp. Veel planningtaken voor zulke teams zijn onderhevig aan onzekerhe-
den: het resultaat van een bepaalde actie kan moeilijk te voorspellen zijn, de staat
van de omgeving waarin de agenten verkeren kan vaak slechts gedeeltelijk worden
waargenomen en iedere agent kan een ander beeld van de omgeving hebben. Ook
kunnen de agenten onzeker zijn over elkaars acties. Dergelijke situaties kunnen
worden geformaliseerd binnen het raamwerk van ‘decentralized partially observ-
able Markov decision processes’ (Dec-POMDPs). De kracht van het Dec-POMDP
model is dat het de genoemde vormen van onzekerheid op een gefundeerde manier
behandelt. De expressiekracht van het model betekent echter ook dat het zeer
moeilijk is er optimale plannen voor te berekenen, omdat de computationele com-
plexiteit erg hoog is (het oplossen van een Dec-POMDP is NEXP-compleet). Het
gevolg is dat we voor alle enigszins realistische problemen genoegen zullen moeten
nemen met een (onbegrensde) benadering.

Een mogelijkheid is het toepassen van standaard optimalisatiealgoritmen. Het
nadeel hiervan is echter dat ze geen inzicht verschaffen in het probleem. Daarom
beschrijft dit proefschrift een aanpak die gebaseerd is op zogenaamde ‘value func-
tions’. Bij het plannen voor één agent spelen value functions een centrale rol: het
is mogelijk om een optimale value function te berekenen, die de hoogst mogelijke
verwachte beloning voor alle toestanden representeert. Vervolgens kan een opti-
male policy worden afgeleid van de value function. Dit proefschrift laat zien hoe
een soortgelijke procedure kan worden gedefinieerd voor Dec-POMDPs aan de hand
van Bayesian games (BGs) en identificeert de bijbehorende optimale value func-
tions. Hiermee wordt de oplossingsmethode van Emery-Montemerlo et al. (2004),
forward-sweep policy computation (FSPC), uitgebreid om ook exacte oplossingen
te vinden.

Omdat het berekenen van optimale value functions zelf ook te complex is, wor-
den een aantal benaderingen besproken. In het bijzonder worden QMDP en QPOMDP

beschouwd en wordt een nieuwe benadering, QBG, gëıntroduceerd. Deze benaderin-
gen worden toegepast in generalized multiagent A∗ (GMAA

∗), een nieuwe heuris-

169

170 Samenvatting

tische zoekmethode die twee eerdere planningmethoden voor Dec-POMDPs—FSPC
en multiagent A

∗ (Szer et al., 2005)—verenigt en generaliseert. De methode is
gebaseerd op het herhaaldelijk oplossen van BGs voor verschillende tijdstappen.
Het oplossen van een BG voor een tijdstap t houdt in dat iedere agent een ac-
tie moet kiezen voor elke mogelijke sequentie van observaties. Een parameter k
bëınvloedt het zoekproces, bij k = 1 is GMAA

∗ gelijk aan FSPC en vindt het een
benadering, voor k = ∞ is de methode gelijk aan MAA

∗ en dus exact. GMAA
∗

in zijn oorspronkelijke vorm is echter beperkt doordat de methode slecht schaalt
met betrekking tot het aantal agenten en de horizon, het aantal tijdstappen waar-
voor een plan wordt gezocht. Dit proefschrift biedt een oplossing voor deze beide
problemen afzonderlijk.

Betere schaalbaarheid met betrekking tot het aantal agenten wordt gerealiseerd
door de aanname dat er onafhankelijkheid is tussen agenten: in een typisch prob-
leem is de interactie van een agent beperkt tot een klein aantal buren. Zulke
beperkte interactie wordt benut door middel van collaborative graphical Bayesian
games (CGBGs), welke een compactere representatie hebben dan normale BGs
en efficiënter kunnen worden opgelost. Voor een CGBG is het mogelijk om zeer
vlug benaderingen te vinden door deze te transformeren naar een factor-graaf en
Max-Plus, een algoritme dat werkt door het sturen van berichten tussen knopen,
op deze graaf te draaien.

Voor het verbeteren van de schaalbaarheid van GMAA
∗ met betrekking tot

de horizon, beschrijft dit proefschrift het clusteren van sequenties van observaties,
een idee oorspronkelijk afkomstig van Emery-Montemerlo et al. (2005). Dit eerdere
werk stelt voor te clusteren aan de hand van een heuristiek en vindt daarom een
benadering. Dit proefschrift introduceert een criterium dat garandeert onder welke
voorwaarden twee sequenties dezelfde optimale waarde hebben, en maakt het dus
mogelijk te clusteren zonder verlies van waarde. Hierdoor is het mogelijk om opti-
male plannen vlugger te berekenen en te plannen voor meer tijdstappen dan eerst
mogelijk was.

Het proefschrift sluit af met enkele conclusies en een bespreking van toekomstige
richtingen van onderzoek voor praktische oplossingen voor Dec-POMDPs.

Appendix A

Problem Specifications

This section gives an overview of the benchmark problems used in for the experi-
ments reported in this thesis. Table A.1 gives a numerical overview of the different
problems. Also included in the table are the number of joint policies for some
horizons, giving an idea of how complex the different problems are.

The Dec-Tiger and FireFighting were extensively treated in Section 2.3.
This thesis also considered a slightly modified version version of Dec-Tiger, called
Skewed Dec-Tiger, in which the start distribution is not uniform. Instead,
initially the tiger is located on the left with probability 0.8. Other than that the
problem is the same.

The BroadcastChannel was introduced by Hansen et al. (2004) and models
two nodes that have to cooperate to maximize the throughput of a shared commu-
nication channel. At each stage the agents can chose to send or not send a message
across the channel, and they can noisily observe whether there was a collision (if
both agents sent) or not. This problem has 4 states, since every agent can or cannot
have a message.

Furthermore, a test problem called “Meeting on a Grid” is provided by Bern-
stein et al. (2005), in which two robots navigate on a two-by-two grid. The goal
of the agents occupy the same square and to this and they have 5 actions: move
in any direction (N,W,E or S) or stand still. The outcome of these actions are
stochastic. In this thesis we used GridSmall, a version with 2 observations per
agent introduced by Amato et al. (2006). In this version, each agent can only
observe if there is a wall on the left or right (i.e., whether it is in the left half or
right half of the grid).

The Cooperative Box Pushing domain was introduced by Seuken and Zil-
berstein (2007b) and is a larger two-robot benchmark. Also in this domain the
agents are situated in a grid world, but now they have to collaborate to move
boxes in this world. In particular, there are small boxes that can be moved by
1 agent, and big boxes that the agents have to push together. Each agent has
4 actions: turn left, turn right, move forward and stay, and 5 observations that
describe the grid position in front of the agent: empty, wall, other agent, small

171

172 Problem Specifications

problem primitives num. π for h

n |S| |Ai| |Oi| 2 4 6

Dec-Tiger 2 2 3 2 7.29e02 2.06e14 1.31e60

BroadcastChannel 2 4 2 2 6.40e01 1.07e09 8.51e37

GridSmall 2 16 5 2 1.563e04 9.313e20 1.175e88

Cooperative Box Pushing 2 100 4 5 1.68e7 6.96e187 Inf

Recycling Robots 2 4 3 2 7.29e02 2.06e14 1.31e60

Hotel 1 2 16 3 4 5.90e4 1.29e81 Inf

FireFighting 3∗ 27∗ 3∗ 2 1.97e4 2.94e21 1.50e90

FFG 3∗ 432 / 81∗ 2 2 5.12e02 3.52e13 7.85e56

Aloha 3∗ 27∗ 2 3 4.10e3 1.33e36 Inf

Table A.1: The number of joint policies for different problems and horizons. ‘Inf’ denotes
a value beyond double machine precision. ∗ denotes that this number can vary,
listed are some chosen values: for FireFighting we chose NH = 3 houses, for
both FireFighting and FFG we assume Nf = 3 fire levels, for Aloha we
assume a max. backlog of 2 messages. FireFighting lists two numbers for
|S|: it has 432 states when including the positions of the agents in the state
description, otherwise it has 81 states for the mentioned parameter settings.

box, large box.
Amato et al. (2007a) introduced Recycling Robots, a problem domain in

which 2 agents have to collect garbage. The agents have 3 actions, search for a
small can, search for a large can and recharge the battery. Small cans can be
collected by a single agent, but again, for large cans the robots have to cooperate.

A last two-agent problem that has been considered in this thesis is Hotel 1

(Spaan and Melo, 2008). In this problem there are two travel agents that at each
stage can receive a customer. They can assign the client to a hotel, to a resort or
refuse the client. Allocating the client to the hotel successfuly gives the highest
reward. However, the hotel has a limited capacity and assigning the client when to
hotel is full leads to a severe penalty. The resort is never full, but can also become
crowded when both agents refer their client there, which therefore also results in a
penalty.

The FireFightingGraph (FFG) and Aloha problem where extensively cov-
ered in Chapter 5. Note that Table A.1 only shows figures for the 3-agent variants.
Clearly when increasing the number of agents, the complexity of the problems in-
crease exponentially. For instance, for 10 agents FFG has 311 = 177,147 states
and 1.07e9 joint policies for h = 2.

Appendix B

Immediate Reward Value Function

Formulations

In Chapter 3, we discussed that there are two ways of formulation value functions
for decentralized settings: the expected reward and immediate reward formulations.
The former were treated in Chapter 3. Here we treat the latter, and discuss the
relation between the two formulations.

B.1 k-Steps Delay Immediate Reward Formula-
tion

As in the 1-step delay case, it is possible to rephrase the value functions for k-steps
delay to an immediate reward (IR) formulation, as described by Oliehoek et al.
(2008b). Again, in this immediate reward formulation, the value V t,∗k over stages
t, . . . ,,h− 1 is expressed in terms of arguments for stage t: ∀0≤t≤h−k−1

Qt,∗k (bt,qt,βt+k) = R(bt,qt(~o∅)) +
∑

ot+1∈O

Pr(ot+1|bt,qt(~o∅))V
t+1,∗
k (bt+1,qt+1),

(B.1.1)
with qt(~o∅) = at the joint action specified for the empty joint history, qt+1 =
〈qt ◦ βt+k〉

w�
ot+1 and

V t,∗k (bt,qt) ≡ max
βt+k

Qk(b
t,qt,βt+k). (B.1.2)

For the last k stages, h− k ≤ t ≤ h− 1, there are τ = h− t stages to go and we get

V t,∗k (bt,qt|τ |) = R(bt,qt|τ |(~o∅)) +
∑

ot+1

Pr(ot+1|bt,qt|τ |(~o∅))V
t+1,∗
k (bt+1,qt+1

|τ−1|).

(B.1.3)
Note that (B.1.3) does not include a maximization over ‘actions’ βt+k. Therefore,
the last k stages should be interpreted as a Markov chain. Standard dynamic

173

174 Immediate Reward Value Function Formulations

programming can be applied to calculate all V t,∗k (bt,qt)-values, for all (joint beliefs
induced by) all joint action-observation histories.

B.2 Conversion between Formulations

Clearly the immediate and expected reward formulations should have some relation
to each other. In particular, the IR-value V t,∗k (bt,qt) can be decomposed into as
the expected reward over the first k-steps t, . . . ,t+k−1, which we will denote using
Kk, and the expected reward over the remaining steps, i.e., the expected reward
(ER) formulation V t+k,∗k (bt,qt):

V t,∗k (bt,qt) = Kk(b
t,qt) + V t+k,∗k (bt,qt). (B.2.1)

In the following, we define, Kk(b
t,qt) through Kτ=i(~θt,qτ=i,t), the expected

reward for the next i stages, i.e.,

Kk(b
t,qt) ≡ Kτ=k(bt,qt|k|). (B.2.2)

We then have Kτ=1(bt,at) = R(bt,at) and

Kτ=i(bt,qt|i|) = R(bt,qt|i|(~o∅))+
∑

ot+1

Pr(ot+1|bt,qt|i|(~o∅))K
τ=i−1(bt+1,qt+1

|i−1|), (B.2.3)

where qt+1
|i−1| = q

t
|i|

w�
ot+1 is the depth-(i− 1) joint policy that results from qt|i| after

joint observation of ot+1.

B.3 Less Delay Cannot Decrease Value

Also for the IR formulation, the intuitive result that less delay cannot hurt, holds.

Theorem B.1 (Shorter communication delays cannot decrease the value). The
optimal Q-value function Qk of a finite horizon Dec-POMDP with k-steps delayed
communication is an upper bound to Qk+1, that of a k + 1-steps delayed commu-
nication system. That is

∀t∀bt∀qt
|k|
,βt+k

|k|
Qt,∗k (bt,qt|k|,β

t+k
|k|) ≥ max

βt+k+1
|k+1|

Qt,∗k+1(b
t,〈qt|k| ◦ β

t+k
|k| 〉,β

t+k+1
|k+1|).

(B.3.1)

Proof. We start be rewriting the left hand side:

B.4 Summary of Q-value Functions for Decentralized Settings 175

Qt,∗k (bt,qt|k|,β
t+k
|k|)

=R(bt,qt|k|(~o∅)) +
∑

ot+1∈O

Pr(ot+1|bt,qt|k|(~o∅))V
t+1,∗
k (bt+1,〈qt|k| ◦ β

t+k
|k| 〉

w�
ot+1)

=R(bt,qt|k|(~o∅)) +
∑

ot+1∈O

Pr(ot+1|bt,qt|k|(~o∅))

[
Kk(b

t+1,〈qt|k| ◦ β
t+k
|k| 〉

w�
ot+1) + V t+k+1,∗

k (bt+1,〈qt|k| ◦ β
t+k
|k| 〉

w�
ot+1)

]
(B.3.2)

=

[
R(bt,qt|k|(~o∅)) +

∑

ot+1∈O

Pr(ot+1|bt,qt|k|(~o∅))Kk(b
t+1,〈qt|k| ◦ β

t+k
|k| 〉

w�
ot+1)

]
+

[
∑

ot+1∈O

Pr(ot+1|bt,qt|k|(~o∅))V
t+k+1,∗
k (bt+1,〈qt|k| ◦ β

t+k
|k| 〉

w�
ot+1)

]
. (B.3.3)

Note that, for the right hand side, we have that

max
βt+k+1

|k+1|

Qt,∗k+1(b
t,〈qt|k| ◦ β

t+k
|k| 〉,β

t+k+1
|k+1|) = V t,∗k+1(b

t,〈qt|k| ◦ β
t+k
|k| 〉) (B.3.4)

and therefore we can write

V t,∗k+1(b
t,〈qt|k| ◦β

t+k
|k| 〉) = Kk+1(b

t,〈qt|k| ◦β
t+k
|k| 〉)+V

t+k+1,∗
k+1 (bt,〈qt|k| ◦β

t+k
|k| 〉) (B.3.5)

where, per definition (by (B.2.2) and (B.2.3))

Kk+1(b
t,〈qt|k| ◦ β

t+k
|k| 〉) = Kτ=k+1(bt,〈qt|k| ◦ β

t+k
|k| 〉) = R(bt,〈qt|k| ◦ β

t+k
|k| 〉(~o∅))

+
∑

ot+1

Pr(ot+1|bt,〈qt|k| ◦ β
t+k
|k| 〉(~o∅))K

τ=k+1−1(bt+1,〈qt|k| ◦ β
t+k
|k| 〉

w�
ot+1). (B.3.6)

Note that in this equation βt+k|k| does not influence the immediate reward or obser-

vation probability. Therefore the last equation is equal to the first part of (B.3.3).
This means that we only have to show that

∑

ot+1∈O

Pr(ot+1|bt,qt|k|(~o∅))V
t+k+1,∗
k (bt+1,〈qt|k| ◦ β

t+k
|k| 〉

w�
ot+1) ≥

V t+k+1,∗
k+1 (bt,〈qt|k| ◦ β

t+k
|k| 〉). (B.3.7)

However, this is exactly what Theorem 3.3 shows. Therefore (B.3.7) holds, con-
cluding the proof.

B.4 Summary of Q-value Functions for Decentral-
ized Settings

This thesis defined value functions for different settings w.r.t the assumptions on
communication. Also, two types of value functions were identified: expected and

176 Immediate Reward Value Function Formulations

V -form Q-form A Q-form B

k-SD V t,∗k (bt−k,qt−k|k|) Qt,∗k (bt−k,qt−k|k| ,β
t
|k|) Qt,∗k (bt−k,qt−k|k| ,

~θt|k|,β
t
|k|)

h-SD V t,∗h (b0,ϕt) Qt,∗h (b0,ϕt,δt) Qt,∗h (b0,ϕt,~θt,δt)

1-SD V t,∗1 (bt−1,at−1) Qt,∗1 (bt−1,at−1,βt|1|) Qt,∗1 (bt−1,at−1,ot,βt|1|)

0-SD V t,∗0 (bt,()) Qt,∗1 (bt,(),at) Qt,∗1 (bt,(),(),at)

Table B.1: Expected reward formulations

V -form Q-form

k-SD V t,∗k (bt,qt|k|) Qt,∗k (bt,qt|k|,β
t+k
|k|)

h-SD V th(b
t,qt|h−t|) Qth(b

t,qt|h−t|,())

1-SD V t,∗1 (bt,at) Qt,∗1 (bt,at,βt+1
|1|)

0-SD V t,∗0 (bt,()) Qt,∗0 (bt,(),at)

Table B.2: Immediate reward formulations

immediate reward value functions. Here we we present an overview of all encoun-
tered value functions and make some remarks to provide a coherent perspective.
For the general discussion we will consider the k-SD setting, as the other settings
can be interpreted as special cases.

Table B.1 lists the expected reward (ER) formulations of the value functions
for the considered settings. These value functions specify the expected reward over
stages t, . . . ,h− 1, given a distribution over states bt−k that lies in the past. This
past joint belief can be computed by the agents during execution and acts as a
Markovian signal. Given the joint policy qt−k|k| used during the intermediate stages,

at stage t we should select the βt|k| that maximizes the future reward, thereby
defining V ∗

k from Q∗
k. To avoid any confusion, Table B.1 shows both Q-forms used

in the thesis.

The immediate reward (IR) formulations are listed in Table B.2. In contrast to
ER formulations, these type of value functions express the expected value solely in
terms of current joint belief bt (induced by some joint action observation history)
and future policies qt|k|,β

t+k
|k| .

In general, one can interpret the expected reward formulations to correspond
to the forward view of Dec-POMDPs (i.e. forward-sweep policy computation etc.):
At stage t, there is common knowledge of bt−k,qt−k|k| which defines a BG for that

stage, the solution of which is the maximizing βt|k|. In contrast, the immediate
reward formulations correspond to the backwards view (i.e., DP methods): given
that qt|k| will be used for the ‘last’ k stages, V t,∗k (bt,qt|k|) specifies the value of joint

belief bt. For instance, V th(b
t,qt|h−t|) gives the expected value of executing qt|h−t|

starting from (the state distribution bt induced by) ~θt. That is, qt|h−t| is a joint

B.4 Summary of Q-value Functions for Decentralized Settings 177

sub-tree policy that executes for the remainder of time; stages t, . . . ,h− 1. This is
exactly the relation between the optimal value function and DP for Dec-POMDPs
as discussed in Section 3.1.5.1.

It is important to note that Q-form B, Qt,∗k (bt−k,qt−k|k| ,
~θt|k|,β

t
|k|), is a function

of the joint belief bt−k (induced by ~θt−k), but not of bt (as would be induced by
~θt = (~θt−k,~θt|k|): keeping other arguments the same two histories ~θt|k|,

~θt′|k| that

would induce the same joint belief bt, can have different values, because ~θt|k| spec-
ifies how individual information is distributed. For instance, let us the Dec-Tiger
problem with 2-steps delayed communication, bt−2 is uniform and the interme-
diate joint policy qt−2

|2| specifies only to listen. Now we consider two histories

~θt|2| = 〈(oHL,oHL),(oHR,oHR)〉 while ~θ
t′
|2| = 〈(oHL,oHR),(oHL,oHR)〉. Even though both

2-step joint histories will lead to the same joint belief (a uniform belief over states),
the value of the latter will be higher because the agents have a identical individ-
ual beliefs. In case of ~θt|2| = 〈(oHL,oHL),(oHR,oHR)〉, however, the agents have a

completely different perspective of the world (and are fairly sure that their view
is right), therefore the optimal joint policy may specify to open the door in these
cases, leading to a lower value for this particular joint history. A more formal
argument is given by Oliehoek et al. (2007c).

We end this section by making some specific remarks about the value function
for the special cases considered.

The 0-SD setting. Table B.1 and B.2 show that many of the arguments of the
general formulation become degenerate under instantaneous communication. E.g.,
for k = 0 qt−k|k| = () is an empty joint sub-tree policy. The result is that the IR and

ER formulation are identical: V t,∗0 (bt) and Qt,∗0 (bt,at).

The 1-SD setting. Under 1-step delayed communication, the joint policy fol-
lowed since bt−1 reduces to a joint action qt−1

|1| = at−1. Also, as discussed in

Section 3.3.1, Qt,∗1 (bt−1,at−1,ot,βt|1|) can be immediately reduced to V t,∗1 (bt,at),

by noticing that bt−1,at−1,ot only influence the value through bt and that for ot

βt|1| reduces to at = βt|1|(o
t) .

A second observation is that V t,∗1 (bt,at) has the same arguments as Qt,∗0 (bt,at).
Because of the apparent similarity, V t,∗1 (bt,at) has been denoted as ‘Q’ in previous
work. We still refer to this function as QBG when used as a heuristic to stay in line
with QMDP,QPOMDP naming.

The h-SD setting. Because ER formulations have their common joint belief at
stage 0, qt−k|k| reduces to a full past joint policy ϕt. Also, because the joint BG-

policies βt|k| are mappings from the entire history, they reduce to joint decision

rules δt.
In the IR formulation Qth is a degenerate form that reduces to V th(b

t,qt|h−t|).
Also, it is not starred ‘∗’ since there is no “continuing optimally afterwards”.

178 Immediate Reward Value Function Formulations

Appendix C

Formalization of Regression to Factored

Q-Value Functions

C.1 Local State-Action Pairs and Indicator Func-
tions

Formalizing the decomposition of the QMDP function into a factored Q-value func-
tion through regression requires the formalization of several concepts. In particular,
linear regression is effectively a projection onto a set of basis functions, so we need
to define the basis functions on which QtM(s,a) is projected, such that the resulting
approximation is of the desired form: a factored Q-value function with the desired
scopes. To this end we use the concept of indicator functions.

Definition C.1 (Indicator function). Let f : X → {0,1} be a function mapping
from some (finite) set of domain elements X to {0,1}. f is an indicator function if
and only if f(x) = 1 for exactly one x ∈ X . This x is called the indicated (domain)
element.

C.1.1 (State,Action)-Pairs.

In the regression problem expressed by (5.4.2), the domain of the functions are
(state, action)-pairs, for which we first introduce the notation. In the following we
will assume that we are discussing the regression problem for a particular stage t.
We drop the index for this stage to ease the notation.

Definition C.2 ((state, joint action)-pair). Let z denote a (state, joint action)-
pair (SAP), z ≡ (s,a). I.e., we have that z1, . . . ,zN with N = |S| |A| is the domain
of QM.

Similarly, for each local Q-function we have the notion of local SAP.

Definition C.3 (Local (state, joint action)-pair). Let ẑ denote a local SAP (LSAP)
for local Q-function Qe. That is, ẑe ≡ 〈xX(e,t),aA(e,t)〉.

179

180 Formalization of Regression to Factored Q-Value Functions

The number of LSAPs for Qe (i.e., the size of its domain) is denoted N̂e =
|XX(e) ×AA(e)|. Also, le is used to index into the LSAPs of Qe: 1 ≤ le ≤ N̂e. Let
Ie(·) be the index function for Qe: it computes the local index le = Ie(ẑe). The

total number of LSAPs (i.e., for all local Q-functions) is N̂ =
∑|ρ|
e=1 N̂e. We use l

to index into all LSAPs : 1 ≤ l ≤ N̂ .

C.1.2 Scope Restriction and Induced Scope.

Before we can properly define the proposed basis functions, we need to introduce
the concept of scope restriction and induced scope.

Definition C.4 (Scope restriction function). We use RS(e)(·) to denote the scope
restriction function for Qe: it restricts s,a to S(Qe), the scope of Qe. We write
RS(e)(s,a) = 〈xX(e),aA(e)〉 = ẑe.

Definition C.5 (Induced function and scope). For any function f(s,a), if f can
be defined as

f(s,a) = f ′(RS(s,a)), (C.1.1)

where RS(·) is a scope restriction function that restricts to a scope S and where
f ′ is a function over the smaller scope S, then f is said to have induced scope S.
Similarly we refer to f as the induced function.

By using the scope restriction function, we overload the index function to also
work on SAPs:

Ie(s,a) ≡ Ie(RS(e)(s,a)) = le. (C.1.2)

This means that Ie(s,a) has induced scope S(Qe).

C.1.3 The Basis Functions: Mapping SAPs to LSAPs.

The basis functions we propose to use for regression can be seen as mappings from
SAPs to LSAPs. In particular for each LSAP ẑ with index l, we introduce a basis
function hl such that hl(z) indicates whether a SAP z is ‘consistent’ with ẑ.

We start by defining ‘local indicator functions’ ĥ for each local Q-function Qe.

Definition C.6 (Local indicator function). For each local Q-function Qe, for each

LSAP ẑe and corresponding index le, let ĥle(ẑ
′
e) be the local indicator function for

LSAP ẑe that act as a filter that indicates whether ẑ′e = ẑe.

ĥle(ẑ
′
e) =

{
1 if Ie(ẑ′e) = le,

0 otherwise.
(C.1.3)

I.e., ĥle(ẑ
′
e) returns whether ẑ

′
e is the indicated element.

Using the definition of local indicator functions, we can finally define the basis
functions needed for linear regression. In particular hl(z) is the basis function that
indicates whether global SAP z is consistent with the LSAP with global index l. We
call such basis functions basis functions induced through local indicator functions
or simply induced indicator basis functions.

C.2 Efficient Projections 181

Definition C.7 (Induced indicator basis function). For each LSAP with global
index l and local index le, there is an associated basis function hl that has induced
scope S(Qe) and is defined as

hl(s,a) ≡ ĥle(RS(e)(s,a)). (C.1.4)

An induced indicator basis function hl can be seen as a column vector:

hl =



hl(z1)

...
hl(zN)


 (C.1.5)

in which the SAPs that are consistent with l are 1 and other entries are 0. Note
that this means hl is not an indicator function itself (an indicator function is ‘1’
for exactly one entry).

C.2 Efficient Projections

Section 5.4.3 introduced an algorithm to compute a factored QMDP approximation
more efficiently than naive regression, by bootstrapping from the previous approx-
imation. Still, this algorithm needs to perform a projection, i.e. compute (5.4.9),
to obtain the least-squares approximations in (5.4.15). This section follows Koller
and Parr (1999) and shows that (5.4.9) can be computed more efficiently when
the basis functions h have restricted induced scopes. I.e., we show how Step 3 of
Algorithm 5.2 can be performed more efficiently. Moreover, we extend the work
of Koller and Parr, by showing that this computation is particularly efficient when
using induced indicator basis functions.

C.2.1 Rewriting Regression Using Inner Products

We start be showing how (5.4.9) can be rewritten as a number of inner products.
In particular let

A = (HTH) =



− hT1 −

...
− hT

N̂
−






| |
h1 . . . hN̂
| |


 (C.2.1)

be an N̂ × N̂ matrix, which typically is small enough to represent. This matrix
can be constructed efficiently, as each entry can be computed efficiently, because

aij = hTi hj = hi · hj (C.2.2)

and the inner product ‘ · ’ of two vectors representing functions with a restricted
induced scope can be computed efficiently as discussed below.

Also let

w′ =



|
w′

|


 =



− hT1 −

...
− hT

N̂
−






|
Q
|


 = HTQ. (C.2.3)

182 Formalization of Regression to Factored Q-Value Functions

(
a
b

)
·

(
c1 + c2
d1 + d2

)
= a(c1 + c2) + b(d1 + d2) (C.2.5)

= ac1 + ac2 + bd1 + bd2 (C.2.6)

= (ac1 + bd1) + (ac2 + bd2) (C.2.7)

=

(
a
b

)
·

(
c1
d1

)
+

(
a
b

)
·

(
c2
d2

)
(C.2.8)

Figure C.1: Linearity of inner product.

Even though representing H and Q explicitly requires exponential space, storing
w′ only requires N̂ entries. Moreover, provided that Q is a factored linear value
function with restricted scope, each entry w′

i can be computed from a number of
inner products:

w′
i = hTi Q = hi ·Q = hi ·

[∑

e

Qe
]
=
∑

e

[
hi ·Q

e
]

(C.2.4)

because of the linearity of the inner product (see Figure C.1). Therefore, if all
components Qe have a restricted, small scope, w′

i can be computed efficiently.
Note that when Q is represented flat (as in the naive regression approach out-

lined in Section 5.4.2), computation of w′
i requires performing the summation over

all (state, joint-action pairs):

w′
i =

∑

s,a

hi(s,a)Q(s,a) (C.2.9)

which becomes intractable for large number of states and agents. As such both the
computation of the entire Q(s,a)-function and the regression step form a bottleneck
for naive regression as outlined in Algorithm 5.1.

Finally we can compute a new parameter vector w that gives the least squares
error approximation as identified in (5.4.9) by putting together the pieces created
in this section

w = A−1w′. (C.2.10)

C.2.2 Efficient Inner Products

In this section we explain how the inner products of restricted induced scope func-
tions can be computed efficiently, and how induced indicator functions gain even
more efficiency. To ease the notation, we assume that all functions are functions of
states s or subsets of state factors X only. However, since no special assumptions
are made, the analysis immediately extends to functions defined over SAPs z and
subsets of state factors and actions X ∪A.

For arbitrary functions f,g defined over the set of states S we have that

f · g =
∑

s∈S

f(s)g(s) = f(s1)g(s1) + · · ·+ f(s|S|)g(s|S|) (C.2.11)

C.2 Efficient Projections 183

State index
1 2 3 4 5 6 7 8

x1 0 0 0 0 1 1 1 1
x2 0 0 1 1 0 0 1 1
x3 0 1 0 1 0 1 0 1

Table C.1: State space of three binary state factors.

which requires summing over all s ∈ S. If f,g are arbitrary, this cannot be improved
upon. However, the inner product of two functions of restricted induced scope can
be computed more efficiently.

Example C.1. Let us consider a state space S spanned by a set of three binary
state factors X = {x1,x2,x3} such that we can summarize the state space as shown
in Table C.1, i.e., the state index is the number represented by the state factors in
binary plus one.
Now consider functions f,g induced by f ′ defined over x1 and g′ defined over x2

as follows
f
′(x1 = 0) = 4, f

′(x1 = 1) = 2, (C.2.12)

g
′(x2 = 0) = 3, g

′(x2 = 1) = 1. (C.2.13)

This leads to the inner product of f = (4,4,4,4,2,2,2,2)T and g = (3,3,1,1,3,3,1,1)T

f · g = 4 · 3 + 4 · 3 + 4 · 1 + 4 · 1 + 2 · 3 + 2 · 3 + 2 · 1 + 2 · 1 (C.2.14)

= 2 (4 · 3 + 4 · 1 + 2 · 3 + 2 · 1) (C.2.15)

= 2 (12 + 4 + 6 + 2) = 48. (C.2.16)

Clearly computation as in (C.2.14) contains redundancy that is exploited to allow
for more efficient computation in (C.2.15).

The intuition of this example is formalized in the following proposition.

Proposition C.1 (Inner product of functions with restricted induced scope). Let
us write S(f),S(g) for the induced scopes of f,g. Let U = S(f) ∪ S(g) be the joint
scope of f,g, and Ū = X\U the complement. The inner product of f,g is defined as

f · g = |XŪ |
∑

xU∈XU

f(xU)g(xU). (C.2.17)

Computation of this inner product takes time linear in |XU |, the number of local
states defined for the union of the induced scopes.

In the example above, we have that U = {x1,x2} and Ū = {x3}. It is easy to see
that (C.2.15) can be rewritten as (C.2.17). The above analysis naturally extends
to functions defined over state-action pairs. For instance consider the previous
example, but interpret all indices as (local) (state, action)-pairs. I.e., we now have
a (state, joint action)-space Z (consisting of N = 8 SAPs z) that is spanned by
three binary LSAP variables {ẑ1,ẑ2,ẑ3}. (For instance if there is only one agent
and with one action, this formulation reduces exactly to the previous example).

184 Formalization of Regression to Factored Q-Value Functions

C.2.2.1 Inner Products for Induced Indicator Functions

When using basis functions that are induced indicator functions, as in (C.1.3),
matters simplify even further, as illustrated by the next example.

Example C.2. Let us consider two induced indicator basis function hi,hj with
induced scopes S(i) = {x1},S(j) = {x2}, defined through

ĥi(x1 = 0) = 1, ĥi(x1 = 1) = 0, (C.2.18)

ĥj(x2 = 0) = 0, ĥj(x2 = 1) = 1. (C.2.19)

Let the joint scope be U = S(i) ∪ S(j) = {x1,x2} and Ū = X \ U = {x3}. Now
because we use indicator functions, we know that

f(xU)g(xU) =

{

1 xU = 〈x1 = 0,x2 = 1〉

0 otherwise.
(C.2.20)

Therefore we know that the second part of (C.2.17) sums to 1:

∑

xU∈XU

f(xU)g(xU) = 1, (C.2.21)

and therefore that the inner product reduces to

f · g = |XŪ | . (C.2.22)

This example demonstrates that computation of the inner product of indicator
functions is typically very cheap. However, there are some technical details we
need to take care of. In particular, in the above we assume two functions that were
specified over disjoint scopes S(i) ∩ S(j) = ∅. In the following, we generalize the
example.

• Let hi,hj be induced indicator basis functions with arbitrary induced scopes

S(i),S(j) ⊆ X , induced by local indicator functions ĥi and ĥj .

• We write xi
S(i) for the local state indicated by ĥi and xj

S(j) for that indicated

by ĥj .

• U = S(i) ∪ S(j) is the union of scopes and Ū = X \ U is the complement of
the union.

• I = S(i) ∩ S(j) is the intersection of scopes.

• xiI is the locate state indicated by ĥi restricted to contain only factors from

I and similar for xjI .

Proposition C.2 (Inner product of induced indicator functions). The inner prod-
uct of two induced indicator functions hi,hj is defined as

hi · hj =

{
|XŪ | if xiI = xjI
0 otherwise.

(C.2.23)

C.2 Efficient Projections 185

As such the cost of computing this inner product is constant in |XU | and linear in
Ū (i.e., logarithmic in |XŪ |).

Proof. The second part of (C.2.17) is either 1 or 0, yielding a value of respec-
tively |XŪ | or 0. Now, when xiI = xjI we know that the indicated states agree
upon their shared variables, and therefore that there is a state xU ∈ XU such that
hi(xU)hj(xU) = 1. However, when xiI 6= xjI the indicated local states are incon-
sistent with each other and we can never find a xU that yields hi(xU)hj(xU) = 1.
Therefore, the second part of (C.2.17) is 0 in this case.

C.2.2.2 Product of Induced Indicator and Regular Functions

In the previous section we discussed how the inner product of two induced ba-
sis functions, needed for the computation of (C.2.2), can be computed efficiently.
For the computation of (C.2.4), we need the inner product of induced indicator
basis functions with the factored Q-value function, which is a regular function of
restricted induced scope.

Example C.3. We assume the same 3-factor binary state space as before. Assume
we have an induced indicator basis function h, induced by ĥ with scope {x1,x2}
that has 〈0,1〉 as the indicated element, i.e.

ĥ(x1,x2) =

{

1, x1 = 0,x2 = 1

0, otherwise.
(C.2.24)

The other function g is a function of induced scope {x2,x3}, induced by:

g
′(0,0) = 5, g′(0,1) = 36, g′(1,0) = 8, g′(1,1) = −6 (C.2.25)

This leads to the inner product of h = (0,0,1,1,0,0,0,0)T and g =
(5,36,8,− 6,5,36,8,− 6)T

f · g = 0 · 5 + 0 · 36 + 1 · 8 + 1 · −6 + 0 · 5 + 0 · 36 + 0 · 8 + 0 · −6(C.2.26)

= 8− 6 = 2

Analyzing the above situation, we see that the general formula (C.2.17) still
performs redundant computations, as it sums over many entries that are 0. Here,
we split the union of state variables U = S(h) ∪ S(g) into the the sets of variables
in the intersection and those contained only in the induced scope of h or g. I.e.,
we define I = S(h) ∩ S(g)

U = I ∪ H ∪ G,

where H = S(h) \ I and G = S(g) \ I are the ‘private’ factors of h and g. Now we
can write

h · g = |XŪ |
∑

xI∈XI

∑

xH∈XH

∑

xG∈XG

h(xU)g(xU).

= |XŪ |
∑

xI∈XI

∑

xH∈XH

h(〈xI ,xH〉)
∑

xG∈XG

g(〈xI ,xG〉).

186 Formalization of Regression to Factored Q-Value Functions

Note that I ∪ H = S(h), therefore the summation
∑

xI∈XI

∑
xH∈XH

h(〈xI ,xH〉)
actually is just a summation over the scope of indicator function h; in this summa-
tion there is only one non-zero entry (for the indicated element). As such we can
further reduce the inner product.

Proposition C.3 (Inner product of induced function and induced indicator func-
tion). The inner product of an induced indicator basis function h and induced
function g is given by

h · g = |XŪ |
∑

xG∈XG

g(〈xindI ,xG〉)

where xindI is the restriction (to I) of the element indicated by h. Computation
of this inner product is linear in |XG | the number of instantiations of the variables
exclusive to the induced scope of g.

C.2.3 Translation to Indicator Functions for SAPs

In Section C.2.2.1 we make no special assumption on the set of variables comprising
X . As such all the above transfers to indicator functions specified over subsets of
states and action variables. I.e., we can replace X by any set of variables Z and
therefore also by Z = X ∪ {A1, . . . ,An}.

Although this transformation is trivial, it is interesting to make the follow-
ing observations in the context of regression to basis functions as described in
Section 5.4.2.2: because we have k local Q-functions, we have k groups of basis
functions. Each such group j, 1 ≤ j ≤ k represents Qj,t. The basis function within
such a group all have the same scope, namely the scope S(j,t). Therefore inner
products of basis functions that are part of the same Q-function component Qj,t

have inner product 0.

Appendix D

Proofs

This appendix contains several various proofs that would have interrupted the flow
of the text too much. For convenience, the propositions, theorems, lemmas, etc.
themselves have been repeated.

D.1 Proofs of Chapter 2

Proof of Theorem 2.1. For a BG with identical payoffs, i.e., ∀i,j∀θ∀a ui(θ,a) =
uj(θ,a), the solution is given by:

β∗ = argmax
β

∑

θ∈Θ

Pr(θ)u(θ,β(θ)), (D.1.1)

where β(θ) = 〈β1(θ1),...,βn(θn)〉 is the joint action specified by β for joint type θ.
This solution constitutes a Pareto optimal Nash equilibrium.

Proof. The proof consists of two parts: the first shows that β∗ is a Nash equilib-
rium, the second shows it is Pareto optimal.

Nash Equilibrium Proof. It is clear that β∗ satisfying (D.1.1) is a Nash
equilibrium by rewriting from the perspective of an arbitrary agent i as follows:

β∗
i = argmax

βi

[
max
β 6=i

∑

θ∈Θ

Pr(θ)u(θ,β(θ))

]
,

= argmax
βi

[
max
β 6=i

∑

θi

∑

θ 6=i

Pr(θ 6=i|θi)

[
∑

θ 6=i

Pr(〈θi,θ 6=i〉)

]

︸ ︷︷ ︸
Pr(θi)

u(θ,β(θ))

]
,

= argmax
βi

[
max
β 6=i

∑

θi

Pr(θi)
∑

θ 6=i

Pr(θ 6=i|θi)u(θ,β(θ))

]
,

= argmax
βi

∑

θi

Pr(θi)
∑

θ 6=i

Pr(θ 6=i|θi)u(〈θi,θ 6=i〉 ,
〈
βi(θi),β

∗
6=i(θ 6=i)

〉
),

187

188 Proofs

which means that β∗
i is a best response for β∗

6=i. Since no special assumptions were
made on i, it follows that β∗ is a Nash equilibrium.

Pareto Optimality Proof. Let us write Vθi(ai,β 6=i) for the payoff agent i
expects for θi when performing ai when the other agents use policy profile β 6=i. We
have that

Vθi(ai,β 6=i) =
∑

θ 6=i

Pr(θ 6=i|θi)u(〈θi,θ 6=i〉 , 〈ai,β 6=i(θ 6=i)〉).

Now, a joint policy β∗ satisfying (D.1.1) is not Pareto optimal if and only if there
is another Nash equilibrium β′ that attains at least the same payoff for all agents
i and for all types θi and strictly more for at least one agent and type. Formally
β∗ is not Pareto optimal when ∃β′ such that, ∀i∀θi

Vθi(β
∗
i (θi),β

∗
6=i) ≤ Vθi(βi

′(θi),β 6=i
′) ∧ ∃i∃θiVθi(β

∗
i (θi),β

∗
6=i) < Vθi(βi

′(θi),β 6=i
′).

(D.1.2)
We prove that no such β′ can exist by contradiction. Suppose that β′ =

〈βi′,β′
6=i〉 is a NE such that (D.1.2) holds (and thus β∗ is not Pareto optimal).

Because β∗ satisfies (D.1.1) we know that:
∑

θ∈Θ

Pr(θ)u(θ,β∗(θ)) ≥
∑

θ∈Θ

Pr(θ)u(θ,β′(θ)), (D.1.3)

and therefore, for all agents i

Pr(θi,1)Vθi,1(β
∗
i (θi,1),β

∗
6=i) + ...+ Pr(θi,|Θi|)Vθi,|Θi|

(β∗
i (θi,|Θi|),β

∗
6=i) ≥

Pr(θi,1)Vθi,1(β
′
i(θi,1),β

′
6=i) + ...+ Pr(θi,|Θi|)Vθi,|Θi|

(β′
i(θi,|Θi|),β

′
6=i)

holds. However, by assumption that β′ satisfies (D.1.2) we get that

∃j Vθi,j (β
∗
i (θi,j),β

∗
6=i) < Vθi,j (β

′
i(θi,j),β

′
6=i).

Therefore it must be that
∑

k 6=j

Pr(θi,k)Vθi,k(β
∗
i (θi,k),β

∗
6=i) >

∑

k 6=j

Pr(θi,k)Vθi,k(β
′
i(θi,k),β

′
6=i),

and thus that
∃k Vθi,k(β

∗
i (θi,k),β

∗
6=i) > Vθi,k(β

′
i(θi,k),β

′
6=i),

contradicting the assumption that β′ satisfies (D.1.2).

D.2 Proofs of Chapter 3

Proof of Proposition 3.1 (Value of an optimal joint policy). The expected
cumulative reward over stages t, . . . ,h − 1 induced by π∗, an optimal pure joint
policy for a Dec-POMDP, is given by:

V t(π∗) =
∑

~θt∈~Θt
π∗

Pr(~θt|b0)Qπ∗(~θt,π∗(~θt)), (D.2.1)

D.2 Proofs of Chapter 3 189

where ~θt = 〈~o t,~a t〉, where π∗(~θt) = π∗(~o t) denotes the joint action π∗ specifies
for ~o t, and where

Qπ∗(~θt,a) = R(~θt,a) +
∑

ot+1∈O

Pr(ot+1|~θt,a)Qπ∗(~θt+1,π∗(~θt+1)) (D.2.2)

is the Q-value function for π∗, which gives the expected cumulative future reward
when taking joint action a at ~θt given that π∗ is followed hereafter.

Proof. By filling out (2.5.5) for an optimal pure joint policy π∗, we obtain its
expected cumulative reward as the summation of E

[
R(st,at)

∣∣π∗
]
the expected

rewards it yields for each time step:

V (π∗) =

h−1∑

t=0

E
[
R(st,at)

∣∣π∗
]
=

h−1∑

t=0

∑

~θt∈~Θt

Pr(~θt|π∗,b0)R(~θt,π∗(~θt)). (D.2.3)

In this equation, Pr(~θt|π∗,b0) is given by (3.1.3). As a result, the influence of π∗

on Pr(~θt|π∗,b0) is only through C. I.e., π∗ is only used to ‘filter out’ inconsistent
histories. Therefore we can write:

E
[
R(st,at)

∣∣π∗
]
=

∑

~θt∈~Θt
π∗

Pr(~θt|b0)R(~θt,π∗(~θt)), (D.2.4)

where Pr(~θt|b0) is given by directly taking the marginal of (3.1.4). Now, let us
define the value starting from time step t:

V t(π∗) = E
[
R(st,at)

∣∣π∗
]
+ V t+1(π∗)

=
∑

~θt∈~Θt
π∗

Pr(~θt|b0)R(~θt,π∗(~θt)) + V t+1(π∗). (D.2.5)

For the last time step h− 1 there is no expected future reward, so we get:

V h−1(π∗) =
∑

~θh−1∈~Θh−1
π∗

Pr(~θh−1|b0)R(~θh−1,π∗(~θh−1))︸ ︷︷ ︸
Qπ∗ (~θh−1,π∗(~θh−1))

. (D.2.6)

For time step h− 2 this becomes:

V h−2(π∗) ≡ E
[
R(sh−2,ah−2)

∣∣π∗
]
+ V h−1(π∗) =

∑

~θh−2∈~Θh−2
π∗

Pr(~θh−2|b0)

R(~θh−2,π∗(~θh−2)) +
∑

~θh−1∈~Θh−1
π∗

Pr(~θh−1|b0)Qπ∗(~θh−1,π∗(~θh−1)). (D.2.7)

Because Pr(~θh−1) = Pr(~θh−2) Pr(oh−1|~θh−2,π∗(~θh−2)), (D.2.7) can be rewritten
to:

V h−2(π∗) =
∑

~θh−2∈~Θh−2
π∗

Pr(~θh−2|b0)Qπ∗(~θh−2,π∗(~θh−2)), (D.2.8)

190 Proofs

with

Qπ∗(~θh−2,π∗(~θh−2)) = R(~θh−2,π∗(~θh−2))+
∑

oh−1

Pr(oh−1|~θh−2,π∗(~θh−2))Qπ∗(~θh−1,π∗(~θh−1)). (D.2.9)

Reasoning in the same way we see that (D.2.1) and (D.2.2) constitute a generic
expression for the expected cumulative future reward starting from time step t.

Proof of Lemma 3.2 (Value of k-steps delayed communication). The optimal
value function for a finite horizon Dec-POMDP with k-steps delayed, cost and noise
free, communication is given by:

V t,∗k (bt−k,qt−k) = max
βt

Qt,∗k (bt−k,qt−k,βt). (D.2.10)

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)Qt,∗k (bt−k,qt−k,~θt|k|,β

t) (D.2.11)

Qt,∗k (bt−k,qt−k,~θt|k|,β
t) = R(bt,βt(~θt|k|))+∑

ot+1

Pr(ot+1|bt,βt(~θt|k|))Q
t+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗) (D.2.12)

where bt results from bt−k,~θt|k|, and

βt+1,∗ = argmax
βt+1

∑

~θt+1

Pr(~θt+1
|k| |b

t−k+1,qt−k+1)Qt+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1)

(D.2.13)

Proof. We will show that

Qt,∗k (bt−k,qt−k,βt)

= E
[
R(st,at)|bt−k,qt−k,βt

]
+ E

[
V t+1,∗
k (bt−k+1,qt−k+1)

∣∣ bt−k,qt−k,βt
]

(D.2.14)

and that the other equations are consistent with this definition. This means that,
for the last stage (D.2.10) maximizes the expected reward and therefore is optimal,
optimality for other stages follows immediately by induction.

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)R(bt,βt(~θt|k|))

+
[∑

ot−k+1

Pr(ot−k+1|bt−k,qt−k)V t+1,∗
k (bt−k+1,qt−k+1)

]
(D.2.15)

D.2 Proofs of Chapter 3 191

where qt−k+1 = 〈qt−k ◦ βt〉
w�

ot−k+1 , and bt−k+1 results from bt−k via the joint

action at−k (specified by qt−k) and ot−k+1.
By introducing βt+1,∗ as in (D.2.13), V t+1,∗

k can be replaced with

V t+1,∗
k (bt−k+1,qt−k+1)

=max
βt+1

∑

~θt
|k|

Pr(~θt|k||b
t−k+1,qt−k+1)Qt+1,∗

k (bt−k+1,qt−k+1,~θt|k|,β
t+1) (D.2.16)

=
∑

~θt
|k|

Pr(~θt|k||b
t−k+1,qt−k+1)Qt+1,∗

k (bt−k+1,qt−k+1,~θt|k|,β
t+1,∗) (D.2.17)

The result of this replacement is

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)R(bt,βt(~θt|k|)) +

[∑

ot−k+1

Pr(ot−k+1|

bt−k,qt−k)
∑

~θt+1
|k|

Pr(~θt+1
|k| |b

t−k+1,qt−k+1)Qt+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗)

]

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)R(bt,βt(~θt))+

[∑

~θt+1
|k+1|

Pr(~θt+1
|k+1||b

t−k,qt−k,βt)Qt+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗)

]

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)R(bt,βt(~θt|k|))+

[∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)

∑

ot+1

Pr(ot+1|bt,βt(~θt|k|))Q
t+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗)

]

Qt,∗k (bt−k,qt−k,βt) =
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k)

[
R(bt,βt(~θt|k|))+

∑

ot+1

Pr(ot+1|bt,βt(~θt|k|))Q
t+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗)

]

and thus, finally,

Qt,∗k (bt−k,qt−k,~θt|k|,β
t) = R(bt,βt(~θt|k|))+∑

ot+1

Pr(ot+1|bt,βt(~θt|k|))Q
t+1,∗
k (bt−k+1,qt−k+1,~θt+1

|k| ,β
t+1,∗) (D.2.18)

concluding the proof.

192 Proofs

Proof of Theorem 3.3 (Shorter communication delays cannot decrease the ex-
pected value). The expected value over stages t, . . . ,h−1 given a joint belief bt−k−1

and joint policy qt−k−1
|k+1| followed during stages t− k − 1, . . . ,t− 1 is no less under

k-steps communication delay, than under (k + 1)-steps delay. That is

∀t∀bt−k−1∀qt−k−1
|k+1|

E
[
V t,∗k (bt−k,qt−k|k|) | bt−k−1,qt−k−1

|k+1|

]
≥ V t,∗k+1(b

t−k−1,qt−k−1
|k+1|).

(D.2.19)

Proof. The proof is by induction. The base case is that (D.2.19) holds for stage
t = h− 1. The induction hypothesis is that (D.2.19) holds for some stage t+ 1

E
[
V t+1,∗
k (bt−k+1,qt−k+1

|k|) | bt−k,qt−k|k+1|

]
≥ V t+1,∗

k+1 (bt−k,qt−k|k+1|). (D.2.20)

We now need to show that (D.2.19) holds given (D.2.20). Assuming an arbi-

trary t < h − 1, ~θt−k−1 and qt−k−1
|k+1| , the left side of (D.2.19) can be rewritten as

follows

E
[
V t,∗k (bt−k,qt−k|k|) | bt−k−1,qt−k−1

|k+1|

]
(D.2.21)

=E
[
max
βt

|k|

Qt,∗k (bt−k,qt−k|k| ,β
t
|k|)

∣∣∣ bt−k−1,qt−k−1
|k+1|

]
(D.2.22)

=E
[
max
βt

|k|

[
E
[
R(st,at)

∣∣ bt−k,qt−k|k| ,β
t
|k|

]
+

E
[
V t+1,∗
k (bt−k+1,qt−k+1

|k|)
∣∣ bt−k,qt−k|k| ,β

t
|k|

]] ∣∣∣ bt−k−1,qt−k−1
|k+1|

]

(D.2.23)

Note that qt−k|k| ,β
t
|k| together form qt−k|k+1|. I.e., qt−k|k+1| = 〈qt−k|k| ◦ β

t
|k|〉. Now the

induction hypothesis can be applied:

=E
[
max
βt

|k|

[
E
[
R(st,at)

∣∣ bt−k,qt−k|k| ,β
t
|k|

]
+

E
[
V t+1,∗
k (bt−k+1,qt−k+1

|k|)
∣∣ bt−k,qt−k|k+1| = 〈q

t−k
|k| ◦ β

t
|k|〉
]] ∣∣∣ bt−k−1,qt−k−1

|k+1|

]

≥E
[
max
βt

|k|

[
E
[
R(st,at)

∣∣ bt−k,qt−k|k| ,β
t
|k|

]
+ V t+1,∗

k+1 (bt−k,〈qt−k|k| ◦ β
t
|k|〉)

]

∣∣∣ bt−k−1,qt−k−1
|k+1|

]

Now we make the outer expectation over ot−k explicit. In particular bt−k depends
on ot−k and qt−k|k| = qt−k−1

|k+1|

w�
ot−k , leading to

=
∑

ot−k

Pr(ot−k|bt−k−1,qt−k−1
|k+1|)max

βt
|k|

[
E
[
R(st,at)

∣∣ bt−k,qt−k−1
|k+1|

w�
ot−k ,β

t
|k|

]

+ V t+1,∗
k+1 (bt−k,〈qt−k−1

|k+1|

w�
ot−k ◦ β

t
|k|〉)

]
(D.2.24)

D.2 Proofs of Chapter 3 193

where βt|k| is that length-k joint BG policies that is selected (is maximizing) for

ot−k. Let us combine these selected policies in one ‘First-Joint-Observation policy’
term: βFJO,t|k+1| = 〈βFJO,t

i,|k+1|〉i∈D where an individual policy maps ot−k to βti,|k| the

individual length-k BG policy βFJO,t
i,|k+1|(o

t−k) = βti,|k| and thus

βFJO,t
i,|k+1| : O

t−k × ~Oki → Ai. (D.2.25)

We also write βFJO,t|k+1|

w�
ot−k = βt|k|. Using this notation, we can rewrite to

= max
β

FJO,t

|k+1|

∑

ot−k

Pr(ot−k|bt−k−1,qt−k−1
|k+1|)

[
E
[
R(st,at)

∣∣

bt−k,qt−k−1
|k+1|

w�
ot−k ,β

FJO,t

|k+1|

w�
ot−k

]
+V t+1,∗

k+1 (bt−k,〈qt−k−1
|k+1|

w�
ot−k ◦ β

FJO,t

|k+1|

w�
ot−k〉)

]

Because the set of joint policies βFJO,t|k+1| is a strict superset of the set of all possible

βt|k+1|, we get

≥ max
βt

|k+1|

∑

ot−k

Pr(ot−k|bt−k−1,qt−k−1
|k+1|)

[
E
[
R(st,at)

∣∣

bt−k,qt−k−1
|k+1|

w�
ot−k ,β

t
|k+1|

w�
ot−k

]
+ V t+1,∗

k+1 (bt−k,〈qt−k−1
|k+1|

w�
ot−k ◦ β

t
|k+1|

w�
ot−k〉)

]
.

Now, using 〈qt−k−1
|k+1|

w�
ot−k ◦ β

t
|k+1|

w�
ot−k〉 = 〈q

t−k−1
|k+1| ◦ β

t
|k+1|〉

w�
ot−k and

E
[
R(st,at)

∣∣ bt−k,qt−k|k| ,β
t
|k|

]
=
∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k|k| R(b

t,βt|k|(
~θt|k|)) (D.2.26)

we write

= max
βt

|k+1|

∑

ot−k

Pr(ot−k|bt−k−1,qt−k−1
|k+1|)

[∑

~θt
|k|

Pr(~θt|k||b
t−k,qt−k−1

|k+1|

w�
ot−k)

R(bt,βt|k+1|

w�
ot−k(~θ

t
|k|)) + V t+1,∗

k (bt−k,〈qt−k−1
|k+1| ◦ β

t
|k+1|〉

w�
ot−k)

]
(D.2.27)

= max
βt

|k+1|

[
E
[
R(st,at)

∣∣bt−k−1,qt−k−1
|k+1|

,βt
|k+1|

]
︷ ︸︸ ︷∑

~θt
|k+1|

Pr(~θt|k+1||b
t−k−1,qt−k−1

|k+1|)R(bt,βt|k+1|(
~θt|k+1|))

+
∑

ot−k

Pr(ot−k|bt−k−1,qt−k−1
|k+1|)V t+1,∗

k (bt−k,〈qt−k−1
|k+1| ◦ β

t
|k+1|〉

w�
ot−k)

︸ ︷︷ ︸
E
[
V

t+1,∗
k+1 (bt−k,qt−k

|k+1|
)
∣∣bt−k−1,qt−k−1

|k+1|
,βt

|k+1|

]

]
(D.2.28)

194 Proofs

writing qt−k|k+1| = 〈q
t−k−1
|k+1| ◦ β

t
|k+1|〉

w�
ot−k we further reduce

= max
βt

|k+1|

[
E
[
R(st,at)

∣∣ bt−k−1,qt−k−1
|k+1| ,β

t
|k+1|

]

+ E
[
V t+1,∗
k+1 (bt−k,qt−k|k+1|)

∣∣ bt−k−1,qt−k−1
|k+1| ,β

t
|k+1|

]]
(D.2.29)

= max
βt

|k+1|

Qt,∗k+1(b
t−k−1,qt−k−1

|k+1| ,β
t
|k+1|) (D.2.30)

=V t,∗k+1(b
t−k−1,qt−k−1

|k+1|) (D.2.31)

which proves the induction step. The prove is completed by the base case, which is
given by the last stage. I.e., we need to show that for an arbitrarily chosen bh−k−2

(corresponding to some ~θh−k−2) and qh−k−2
|k+1|

E
[
V h−1,∗
k (bh−1−k,qh−1−k

|k|) | bh−k−2,qh−k−2
|k+1|

]
≥ V h−1,∗

k+1 (bh−k−2,qh−k−2
|k+1|).

(D.2.32)
Starting from the left side, we make the expectation explicit

E
[
V h−1,∗
k (bh−1−k,qh−1−k

|k|) | bh−k−2,qh−k−2
|k+1|

]
=

∑

oh−1−k

Pr(oh−1−k|bh−k−2,qh−k−2
|k+1|)V h−1,∗

k (bh−1−k,qh−k−2
|k+1|

w�
oh−1−k) (D.2.33)

because we consider the last stage V h−1,∗
k only consists of the expected immediate

reward

V h−1,∗
k (bh−1−k,qh−k−2

|k+1|

w�
oh−1−k) (D.2.34)

=max
βh−1

|k|

E
[
R(sh−1,ah−1)

∣∣ bh−k−1,qh−k−2
|k+1|

w�
oh−1−k ,β

h−1
|k|

]
(D.2.35)

=max
βh−1

|k|

∑

~θh−1
|k|

Pr(~θh−1
|k| |b

h−k−1,qh−k−2
|k+1|

w�
oh−1−k)R(b

h−1,βh−1
|k| (~θh−1

|k|)) (D.2.36)

Thus (D.2.33) equals

∑

oh−1−k

Pr(oh−1−k|bh−k−2,qh−k−2
|k+1|)max

βh−1
|k|

∑

~θh−1
|k|

Pr(~θh−1
|k| |b

h−k−1,qh−k−2
|k+1|

w�
oh−1−k)R(b

h−1,βh−1
|k| (~θh−1

|k|)) (D.2.37)

D.3 Proofs of Chapter 5 195

Again using FJO policies, we can write

= max
β

FJO,h−1
|k+1|

∑

oh−1−k

Pr(oh−1−k|bh−k−2,qh−k−2
|k+1|)

∑

~θh−1
|k|

Pr(~θh−1
|k| |b

h−k−1,qh−k−2
|k+1|

w�
oh−1−k)R(b

h−1,βFJO,h−1
|k+1|

w�
oh−1−k(~θ

h−1
|k|))

(D.2.38)

≥ max
βh−1

|k+1|

∑

oh−1−k

Pr(oh−1−k|bh−k−2,qh−k−2
|k+1|)

∑

~θh−1
|k|

Pr(~θh−1
|k| |b

h−k−1,qh−k−2
|k+1|

w�
oh−1−k)R(b

h−1,βh−1
|k+1|

w�
oh−1−k(~θ

h−1
|k|)) (D.2.39)

because the set of FJO policies βFJO,h−1
|k+1| is a strict superset of the set of βh−1

|k+1|.

Taking together the summations in (D.2.39) yields

max
βh−1

|k+1|

∑

~θh−1
|k+1|

Pr(~θh−1
|k| |b

h−k−2,qh−k−2
|k+1|)R(bh−1,βh−1

|k+1|(
~θh−1
|k+1|)) =

V h−1,∗
k+1 (bh−k−2,qh−k−2

|k+1|), (D.2.40)

which proves the base case.

D.3 Proofs of Chapter 5

Proof of Theorem 5.1 (Decomposition of V t(π)). Given an additively fac-
tored immediate reward function, the value V t(π) of a finite-horizon factored Dec-
POMDP is decomposable for any t. That is, for any joint policy π the value
function is factored. V t(π) is defined as

V t(π) =
∑

e∈E

V e,t(π) =
∑

e∈E

∑

xt
Xe

∑

~θt
Ae

Pr(xtXe
,~θtAe
|b0,π)Qeπ(x

t
Xe
,~θtAe

,πAe
(~θtAe

))

(D.3.1)
where, using shorthand notation ΓX = ΓX(xt+1

X′
e
∪ ot+1

A′
e
) and ΓA = ΓA(xt+1

Xe
∪ ot+1

Ae
)

to denote the backup scopes and Xe ≡ X(Re) ∪ ΓX and Ae ≡ A(Re) ∪ ΓA ∪ A
′
e to

denote the scopes of Qe,tπ ,

Qeπ(x
t
Xe
,~θtAe

,aAe
) = Re(xte,ae) +

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|xtΓX ,aΓA)Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
)). (D.3.2)

Proof. This proof assumes π is a pure joint policy, but can be generalized to
stochastic policies. Per induction hypothesis, we assume the next-stage value func-
tion is decomposable:

V t+1(π) =
∑

e∈E

V e,t+1(π) (D.3.3)

196 Proofs

and that each V e,t+1 can be written using Q-value functions:

V e,t+1(π) =
∑

x
t+1

X′e

∑

~θt+1

A′e

Pr(xt+1
X′

e
,~θt+1

A′
e
|b0,π)Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
)) (D.3.4)

with X
′
e,A

′
e the scopes of Qeπ for stage t+ 1. Now, we can show that V t is decom-

posable, although the scope of V t might grow. Per definition we have that

V t(π) = E[R(st,a)|b0,π] + V t+1(π) =
∑

st,~θt

Pr(st,~θt|b0,π)R(st,π(~θt)) +
∑

e∈E

V e,t+1(π) (D.3.5)

By applying the definition of the additive immediate reward function and using the
induction hypothesis we get

V t(π) =
∑

st,~θt

Pr(st,~θt|b0,π)
∑

e∈E

Re(xte,πe(
~θte))+

∑

e∈E

∑

x
t+1

X′e

∑

~θt+1

A′e

Pr(xt+1
X′

e
,~θt+1

A′
e
|b0,π)Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
)). (D.3.6)

We can decompose Pr(xt+1
X′

e
,~θt+1

A′
e
|b0,π) in a fashion similar to (2.5.6) and obtain

V t(π) =
∑

st,~θt

Pr(st,~θt|b0,π)
∑

e∈E

Re(xte,πe(
~θte))+

∑

st,~θt

Pr(st,~θt|b0,π)
∑

e∈E

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|st,π(~θt))Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
))

(D.3.7)

and thus yield

V t(π) =
∑

st,~θt

Pr(st,~θt|b0,π)
∑

e∈E

[
Re(xte,πe(

~θte))+

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|st,π(~θt))Qeπ(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
))
]

(D.3.8)

where the bracketed part acts as a Q-value function for stage t. When there is
no independence this value depends on the full st,π(~θt) and thus the scope of this
value function includes all states factors and agents. However, we can exploit any
independence that does hold. In particular, we know that the probability of a
pair xt+1

X′
e
,ot+1

A′
e

is influenced only by the parents in the DBN: the state factors with

indices ΓX(xt+1
X′

e
∪ ot+1

A′
e
) and the action nodes of agents ΓA(xt+1

Xe
∪ ot+1

Ae
). We use

D.3 Proofs of Chapter 5 197

shorthand notation ΓX and ΓA to derive

V t(π) =
∑

st,~θt

Pr(st,~θt|b0,π)
∑

e∈E

[
Re(xte,πe(

~θte))+

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|xtΓX ,πΓA(~θtΓA))Q

e
π(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
))
]
. (D.3.9)

We write Xe = X(Re) ∪ ΓX, Ae = A(Re) ∪ ΓA ∪ A
′
e for the union of scopes of the

entire bracketed part and swap the summations

V t(π) =
∑

e∈E

∑

xt
Xe

∑

~θt
Ae

Pr(xtXe
,~θtAe
|b0,π)

[
Re(xte,πe(

~θte))+

∑

x
t+1

X′e

∑

o
t+1

A′e

Pr(xt+1
X′

e
,ot+1

A′
e
|xtΓX ,πΓA(~θtΓA))Q

e
π(x

t+1
X′

e
,~θt+1

A′
e
,πA′

e
(~θt+1

A′
e
))
]
. (D.3.10)

At this point we have derived (D.3.1) and (D.3.2). The last stage as treated in
Lemma 5.1 forms the base case and thus completes the proof.

198 Proofs

Bibliography

M. Aicardi, F. Davoli, and R. Minciardi. Decentralized optimal control of Markov chains
with a common past information set. IEEE Transactions on Automatic Control, 32
(11):1028–1031, Nov. 1987.

E. Altman. Applications of Markov decision processes in communication networks. In
E. A. Feinberg and A. Shwartz, editors, Handbook of Markov Decision Processes: Meth-
ods and Applications. Kluwer Academic Publishers, 2002.

C. Amato and S. Zilberstein. Achieving goals in decentralized POMDPs. In Proc. of the
International Joint Conference on Autonomous Agents and Multi Agent Systems, pages
593–600, 2009.

C. Amato, D. S. Bernstein, and S. Zilberstein. Optimal fixed-size controllers for decentral-
ized POMDPs. In Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision
Making in Uncertain Domains (MSDM), May 2006.

C. Amato, D. S. Bernstein, and S. Zilberstein. Optimizing memory-bounded controllers
for decentralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence, July
2007a.

C. Amato, A. Carlin, and S. Zilberstein. Bounded dynamic programming for decentralized
POMDPs. In Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision
Making in Uncertain Domains (MSDM), May 2007b.

C. Amato, J. S. Dibangoye, and S. Zilberstein. Incremental policy generation for finite-
horizon DEC-POMDPs. In Proc. of the International Conference on Automated Plan-
ning and Scheduling, 2009.

T. Arai, E. Pagello, and L. Parker. Editorial: Advances in multirobot systems. IEEE
Transactions on Robotics and Automation, 18(5):655–661, Oct. 2002.

R. Aras, A. Dutech, and F. Charpillet. Mixed integer linear programming for exact finite-
horizon planning in decentralized POMDPs. In Proc. of the International Conference
on Automated Planning and Scheduling, 2007.

J. Bander and C. White, III. Markov decision processes with noise-corrupted and delayed
state observations. Journal of the Operational Research Society, 50:660–668, 1999.

T. Basar and G. J. Olsder. Dynamic Noncooperative Game Theory. Academic Press,
December 1995.

199

200 Bibliography

J. Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research,
12:149–198, 2000.

R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transition-independent decen-
tralized Markov decision processes. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages 41–48, 2003.

R. Becker, S. Zilberstein, and V. Lesser. Decentralized Markov decision processes with
event-driven interactions. In Proc. of the International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, pages 302–309, 2004a.

R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Solving transition independent
decentralized Markov decision processes. Journal of Artificial Intelligence Research, 22:
423–455, December 2004b.

R. Becker, V. Lesser, and S. Zilberstein. Analyzing myopic approaches for multi-agent
communication. In Proc. of the International Conference on Intelligent Agent Technol-
ogy, pages 550–557, September 2005.

R. Bellman. Dynamic Programming. Princeton University Press, 1957a.

R. Bellman. A Markovian decision process. Journal of Mathematics and Mechanics, 6(5):
679–684, 1957b.

D. S. Bernstein, S. Zilberstein, and N. Immerman. The complexity of decentralized control
of Markov decision processes. In Proc. of Uncertainty in Artificial Intelligence, pages
32–37, 2000.

D. S. Bernstein, R. Givan, N. Immerman, and S. Zilberstein. The complexity of decen-
tralized control of Markov decision processes. Mathematics of Operations Research, 27
(4):819–840, 2002.

D. S. Bernstein, E. A. Hansen, and S. Zilberstein. Bounded policy iteration for decentral-
ized POMDPs. In Proc. of the International Joint Conference on Artificial Intelligence,
pages 1287–1292, 2005.

U. Bertele and F. Brioschi. Nonserial Dynamic Programming. Academic Press, Inc., 1972.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume I. Athena Scientific,
3rd edition, 2005.

D. P. Bertsekas. Dynamic Programming and Optimal Control, volume II. Athena Scien-
tific, 3rd edition, 2007.

A. Beynier and A.-I. Mouaddib. A polynomial algorithm for decentralized Markov decision
processes with temporal constraints. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages 963–969, 2005.

A. Beynier and A.-I. Mouaddib. An iterative algorithm for solving constrained decen-
tralized Markov decision processes. In Proc. of the National Conference on Artificial
Intelligence. AAAI Press, 2006.

K. Binmore. Fun and Games. D.C. Heath and Company, 1992.

C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, 2006.

Bibliography 201

P.-T. de Boer, D. P. Kroese, S. Mannor, and R. Y. Rubinstein. A tutorial on the cross-
entropy method. Annals of Operations Research, 134(1):19–67, 2005.

J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and A. Mihailidis. A decision-
theoretic approach to task assistance for persons with dementia. In Proc. of the Inter-
national Joint Conference on Artificial Intelligence, 2005.

R. Bordini, M. Dastani, J. Dix, and A. El Fallah Segrouchni, editors. Multi-Agent Pro-
gramming: Languages, Platforms and Applications. Springer, 2005.

A. Boularias and B. Chaib-draa. Exact dynamic programming for decentralized POMDPs
with lossless policy compression. In Proc. of the International Conference on Automated
Planning and Scheduling, 2008.

C. Boutilier. Planning, learning and coordination in multiagent decision processes. In
Proc. of the 6th Conference on Theoretical Aspects of Rationality and Knowledge, pages
195–210, 1996.

C. Boutilier, T. Dean, and S. Hanks. Decision-theoretic planning: Structural assumptions
and computational leverage. Journal of Artificial Intelligence Research, 11:1–94, 1999.

C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with
factored representations. Artificial Intelligence, 121(1-2):49–107, 2000.

X. Boyen and D. Koller. Tractable inference for complex stochastic processes. In Proc.
of Uncertainty in Artificial Intelligence, pages 33–42, 1998.

M. E. Bratman. Intention, Plans and Practical Reason. Harvard University Press, 1987.

L. Buşoniu, R. Babuška, and B. De Schutter. A comprehensive survey of multi-agent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part
C: Applications and Reviews, 38(2):156–172, Mar. 2008.

A. Carlin and S. Zilberstein. Value-based observation compression for DEC-POMDPs.
In Proc. of the International Joint Conference on Autonomous Agents and Multi Agent
Systems, pages 501–508, 2008.

A. Carlin and S. Zilberstein. Value of communication in decentralized POMDPs. In Proc.
of the AAMAS Workshop on Multi-Agent Sequential Decision Making in Uncertain
Domains (MSDM), pages 16–21, May 2009.

A. R. Cassandra. Exact and approximate algorithms for partially observable Markov de-
cision processes. PhD thesis, Brown University, 1998.

I. Chades, B. Scherrer, and F. Charpillet. A heuristic approach for solving decentralized-
POMDP: assessment on the pursuit problem. In Proc. of the 2002 ACM Symposium
on Applied Computing, pages 57–62, 2002.

R. Cogill, M. Rotkowitz, B. V. Roy, and S. Lall. An approximate dynamic programming
approach to decentralized control of stochastic systems. In Proc. of the 2004 Allerton
Conference on Communication, Control, and Computing, 2004.

P. R. Cohen and H. J. Levesque. Intention is choice with commitment. Artificial Intelli-
gence, 42(3):213–261, 1990.

202 Bibliography

P. R. Cohen and H. J. Levesque. Confirmations and joint action. In Proc. of the Interna-
tional Joint Conference on Artificial Intelligence, pages 951–957. Morgan Kaufmann,
1991a.

P. R. Cohen and H. J. Levesque. Teamwork. Nous, 25(4), 1991b.

T. A. Davis. A column pre-ordering strategy for the unsymmetric-pattern multifrontal
method. ACM Transactions on Mathematical Software, 30(2):165–195, 2004.

R. M. Dawes. Rational Choice in an Uncertain World. Hartcourt Brace Jovanovich, 1988.

D. P. de Farias and B. Van Roy. The linear programming approach to approximate
dynamic programming. Operations Research, 51(6):850–865, 2003.

M. H. DeGroot. Optimal Statistical Decisions. Wiley-Interscience, Apr. 2004.

J. S. Dibangoye, A.-I. Mouaddib, and B. Chai-draa. Point-based incremental pruning
heuristic for solving finite-horizon DEC-POMDPs. In Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, pages 569–576, 2009.

F. Doshi and N. Roy. The permutable POMDP: fast solutions to POMDPs for preference
elicitation. In Proc. of the International Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 493–500, 2008.

P. Doshi, Y. Zeng, and Q. Chen. Graphical models for interactive POMDPs: represen-
tations and solutions. Autonomous Agents and Multi-Agent Systems, 18(3):376–416,
2008.

M. J. Druzdzel and R. R. Flynn. Encyclopedia of Library and Information Science, chapter
Decision Support Systems. Marcel Dekker, 2003.

E. H. Durfee. Distributed problem solving and planning. In Mutli-agents systems and
applications, pages 118–149. Springer-Verlag New York, Inc., 2001.

R. Emery-Montemerlo. Game-Theoretic Control for Robot Teams. PhD thesis, Carnegie
Mellon University, 2005.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Approximate solutions
for partially observable stochastic games with common payoffs. In Proc. of the In-
ternational Joint Conference on Autonomous Agents and Multi Agent Systems, pages
136–143, 2004.

R. Emery-Montemerlo, G. Gordon, J. Schneider, and S. Thrun. Game theoretic con-
trol for robot teams. In Proc. of the IEEE International Conference on Robotics and
Automation, pages 1175–1181, 2005.

J. L. Fernández, R. Sanz, R. G. Simmons, and A. R. Diéguez. Heuristic anytime ap-
proaches to stochastic decision processes. Journal of Heuristics, 12(3):181–209, 2006.
ISSN 1381-1231.

Y. Gal and A. Pfeffer. Networks of influence diagrams: A formalism for representing
agents’ beliefs and decision-making processes. Journal of Artificial Intelligence Re-
search, 33:109–147, 2008.

Bibliography 203

M. P. Georgeff, B. Pell, M. E. Pollack, M. Tambe, and M. Wooldridge. The belief-desire-
intention model of agency. In ATAL ’98: Proceedings of the 5th International Workshop
on Intelligent Agents V, Agent Theories, Architectures, and Languages, pages 1–10,
1999.

A. Globerson and T. Jaakkola. Fixing max-product: Convergent message passing al-
gorithms for map lp-relaxations. In Advances in Neural Information Processing Sys-
tems 20, 2008.

P. J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent
settings. Journal of Artificial Intelligence Research, 24:49–79, 2005.

P. J. Gmytrasiewicz and E. H. Durfee. A rigorous, operational formalization of recursive
modeling. In Proc. of the International Conference on Multiagent Systems, pages 125–
132, 1995.

P. J. Gmytrasiewicz, S. Noh, and T. Kellogg. Bayesian update of recursive agent models.
User Modeling and User-Adapted Interaction, 8(1-2):49–69, 1998.

C. V. Goldman and S. Zilberstein. Optimizing information exchange in cooperative multi-
agent systems. In Proc. of the International Joint Conference on Autonomous Agents
and Multi Agent Systems, pages 137–144, 2003.

C. V. Goldman and S. Zilberstein. Decentralized control of cooperative systems: Cat-
egorization and complexity analysis. Journal of Artificial Intelligence Research, 22:
143–174, 2004.

C. V. Goldman and S. Zilberstein. Communication-based decomposition mechanisms for
decentralized MDPs. Journal of Artificial Intelligence Research, 32:169–202, 2008.

C. V. Goldman, M. Allen, and S. Zilberstein. Learning to communicate in a decentralized
environment. Autonomous Agents and Multi-Agent Systems, 15(1):47–90, Aug. 2007.

C. Grappiolo, S. Whiteson, G. Pavlin, and B. Bakker. Integrating distributed Bayesian
inference and reinforcement learning for sensor management. In FUSION 2009: Pro-
ceedings of the Twelfth International Conference on Information Fusion, pages 93–101,
July 2009.

B. J. Grosz and S. Kraus. Collaborative plans for complex group action. Artificial
Intelligence, 86(2):269–357, 1996.

B. J. Grosz and C. Sidner. Plans for discourse. In Intentions in Communication. MIT
Press, 1990.

C. Guestrin, D. Koller, and R. Parr. Max-norm projections for factored MDPs. In Proc.
of the International Joint Conference on Artificial Intelligence, pages 673–680, 2001a.

C. Guestrin, D. Koller, and R. Parr. Solving factored POMDPs with linear value functions.
In IJCAI ’01 workshop on Planning under Uncertainty and Incomplete Information,
pages 67–75, 2001b.

C. Guestrin, D. Koller, and R. Parr. Multiagent planning with factored MDPs. In
Advances in Neural Information Processing Systems 14, pages 1523–1530, 2002a.

204 Bibliography

C. Guestrin, S. Venkataraman, and D. Koller. Context specific multiagent coordination
and planning with factored MDPs. In Proc. of the National Conference on Artificial
Intelligence, pages 253–259, 2002b.

C. Guestrin, D. Koller, R. Parr, and S. Venkataraman. Efficient solution algorithms for
factored MDPs. Journal of Artificial Intelligence Research, 19:399–468, 2003.

E. A. Hansen and Z. Feng. Dynamic programming for POMDPs using a factored state
representation. In Proc. of the International Conference on Artificial Intelligence Plan-
ning Systems, pages 130–139, Apr. 2000.

E. A. Hansen, D. S. Bernstein, and S. Zilberstein. Dynamic programming for partially ob-
servable stochastic games. In Proc. of the National Conference on Artificial Intelligence,
pages 709–715, 2004.

M. Hauskrecht. Value-function approximations for partially observable Markov decision
processes. Journal of Artificial Intelligence Research, 13:33–94, 2000.

J. Hefferon. Linear Algebra. CreateSpace, 2008. URL
http://joshua.smcvt.edu/linearalgebra/.

J. Hoey, A. von Bertoldi, P. Poupart, and A. Mihailidis. Assisting persons with demen-
tia during handwashing using a partially observable Markov decision process. In In
Proceedings of the International Conference on Vision Systems, 2007.

R. A. Howard. Dynamic Programming and Markov Processes. MIT Press, 1960.

R. A. Howard and J. E. Matheson. Influence diagrams. In The Principles and Applications
of Decision Analysis, Vol. II., pages 719–763. Strategic Decisions Group, 1984/2005.
Reprinted, Decision Analysis 2.

K. Hsu and S. Marcus. Decentralized control of finite state Markov processes. IEEE
Transactions on Automatic Control, 27(2):426–431, Apr. 1982.

M. N. Huhns, editor. Distributed Artificial Intelligence. Pitman Publishing Ltd., 1987.

N. R. Jennings. Controlling cooperative problem solving in industrial multi-agent systems
using joint intentions. Artificial Intelligence, 75(2):195–240, 1995.

L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially
observable stochastic domains. Artificial Intelligence, 101(1-2):99–134, 1998.

R. E. Kalman. A new approach to linear filtering and prediction problems. Transactions
of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

M. J. Kearns. Graphical games. In N. Nisan, T. Roughgarden, E. Tardos, and V. Vazirani,
editors, Algorithmic Game Theory. Cambridge University Press, Sept. 2007.

M. J. Kearns, M. L. Littman, and S. P. Singh. Graphical models for game theory. In
Proc. of Uncertainty in Artificial Intelligence, pages 253–260, 2001.

Y. Kim, R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Exploiting locality of
interaction in networked distributed POMDPs. In Proc. of the AAAI Spring Symposium
on Distributed Plan and Schedule Management, 2006.

http://joshua.smcvt.edu/linearalgebra/

Bibliography 205

H. Kitano, M. Asada, Y. Kuniyoshi, I. Noda, and E. Osawa. RoboCup: The robot world
cup initiative. In Proc. of the International Conference on Autonomous Agents, 1997.

H. Kitano, S. Tadokoro, I. Noda, H. Matsubara, T. Takahashi, A. Shinjoh, and S. Shi-
mada. Robocup rescue: Search and rescue in large-scale disasters as a domain for
autonomous agents research. In Proc. of the International Conference on Systems,
Man and Cybernetics, pages 739–743, Oct. 1999.

J. R. Kok and N. Vlassis. Using the max-plus algorithm for multiagent decision making
in coordination graphs. In RoboCup-2005: Robot Soccer World Cup IX, Osaka, Japan,
July 2005.

J. R. Kok and N. Vlassis. Collaborative multiagent reinforcement learning by payoff
propagation. Journal of Machine Learning Research, 7:1789–1828, 2006.

D. Koller and B. Milch. Multi-agent influence diagrams for representing and solving
games. Games and Economic Behavior, 45(1):181–221, Oct. 2003.

D. Koller and R. Parr. Computing factored value functions for policies in structured
MDPs. In Proc. of the International Joint Conference on Artificial Intelligence, pages
1332–1339, 1999.

D. Koller and R. Parr. Policy iteration for factored MDPs. In Proc. of Uncertainty in
Artificial Intelligence, pages 326–334, 2000.

D. Koller and A. Pfeffer. Representations and solutions for game-theoretic problems.
Artificial Intelligence, 94(1-2):167–215, 1997.

D. Koller, N. Megiddo, and B. von Stengel. Fast algorithms for finding randomized
strategies in game trees. In Proc. of the 26th ACM Symposium on Theory of Computing,
pages 750–759, 1994.

F. R. Kschischang, B. J. Frey, and H.-A. Loeliger. Factor graphs and the sum-product
algorithm. IEEE Transactions on Information Theory, 47(2):498–519, 2001.

H. W. Kuhn. Extensive games. Proceedings of the National Academy of Sciences of the
United States of America, 36(10):570–576, 1950.

H. W. Kuhn. Extensive games and the problem of information. Annals of Mathematics
Studies, 28:193–216, 1953.

A. Kumar and S. Zilberstein. Constraint-based dynamic programming for decentralized
pomdps with structured interactions. In Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages 561–568, 2009.

L. Kuyer, S. Whiteson, B. Bakker, and N. Vlassis. Multiagent reinforcement learning for
urban traffic control using coordination graphs. In Proc. of the European Conference
on Machine Learning, pages 656–671, 2008.

V. Lesser, C. L. Ortiz Jr., and M. Tambe, editors. Distributed Sensor Networks: A
Multiagent Perspective, volume 9. Kluwer Academic Publishers, May 2003.

M. Littman, A. Cassandra, and L. Kaelbling. Learning policies for partially observable en-
vironments: Scaling up. In Proc. of the International Conference on Machine Learning,
pages 362–370, 1995.

206 Bibliography

J. Liu and K. P. Sycara. Exploiting problem structure for distributed constraint optimiza-
tion. In Proc. of the International Conference on Multiagent Systems, pages 246–253,
1995.

Y. Liu and P. Stone. Value-function-based transfer for reinforcement learning using struc-
ture mapping. In Proc. of the National Conference on Artificial Intelligence, pages
415–20, 2006.

H.-A. Loeliger. An introduction to factor graphs. IEEE Signal Processing Magazine, 21
(1):28–41, 2004.

O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable Markov decision problems. In Proc. of the National
Conference on Artificial Intelligence, pages 541–548, 1999.

R. T. Maheswaran, C. M. Rogers, R. Sanchez, P. A. Szekely, G. Gati, K. Smyth, and
C. VanBuskirk. Multi-agent systems for the real world. In Proc. of the International
Joint Conference on Autonomous Agents and Multi Agent Systems, pages 1281–1282,
2009.

S. M. Majercik and M. L. Littman. Contingent planning under uncertainty via stochastic
satisfiability. Artificial Intelligence, 147(1-2):119–162, 2003.

J. Marecki and M. Tambe. On opportunistic techniques for solving decentralized Markov
decision processes with temporal constraints. In Proc. of the International Joint Con-
ference on Autonomous Agents and Multi Agent Systems, pages 1–8, 2007.

J. Marecki, T. Gupta, P. Varakantham, M. Tambe, and M. Yokoo. Not all agents are equal:
scaling up distributed POMDPs for agent networks. In Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, pages 485–492, 2008.

N. Meuleau, M. Hauskrecht, K.-E. Kim, L. Peshkin, L. P. Kaelbling, T. Dean, and
C. Boutilier. Solving very large weakly coupled Markov decision processes. In Proc. of
the National Conference on Artificial Intelligence, pages 165–172, 1998.

P. J. Modi, W.-M. Shen, M. Tambe, and M. Yokoo. Adopt: Asynchronous distributed
constraint optimization with quality guarantees. Artificial Intelligence, 161:149–180,
2005.

J. M. Mooij. Understanding and Improving Belief Propagation. PhD thesis, Radboud
University Nijmegen, May 2008a.

J. M. Mooij. libDAI: library for discrete approximate inference, 2008b. URL
http://www.jorismooij.nl/.

K. P. Murphy. Dynamic Bayesian Networks: Representation, Inference and Learning.
PhD thesis, UC Berkeley, Computer Science Division, July 2002.

K. P. Murphy and Y. Weiss. The factored frontier algorithm for approximate inference
in DBNs. In Proc. of Uncertainty in Artificial Intelligence, pages 378–385, 2001.

R. Nair and M. Tambe. Hybrid BDI-POMDP framework for multiagent teaming. Journal
of Artificial Intelligence Research, 23:367–420, 2005.

http://www.jorismooij.nl/

Bibliography 207

R. Nair, M. Tambe, and S. Marsella. Team formation for reformation. In Proc. of the
AAAI Spring Symposium on Intelligent Distributed and Embedded Systems, 2002.

R. Nair, M. Tambe, and S. Marsella. Role allocation and reallocation in multiagent
teams: towards a practical analysis. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages 552–559, 2003a.

R. Nair, M. Tambe, and S. Marsella. Team formation for reformation in multiagent
domains like RoboCupRescue. In Proc. of RoboCup-2002 International Symposium,
2003b.

R. Nair, M. Tambe, M. Yokoo, D. V. Pynadath, and S. Marsella. Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proc. of
the International Joint Conference on Artificial Intelligence, pages 705–711, 2003c.

R. Nair, M. Roth, and M. Yohoo. Communication for improving policy computation in
distributed POMDPs. In Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pages 1098–1105, 2004.

R. Nair, P. Varakantham, M. Tambe, and M. Yokoo. Networked distributed POMDPs: A
synthesis of distributed constraint optimization and POMDPs. In Proc. of the National
Conference on Artificial Intelligence, pages 133–139, 2005.

J. F. Nash. Equilibrium points in N-person games. Proc. of the National Academy of
Sciences of the United States of America, 36:48–49, 1950.

F. Oliehoek and A. Visser. A hierarchical model for decentralized fighting of large scale
urban fires. In AAMAS’06 Workshop on Hierarchical Autonomous Agents and Multi-
Agent Systems (H-AAMAS), pages 14–21, May 2006.

F. Oliehoek and N. Vlassis. Dec-POMDPs and extensive form games: equivalence of
models and algorithms. IAS technical report IAS-UVA-06-02, Intelligent Systems Lab,
University of Amsterdam, Amsterdam, The Netherlands, Apr. 2006.

F. Oliehoek, M. T. J. Spaan, and N. Vlassis. Best-response play in partially observable
card games. In Benelearn 2005: Proceedings of the 14th Annual Machine Learning
Conference of Belgium and the Netherlands, pages 45–50, Feb. 2005a.

F. Oliehoek, N. Vlassis, and E. de Jong. Coevolutionary Nash in poker games. In BNAIC
2005: Proceedings of the 17th Belgian-Dutch Conference on Artificial Intelligence, pages
188–193, Oct. 2005b.

F. A. Oliehoek and N. Vlassis. Q-value functions for decentralized POMDPs. In Proc. of
The International Joint Conference on Autonomous Agents and Multi Agent Systems,
pages 833–840, May 2007a.

F. A. Oliehoek and N. Vlassis. Q-value heuristics for approximate solutions of dec-
POMDPs. In Proc. of the AAAI spring symposium on Game Theoretic and Decision
Theoretic Agents, pages 31–37, Mar. 2007b.

F. A. Oliehoek, E. D. de Jong, and N. Vlassis. The parallel Nash memory for asymmetric
games. In Proc. of the Genetic and Evolutionary Computation Conference, pages 337–
344, July 2006.

208 Bibliography

F. A. Oliehoek, J. F. Kooij, and N. Vlassis. A cross-entropy approach to solving Dec-
POMDPs. In International Symposium on Intelligent and Distributed Computing, pages
145–154, Oct. 2007a.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Dec-POMDPs with delayed communica-
tion. In AAMAS Workshop on Multi-agent Sequential Decision Making in Uncertain
Domains, May 2007b.

F. A. Oliehoek, N. Vlassis, and M. T. J. Spaan. Properties of the QBG-value function. IAS
technical report IAS-UVA-07-04, Intelligent Systems Lab, University of Amsterdam,
Amsterdam, The Netherlands, Feb. 2007c.

F. A. Oliehoek, J. F. Kooi, and N. Vlassis. The cross-entropy method for policy search
in decentralized POMDPs. Informatica, 32:341–357, 2008a.

F. A. Oliehoek, M. T. J. Spaan, and N. Vlassis. Optimal and approximate Q-value
functions for decentralized POMDPs. Journal of Artificial Intelligence Research, 32:
289–353, 2008b.

F. A. Oliehoek, M. T. J. Spaan, S. Whiteson, and N. Vlassis. Exploiting locality of
interaction in factored Dec-POMDPs. In Proc. of The International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages 517–524, May 2008c.

F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Lossless clustering of histories in
decentralized POMDPs. In Proc. of The International Joint Conference on Autonomous
Agents and Multi Agent Systems, pages 577–584, May 2009.

F. A. Oliehoek, S. Whiteson, and M. T. J. Spaan. Exploiting agent and type independence
in collaborative graphical Bayesian games. 2010. (article under submission).

J. M. Ooi and G. W. Wornell. Decentralized control of a multiple access broadcast channel:
Performance bounds. In Proc. of the 35th Conference on Decision and Control, pages
293–298, 1996.

M. J. Osborne and A. Rubinstein. A Course in Game Theory. The MIT Press, July 1994.

C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of Markov decision processes.
Mathematics of Operations Research, 12(3):441–451, 1987.

S. Paquet, L. Tobin, and B. Chaib-draa. An online POMDP algorithm for complex mul-
tiagent environments. In Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, 2005.

J. P. Pearce and M. Tambe. Quality guarantees on k-optimal solutions for distributed
constraint optimization problems. In Proc. of the International Joint Conference on
Artificial Intelligence, pages 1446–1451, 2007.

J. Pearl. Probabilistic Reasoning In Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann, 1988.

L. Peshkin. Reinforcement Learning by Policy Search. PhD thesis, Brown University,
2001.

L. Peshkin, K.-E. Kim, N. Meuleau, and L. P. Kaelbling. Learning to cooperate via policy
search. In Proc. of Uncertainty in Artificial Intelligence, pages 307–314, 2000.

Bibliography 209

M. Petrik and S. Zilberstein. Average-reward decentralized Markov decision processes. In
Proc. of the International Joint Conference on Artificial Intelligence, pages 1997–2002,
2007.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm
for POMDPs. In Proc. of the International Joint Conference on Artificial Intelligence,
pages 1025–1032, 2003.

P. Poupart. Exploiting Structure to Efficiently Solve Large Scale Partially Observable
Markov Decision Processes. PhD thesis, Department of Computer Science, University
of Toronto, 2005.

W. B. Powell. Approximate Dynamic Programming: Solving the Curses of Dimensionality.
Wiley’s Series in Probability and Statistics. Wiley-Interscience, 2007.

M. L. Puterman. Markov Decision Processes—Discrete Stochastic Dynamic Programming.
John Wiley & Sons, Inc., 1994.

D. V. Pynadath and M. Tambe. Multiagent teamwork: Analyzing the optimality and
complexity of key theories and models. In Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages 873–880, 2002a.

D. V. Pynadath and M. Tambe. The communicative multiagent team decision problem:
Analyzing teamwork theories and models. Journal of Artificial Intelligence Research,
16:389–423, 2002b.

D. V. Pynadath and M. Tambe. An automated teamwork infrastructure for heterogeneous
software agents and humans. Autonomous Agents and Multi-Agent Systems, 7(1-2):71–
100, 2003.

Z. Rabinovich, C. V. Goldman, and J. S. Rosenschein. The complexity of multiagent
systems: the price of silence. In Proc. of the International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, pages 1102–1103, 2003.

B. Rathnasabapathy, P. Doshi, and P. Gmytrasiewicz. Exact solutions of interactive
POMDPs using behavioral equivalence. In Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages 1025–1032, 2006.

I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet
Mathematics, 3:678–681, 1962.

M. T. Rosenstein, Z. Marx, L. P. Kaelbling, and T. G. Dietterich. To transfer or not to
transfer. In NIPS’05 Workshop on Inductive Transfer: 10 Years Later, 2005.

A. Rosenthal. Nonserial dynamic programming is optimal. In STOC ’77: Proceedings of
the ninth annual ACM symposium on Theory of computing, pages 98–105, 1977.

M. Roth, R. Simmons, and M. Veloso. Reasoning about joint beliefs for execution-
time communication decisions. In Proc. of the International Joint Conference on Au-
tonomous Agents and Multi Agent Systems, pages 786–793, 2005a.

M. Roth, R. Simmons, and M. Veloso. Decentralized communication strategies for co-
ordinated multi-agent policies. In A. Schultz, L. Parker, and F. Schneider, editors,
Multi-Robot Systems: From Swarms to Intelligent Automata, volume IV. Kluwer Aca-
demic Publishers, 2005b.

210 Bibliography

M. Roth, R. Simmons, and M. Veloso. Exploiting factored representations for decentral-
ized execution in multi-agent teams. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages 467–463, May 2007.

N. Roy, G. Gordon, and S. Thrun. Planning under uncertainty for reliable health care
robotics. In Proc. of the Int. Conf. on Field and Service Robotics, 2003.

N. Roy, G. Gordon, and S. Thrun. Finding approximate POMDP solutions through belief
compression. Journal of Artificial Intelligence Research, 23:1–40, 2005.

S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Pearson Education,
2nd edition, 2003. ISBN 0137903952.

F. C. Schoute. Symmetric team problems and multi access wire communication. Auto-
matica, 14:255–269, 1978.

D. Schuurmans and R. Patrascu. Direct value-approximation for factored MDPs. In
Advances in Neural Information Processing Systems 14, pages 1579–1586. MIT Press,
2002.

P. J. Schweitzer and A. Seidman. Generalized polynomial approximations in Markovian
decision processes. Journal of Mathematical Analysis and Applications, 110:568–582,
1985.

O. G. Selfridge, R. S. Sutton, and A. Barto. Training and tracking in robotics. In Proc.
of the International Joint Conference on Artificial Intelligence, pages 670–672, 1985.

S. Seuken and S. Zilberstein. Memory-bounded dynamic programming for DEC-POMDPs.
In Proc. of the International Joint Conference on Artificial Intelligence, pages 2009–
2015, 2007a.

S. Seuken and S. Zilberstein. Improved memory-bounded dynamic programming for de-
centralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence, July 2007b.

S. Seuken and S. Zilberstein. Formal models and algorithms for decentralized decision
making under uncertainty. Autonomous Agents and Multi-Agent Systems, 17(2):190–
250, 2008.

J. Shen, R. Becker, and V. Lesser. Agent interaction in distributed MDPs and its impli-
cations on complexity. In Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pages 529–536, 2006.

Y. Shoham and K. Leyton-Brown. Multi-Agent Systems. Cambridge University Press,
2007.

R. Simmons and S. Koenig. Probabilistic robot navigation in partially observable en-
vironments. In Proc. of the International Joint Conference on Artificial Intelligence,
pages 1080–1087, 1995.

M. P. Singh. Multiagent Systems: A Theoretical Framework for Intentions, Know-How,
and Communications. Springer-Verlag, 1994.

S. Singh, M. R. James, and M. R. Rudary. Predictive state representations: a new theory
for modeling dynamical systems. In Proc. of Uncertainty in Artificial Intelligence, pages
512–519, 2004a.

Bibliography 211

S. Singh, V. Soni, and M. Wellman. Computing approximate Bayes-Nash equilibria in
tree-games of incomplete information. In Proc. of the 5th ACM conference on Electronic
commerce, pages 81–90, 2004b.

S. P. Singh. Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8(3):323–339, May 1992.

E. J. Sondik. The optimal control of partially observable Markov decision processes. PhD
thesis, Stanford University, 1971.

V. Soni, S. Singh, and M. Wellman. Constraint satisfaction algorithms for graphical
games. In Proc. of the International Joint Conference on Autonomous Agents and
Multi Agent Systems, pages 423–430. ACM Press, 2007.

E. D. Sontag. Mathematical control theory: deterministic finite dimensional systems.
Textbooks in Applied Mathematics. Springer-Verlag New York, Inc., 2nd edition, 1998.

M. T. J. Spaan. Cooperative active perception using POMDPs. In AAAI 2008 Workshop
on Advancements in POMDP Solvers, July 2008.

M. T. J. Spaan and P. U. Lima. A decision-theoretic approach to dynamic sensor selection
in camera networks. In Int. Conf. on Automated Planning and Scheduling, 2009.

M. T. J. Spaan and F. S. Melo. Interaction-driven Markov games for decentralized mul-
tiagent planning under uncertainty. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, 2008.

M. T. J. Spaan and F. A. Oliehoek. The MultiAgent Decision Process toolbox: software
for decision-theoretic planning in multiagent systems. In AAMAS Workshop on Multi-
agent Sequential Decision Making in Uncertain Domains, pages 107–121, 2008.

M. T. J. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for
POMDPs. Journal of Artificial Intelligence Research, 24:195–220, 2005.

M. T. J. Spaan, G. J. Gordon, and N. Vlassis. Decentralized planning under uncertainty
for teams of communicating agents. In Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pages 249–256, 2006.

M. T. J. Spaan, F. A. Oliehoek, and N. Vlassis. Multiagent planning under uncertainty
with stochastic communication delays. In Proc. of The International Conference on
Automated Planning and Scheduling, pages 338–345, Sept. 2008.

P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence, 110
(2):241–273, June 1999.

P. Stone and M. Veloso. Multiagent systems: A survey from a machine learning perspec-
tive. Autonomous Robots, 8(3):345–383, 2000.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
Mar. 1998.

K. P. Sycara. Multiagent systems. AI Magazine, 19(2):79–92, 1998.

212 Bibliography

D. Szer and F. Charpillet. An optimal best-first search algorithm for solving infinite
horizon DEC-POMDPs. In Proc. of the European Conference on Machine Learning,
pages 389–399, 2005.

D. Szer and F. Charpillet. Point-based dynamic programming for DEC-POMDPs. In
Proc. of the National Conference on Artificial Intelligence, 2006.

D. Szer, F. Charpillet, and S. Zilberstein. MAA*: A heuristic search algorithm for solving
decentralized POMDPs. In Proc. of Uncertainty in Artificial Intelligence, pages 576–
583, 2005.

I. Szita and A. Lörincz. Factored value iteration converges. Acta Cybernetica, 18(4):
615–635, 2008.

M. Tambe. Towards flexible teamwork. Journal of Artificial Intelligence Research, 7:
83–124, 1997.

N. Tao, J. Baxter, and L. Weaver. A multi-agent policy-gradient approach to network
routing. In Proc. of the International Conference on Machine Learning, pages 553–560,
2001.

M. E. Taylor and P. Stone. Transfer learning for reinforcement learning domains: A
survey. Journal of Machine Learning Research, 10(1):1633–1685, 2009.

M. E. Taylor, P. Stone, and Y. Liu. Transfer learning via inter-task mappings for temporal
difference learning. Journal of Machine Learning Research, 8(1):2125–2167, 2007.

M. E. Taylor, G. Kuhlmann, and P. Stone. Autonomous transfer for reinforcement learn-
ing. In Proc. of the International Joint Conference on Autonomous Agents and Multi
Agent Systems, pages 283–290, May 2008.

S. Thrun. Is learning the n-th thing any easier than learning the first? In Advances in
Neural Information Processing Systems 8, pages 640–646, 1996.

S. Thrun and L. Pratt, editors. Learning to learn. Kluwer Academic Publishers, 1998.

K. J. Tierney and J. D. Goltz. Emergency response: Lessons learned from
the kobe earthquake. Technical report, Disaster Research Center, 1997. URL
http://dspace.udel.edu:8080/dspace/handle/19716/202.

L. Torrey, T. Walker, J. W. Shavlik, and R. Maclin. Using advice to transfer knowl-
edge acquired in one reinforcement learning task to another. In Proc. of the European
Conference on Machine Learning, pages 412–424, 2005.

B. van den Broek, W. Wiegerinck, and B. Kappen. Graphical models inference in optimal
control of stochastic multi-agent systems. Journal of Artificial Intelligence Research,
32:95–122, 2008.

P. Varaiya and J. Walrand. On delayed sharing patterns. IEEE Transactions on Automatic
Control, 23(3):443–445, June 1978.

P. Varakantham, R. Nair, M. Tambe, and M. Yokoo. Winning back the cup for distributed
POMDPs: planning over continuous belief spaces. In Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, pages 289–296, 2006.

http://dspace.udel.edu:8080/dspace/handle/19716/202

Bibliography 213

P. Varakantham, J. Marecki, Y. Yabu, M. Tambe, and M. Yokoo. Letting loose a SPIDER
on a network of POMDPs: Generating quality guaranteed policies. In Proc. of the
International Joint Conference on Autonomous Agents and Multi Agent Systems, 2007.

N. Vlassis. A Concise Introduction to Multiagent Systems and Distributed Artificial In-
telligence. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan
& Claypool Publishers, 2007.

M. Wainwright, T. Jaakkola, and A. Willsky. Tree consistency and bounds on the perfor-
mance of the max-product algorithm and its generalizations. Statistics and Computing,
14(2):143–166, 2004.

M. de Weerdt, A. ter Mors, and C. Witteveen. Multi-agent planning: An introduction to
planning and coordination. In Handouts of the European Agent Summer School, pages
1–32, 2005.

G. Weiss, editor. Multiagent Systems: a Modern Approach to Distributed Artificial Intel-
ligence. MIT Press, 1999.

W. Wiegerinck, B. van den Broek, and B. Kappen. Optimal on-line scheduling in stochas-
tic multiagent systems in continuous space-time. In Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, pages 1–8, 2007.

A. Wilson, A. Fern, S. Ray, and P. Tadepalli. Multi-task reinforcement learning: a
hierarchical Bayesian approach. In Proc. of the International Conference on Machine
Learning, pages 1015–1022, 2007.

S. J. Witwicki and E. H. Durfee. Flexible approximation of structured interactions in
decentralized Markov decision processes. In Proc. of the International Joint Conference
on Autonomous Agents and Multi Agent Systems, pages 1251–1252, 2009.

M. Wooldridge. An Introduction to MultiAgent Systems. Wiley, 2002.

M. Wooldridge and N. R. Jennings. Intelligent agents: Theory and practice. Knowledge
Engineering Review, 10(2):115–152, 1995.

J. Wu and E. H. Durfee. Mixed-integer linear programming for transition-independent
decentralized MDPs. In Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pages 1058–1060, 2006.

Y. Xiang. Probabilistic Reasoning in Multiagent Systems: A Graphical Models Approach.
Cambridge University Press, 2002.

P. Xuan, V. Lesser, and S. Zilberstein. Communication decisions in multi-agent coopera-
tion: Model and experiments. In Proc. of the International Conference on Autonomous
Agents, 2001.

M. Yokoo. Distributed Constraint Satisfaction: Foundation of Cooperation in Multi-agent
Systems. Springer-Verlag, 2001.

E. Zermelo. Uber eine anwendung der mengenlehre auf die theorie des schachspiels. In
Proceedings of the Fifth International Congress of Mathematicians II, pages 501–504,
1913.

L. S. Zettlemoyer, B. Milch, and L. P. Kaelbling. Multi-agent filtering with infinitely
nested beliefs. In Advances in Neural Information Processing Systems 21, 2009.

Acknowledgments

First and foremost, I would like to thank my supervisor and co-promotor Nikos
Vlassis. Not only was it he who provided excellent guidance in finding an interesting
research topic, he was also the person who convinced me to start a Ph.D. in the first
place. We have had long and enthusiastic brainstorm sessions during my master
and the first years of my Ph.D. research. When Nikos moved to Greece, these
sessions were replaced by emails and telephone conversations, equally long and
enthusiastic. I am very grateful for all his feedback, since without it, this thesis
would never have reached the level it did.

I am grateful to my promotor Frans Groen for his insightful comments and
the monthly meetings we had and that kept me focused and on schedule, and to
Arnoud Visser, who shielded me from many project administrative tasks, thereby
allowing me to concentrate on research.

Special thanks go to all the coauthors I had the pleasure of working with. In
particular, Matthijs Spaan and Shimon Whiteson deserve to be mentioned. The
collaboration with Matthijs has been very fruitful. Especially the shared code base
we used for experiments has been a great success and resulted in the Multiagent
decision process toolbox. Shimon has given me great support during the last two
years and has been a excellent tutor in clear reasoning and argumentation.

I would like to thank all colleagues of the intelligent autonomous systems group,
the intelligent systems lab Amsterdam and the ICIS project for the interesting
discussions we had and the stimulating environment they provided. Finally, I also
would like to express my appreciation of the committee members for their feedback
and their efforts spent.

215

	Introduction
	An Example of a Challenging Environment
	Forms of Uncertainty
	Multiagent Systems
	Decision-Theoretic Planning
	Planning with Outcome Uncertainty
	Dealing with State Uncertainty
	Multiple Agents
	DTP and Game Theory

	The Focus of this Thesis
	Applications
	Organization of Thesis and Publications
	Other Research

	Decision-Theoretic Planning for Teams of Agents
	Game-Theoretic Models
	One-Shot Decisions
	Sequential Decisions
	The Shortcoming of Game-Theoretic Models

	Decentralized POMDPs
	States and Transitions
	The Observation Model
	Rewards and Optimality Criteria

	Benchmark Problems
	The FireFighting Problem
	The Decentralized Tiger Problem
	Other Problem Domains

	Histories
	Policies
	Pure and Stochastic Policies
	Temporal Structure in Policies
	The Quality of Joint Policies
	Existence of an Optimal Pure Joint Policy

	Solving Dec-POMDPs
	Complexity
	Brute Force Policy Evaluation
	Alternating Maximization
	Multiagent A* (MAA*)
	Dynamic Programming for Dec-POMDPs
	Other Finite-Horizon Methods

	Generalization: Partially Observable Stochastic Games
	Special Cases
	Degrees of Observability
	The Single Agent Case
	Communication

	Summary

	Optimal Value Functions for Dec-POMDPs
	No Communication
	Modeling Dec-POMDPs as Series of Bayesian Games
	The Q-Value Function of an Optimal Joint Policy
	Deriving an Optimal Joint Policy
	Computing an Optimal Q-Value Function
	Optimal Dec-POMDP Value Functions

	Instantaneous Communication
	One-Step Delayed Communication
	Immediate Reward Formulation
	Complexity

	k-Steps Delayed Communication
	Modeling Systems with k-Steps Delay
	Optimal Value Functions
	Complexity
	Less Delay Cannot Decrease Value

	Conclusions
	Future Work

	Approximate Value Functions & Heuristic Policy Search
	Approximate Q-Value Functions
	QMDP
	QPOMDP
	QBG
	Generalized QBG and Bounds
	Recursive Solution

	Generalized Value-Based Policy Search
	The GMAA* Algorithm
	The Expand Operator

	Experiments
	Comparing Q-Value Functions
	Computing Optimal Policies
	Forward-Sweep Policy Computation and k-GMAA*

	Conclusions
	Future Work

	Factored Dec-POMDPs: Exploiting Locality of Interaction
	Factored Dec-POMDPs
	The Formal Model
	An Example: The FireFightingGraph Problem
	Independence Assumptions

	Value Functions for Factored Dec-POMDPs
	Scope, Scope Backup and Interaction Graphs
	Decomposition of Value Functions
	Locality of Interaction
	Approximation of Value Functions

	Factored Dec-POMDPs via CGBGs
	Collaborative Graphical Bayesian Games
	A Dec-POMDP Stage as a CGBG
	Efficiently Constructing Collaborative Graphical BGs

	Approximate Factored Q-Value Functions
	Nearly Factored Underlying MDP Solutions
	Factored QMDP: A Naive Approach using Linear Regression
	Factored QMDP: Approximate Dynamic Programming
	Transferring Q-value Functions

	Solution of Collaborative Graphical BGs
	Nonserial Dynamic Programming
	CGBGs as Factor Graphs
	Maximization over a Factor Graph using Max-Plus
	Other Solution Methods for CGBGs

	Algorithms
	Optimal Methods: Exploiting Last-stage Independence
	Approximate Methods

	Experiments
	Problem Domains and Experimental Setup
	Comparison to Other Methods
	Analysis of Factored GMAA* Methods

	Summary and Conclusions
	Discussion and Future Work

	Lossless Clustering of Histories
	Clustering Types in BGs
	Best-Response Equivalence for BGs
	Lossless Clustering in Dec-POMDPs
	Probabilistic Equivalence Criterion
	Identical Values Allow Lossless Clustering of Histories

	GMAA*-Cluster
	Bootstrapped Clustering
	Complexity

	Experiments
	Optimal Solutions using Clustering
	General Clustering Performance

	Conclusions
	Discussion and Future Work

	Conclusions and Discussion
	Conclusions
	The Big Picture
	Specific Contributions
	Current State of Affairs

	Discussion and Future Work
	Scalability of Dec-POMDPs
	Robustness and Flexibility
	The No-Communication Assumption
	Future Work

	Summary
	Samenvatting
	Problem Specifications
	Immediate Reward Value Function Formulations
	k-Steps Delay Immediate Reward Formulation
	Conversion between Formulations
	Less Delay Cannot Decrease Value
	Summary of Q-value Functions for Decentralized Settings

	Formalization of Regression to Factored Q-Value Functions
	Local State-Action Pairs and Indicator Functions
	(State,Action)-Pairs.
	Scope Restriction and Induced Scope.
	The Basis Functions: Mapping SAPs to LSAPs.

	Efficient Projections
	Rewriting Regression Using Inner Products
	Efficient Inner Products
	Translation to Indicator Functions for SAPs

	Proofs
	Proofs of Chapter 2
	Proofs of Chapter 3
	Proofs of Chapter 5

	Bibliography
	Acknowledgments

