
Decentralized POMDPs

Frans A. Oliehoek

Abstract This chapter presents an overview of the decentralized POMDP
(Dec-POMDP) framework. In a Dec-POMDP, a team of agents collaborates
to maximize a global reward based on local information only. This means that
agents do not observe a Markovian signal during execution and therefore the
agents’ individual policies map from histories to actions. Searching for an op-
timal joint policy is an extremely hard problem: it is NEXP-complete. This
suggests, assuming NEXP 6=EXP, that any optimal solution method will re-
quire doubly exponential time in the worst case. This chapter focuses on plan-
ning for Dec-POMDPs over a finite horizon. It covers the forward heuristic
search approach to solving Dec-POMDPs, as well as the backward dynamic
programming approach. Also, it discusses how these relate to the optimal
Q-value function of a Dec-POMDP. Finally, it provides pointers to other
solution methods and further related topics.

1 Introduction

Previous chapters generalized decision making to multiple agents (Chapter
??) and to acting under state uncertainty as in POMDPs (Chapter ??). This
chapter generalizes further by considering situations with both state uncer-
tainty and multiple agents. In particular, it focuses on teams of collaborative
agents: the agents share a single objective. Such settings can be formalized
by the framework of decentralized POMDPs (Dec-POMDPs) (Bernstein et al,
2002) or the roughly equivalent multi-agent team decision problem (Pynadath
and Tambe, 2002). The basic idea of this model is illustrated in Figure 1,
which depicts the two-agent case. At each stage, the agents independently
take an action. The environment undergoes a state transition and generates

CSAIL, Massachusetts Institute of Technology, e-mail: fao@csail.mit.edu

1

fao@csail.mit.edu

2 Frans A. Oliehoek

a1

a2

o1

o2

R(s,a)

Pr(s′|s,a)

Fig. 1: Execution of a decentralized POMDP.

a reward depending on the state and the actions of both agents. Finally, each
agent receives an individual observation of the new state.

This framework allows modeling important real-world tasks for which the
models in the previous chapters do not suffice. An example of such a task
is load balancing among queues (Cogill et al, 2004). Each agent represents
a processing unit with a queue that has to decide whether to accept new
jobs or pass them to another queue, based only on the local observations
of its own queue size and that of immediate neighbors. Another important
application area for Dec-POMDPs is communication networks. For instance,
consider a packet routing task in which agents are routers that have to decide
at each time step to which neighbor to send each packet in order to minimize
the average transfer time of packets (Peshkin, 2001). An application domain
that receives much attention in the Dec-POMDP community is that of sensor
networks (Nair et al, 2005; Varakantham et al, 2007; Kumar and Zilberstein,
2009). Other areas of interests are teams of robotic agents (Becker et al,
2004b; Emery-Montemerlo et al, 2005; Seuken and Zilberstein, 2007a) and
crisis management (Nair et al, 2003a,b; Paquet et al, 2005).

Most research on multi-agent systems under partial observability is rela-
tively recent and has focused almost exclusively on planning—settings where
the model of the environment is given—rather than the full reinforcement
learning (RL) setting. This chapter also focuses exclusively on planning. Some
pointers to RL approaches are given at the end of the chapter.

A common assumption is that planning takes place in an off-line phase,
after which the plans are executed in an on-line phase. This on-line phase is
completely decentralized as shown in Figure 1: each agent receives its indi-
vidual part of the joint policy found in the planning phase1 and its individual
history of actions and observations. The off-line planning phase, however, is
centralized. We assume a single computer that computes the joint plan and

1 In some cases it is assumed that the agents are given the joint policy. This enables the

computation of a joint belief from broadcast local observations (see Section 5.4).

Decentralized POMDPs 3

subsequently distributes it to the agents (who then merely execute the plan
on-line).2

2 The Decentralized POMDP Framework

In this section we more formally introduce the Dec-POMDP model. We start
by giving a mathematical definition of its components.

Definition 1 (Dec-POMDP). A decentralized partially observable Markov
decision process is defined as a tuple 〈D,S,A,T,R,O,O,h,I〉, where

• D = {1, . . . ,n} is the set of n agents.
• S is a finite set of states s in which the environment can be.
• A is the finite set of joint actions.
• T is the transition probability function.
• R is the immediate reward function.
• O is the finite set of joint observations.
• O is the observation probability function.
• h is the horizon of the problem.
• I ∈ P(S), is the initial state distribution at stage t = 0.

The Dec-POMDP model extends single-agent POMDP models by considering
joint actions and observations. In particular, A = ×i∈DAi is the set of joint
actions. Here, Ai is the set of actions available to agent i, which can be differ-
ent for each agent. Every time step, one joint action a =

〈
a1,...,an

〉
is taken.

How this joint action influences the environment is described by the tran-
sition function T , which specifies Pr(s′|s,a). In a Dec-POMDP, agents only
know their own individual action; they do not observe each other’s actions.
Similar to the set of joint actions, O = ×i∈DOi is the set of joint obser-
vations, where Oi is a set of observations available to agent i. Every time
step the environment emits one joint observation o =

〈
o1,...,on

〉
from which

each agent i only observes its own component oi. The observation function
O specifies the probabilities Pr(o|a,s′) of joint observations. Figure 2 further
illustrates the dynamics of the Dec-POMDP model.

During execution, the agents are assumed to act based on their individual
observations only and no additional communication is assumed. This does not
mean that Dec-POMDPs cannot model settings which concern communica-
tion. For instance, if one agent has an action “mark blackboard” and the other
agent has an observation “marked blackboard”, the agents have a mechanism
of communication through the state of the environment. However, rather than
making this communication explicit, we say that the Dec-POMDP can model
communication implicitly through the actions, states and observations. This

2 Alternatively, each agent runs the same planning algorithm in parallel.

4 Frans A. Oliehoek

actions

observations

states
s0 s1 sh−1

o1 oh−1

o
1

1

o
n
1

o
1

h−1

o
n

h−1

a0 a1 ah−2 ah−1

.

.

.
.
.
.

.

.

.
. . .

. . .

. . .

a
1

0

a
n
0

a
1

1

a
n
1

a
1

h−1

a
n

h−1

t 0 1 h− 1

Fig. 2: A more detailed illustration of the dynamics of a Dec-POMDP. At
every stage the environment is in a particular state. This state emits a joint
observation according to the observation model (dashed arrows) from which
each agent observes its individual component (indicated by solid arrows).
Then each agent selects an action, together forming the joint action, which
leads to a state transition according to the transition model (dotted arrows).

means that in a Dec-POMDP, communication has no special semantics. Sec-
tion 5.4 further elaborates on communication in Dec-POMDPs.

This chapter focuses on planning over a finite horizon, for which the (undis-
counted) expected cumulative reward is the commonly used optimality crite-
rion. The planning problem thus amounts to finding a tuple of policies, called
a joint policy that maximizes the expected cumulative reward.

We will consider the decentralized tiger (Dec-Tiger) problem —a fre-
quently used Dec-POMDP benchmark introduced by Nair et al (2003c)—as
an example. It concerns two agents that are standing in a hallway with two
doors. Behind one of the doors is a tiger, behind the other a treasure. There-
fore there are two states: the tiger is behind the left door (sl) or behind the
right door (sr). Both agents have 3 actions at their disposal: open the left
door (aOL), open the right door (aOR) and listen (aLi). They cannot observe
each other’s actions. In fact, they can only receive 2 observations: either they
hear the tiger make a sound from behind the left (oHL) or right (oHR) door.

At t = 0 the state is sl or sr with probability 0.5. As long as no agent opens
a door, the state does not change. When a door is opened, the state resets to sl
or sr with probability 0.5. The observation probabilities are independent and

Decentralized POMDPs 5

identical for both agents. For instance, when the state is sl and both perform
action aLi, each agent has a 85% chance of observing oHL, and the probability
that both hear the tiger behind the left door is 0.85× 0.85 = 0.72. When one
of the agents opens the door to the treasure they receive a positive reward
(+9), while they receive a penalty for opening the wrong door (−101). When
opening the wrong door jointly, the penalty is less severe (−50). Opening
the correct door jointly leads to a higher reward (+20). The full transition,
observation and reward models are listed by Nair et al (2003c).

Note that, when the wrong door is opened by one or both agents, they are
attacked by the tiger and receive a penalty. However, neither of the agents
observe this attack nor the penalty (remember, the only possible observations
are oHL and oHR) and the episode continues. Intuitively, an optimal joint policy
for Dec-Tiger should specify that the agents listen until they are certain
enough to open one of the doors. At the same time, the policy should be ‘as
coordinated’ as possible, i.e., maximize the probability of acting jointly.

3 Histories and Policies

In an MDP, the agent uses a policy that maps states to actions. In selecting
its action, it can ignore the history because of the Markov property. In a
POMDP, the agent can no longer observe the state, but it can compute
a belief b that summarizes the history; it is also a Markovian signal. In a
Dec-POMDP, however, during execution each agent will only have access
to its individual actions and observations and there is no method known to
summarize this individual history. It is not possible to maintain and update an
individual belief in the same way as in a POMDP, because the transition and
observation function are specified in terms of joint actions and observations.3

This means that in a Dec-POMDP the agents do not have access to a
Markovian signal during execution. The consequence of this is that planning
for Dec-POMDPs involves searching the space of tuples of individual Dec-
POMDP policies that map full-length individual histories to actions. We will
see later that this also means that solving Dec-POMDPs is even harder than
solving POMDPs.

3 Different forms of beliefs for Dec-POMDP-like settings have been considered Nair et al
(2003c); Hansen et al (2004); Oliehoek et al (2009); Zettlemoyer et al (2009). These are not
specified over only states, but also specify probabilities over histories/policies/types/beliefs

of the other agents. The key point is that from an individual agent’s perspective just
knowing a probability distribution over states is insufficient; it also needs to predict what

actions the other agents will take.

6 Frans A. Oliehoek

3.1 Histories

First, we define histories of observations, actions and both.

Definition 2 (Action-observation history). The action-observation his-
tory (AOH) for agent i, θ̄i, is the sequence of actions taken by and observa-
tions received by agent i. At a specific time step t, this is

θ̄it =
(
ai0,o

i
1, . . . ,a

i
t−1,o

i
t

)
.

The joint action-observation history θ̄t = 〈θ̄1
t , . . . ,θ̄

n
t 〉 specifies the AOH for

all agents. Agent i’s set of possible AOHs at time t is Θ̄it. The set of AOHs
possible for all stages for agent i is Θ̄i and θ̄i denotes an AOH from this
set.4 Finally the set of all possible joint AOHs θ̄ is denoted Θ̄. At t = 0, the
(joint) AOH is empty θ̄0 = ().

Definition 3 (Observation history). The observation history (OH) for
agent i, ōi, is defined as the sequence of observations an agent has received.
At a specific time step t, this is:

ōit =
(
oi1, . . . ,o

i
t

)
.

The joint observation history, is the OH for all agents: ōt = 〈ō1
t , . . . ,ō

n
t 〉. The

set of observation histories for agent i at time t is denoted Ōit. Similar to the
notation for action-observation histories, we also use ōi ∈ Ōi and ō ∈ Ō.

Definition 4 (Action history). The action history (AH) for agent i, āi, is
the sequence of actions an agent has performed:

āit =
(
ai0,a

i
1, . . . ,a

i
t−1

)
.

Notation for joint action histories and sets are analogous to those for obser-
vation histories. Finally, note that a (joint) AOH consists of a (joint) action-
and a (joint) observation history: θ̄t = 〈ōt,āt〉.

3.2 Policies

A policy πi for an agent i maps from histories to actions. In the general case,
these histories are AOHs, since they contain all information an agent has.
The number of AOHs grows exponentially with the horizon of the problem:

At time step t, there are
(∣∣Ai∣∣× ∣∣Oi∣∣)t possible AOHs for agent i. A policy

πi assigns an action to each of these histories. As a result, the number of
possible policies πi is doubly exponential in the horizon.

4 In a particular Dec-POMDP, it may be the case that not all of these histories can actually

be realized, because of the probabilities specified by the transition and observation model.

Decentralized POMDPs 7

It is possible to reduce the number of policies under consideration by
realizing that many policies of the form considered above specify the same
behavior. This is illustrated by the left side of Figure 3: under a deterministic
policy only a subset of possible action-observation histories can be reached.
Policies that only differ with respect to an AOH that can never be reached,
manifest the same behavior. The consequence is that in order to specify a
deterministic policy, the observation history suffices: when an agent selects
actions deterministically, it will be able to infer what action it took from only
the observation history. This means that a deterministic policy can conve-
niently be represented as a tree, as illustrated by the right side of Figure 3.

aOL

aOL

aOL

aOL

aLiaLi

aLi

aLi

aLiaLi

aLi

aLi

aOR

aOR

aOR

aOR

oHL

oHLoHL

oHL
oHR

oHRoHR

oHR

act.-obs. history

Fig. 3: A deterministic policy can be represented as a tree. Left: a tree of
action-observation histories θ̄i for one of the agents from the Dec-Tiger prob-
lem. A deterministic policy πi is highlighted. Clearly shown is that πi only
reaches a subset of histories θ̄i. (θ̄i that are not reached are not further ex-
panded.) Right: The same policy can be shown in a simplified policy tree.
When both agents execute this policy in the h = 3 Dec-Tiger problem, the
joint policy is optimal.

Definition 5. A deterministic policy πi for agent i is a mapping from obser-
vation histories to actions, πi : Ōi → Ai.

For a deterministic policy, πi(θ̄i) denotes the action that it specifies for
the observation history contained in θ̄i. For instance, let θ̄i =

〈
ōi,āi

〉
, then

πi(θ̄i) , πi(ōi). We use π =
〈
π1,...,πn

〉
to denote a joint policy. We say that

a deterministic joint policy is an induced mapping from joint observation
histories to joint actions π : Ō → A. That is, the mapping is induced by
individual policies πi that make up the joint policy. Note, however, that only
a subset of possible mappings f : Ō → A correspond to valid joint policies:
when f does not specify the same individual action for each ōi of each agent i,
it will not be possible to execute f in a decentralized manner. That is, such
a policy is centralized : it would describe that an agent should base its choice

8 Frans A. Oliehoek

of action on the joint history. However, during execution it will only be able
to observe its individual history, not the joint history.

Agents can also execute stochastic policies, but we restrict our attention
to deterministic policies without sacrificing optimality, since a finite-horizon
Dec-POMDP has at least one optimal pure joint policy (Oliehoek et al,
2008b).

3.3 Structure in Policies

Policies specify actions for all stages of the Dec-POMDP. A common way to
represent the temporal structure in a policy is to split it into decision rules δi

that specify the policy for each stage. An individual policy is then represented
as a sequence of decision rules πi = (δi0, . . . ,δ

i
h−1). In case of a deterministic

policy, the form of the decision rule for stage t is a mapping from length-t
observation histories to actions δit : Ōit → Ai. In the more general case its
domain is the set of AOHs δit : Θ̄it → Ai. A joint decision rule δt = 〈δ1

t , . . . ,δ
n
t 〉

specifies a decision rule for each agent.
We will also consider policies that are partially specified with respect to

time. Formally, ϕt = (δ0, . . . ,δt−1) denotes the past joint policy at stage t,
which is a partial joint policy specified for stages 0,...,t− 1. By appending a
joint decision rule for stage t, we can ‘grow’ such a past joint policy.

Definition 6 (Policy concatenation). We write

ϕt+1 = (δ0, . . . ,δt−1,δt) = 〈ϕt ◦ δt〉 (1)

to denote policy concatenation.

A future policy ψit of agent i specifies all the future behavior relative to
stage t. That is, ψit =

(
δit+1, . . . ,δ

i
h−1

)
. We also consider future joint policies

ψt = (δt+1, . . . ,δh−1). The structure of a policy πi can be represented as

πi = (δi0,δ
i
1, . . . ,δ

i
t−1︸ ︷︷ ︸

ϕit

,δit, δ
i
t+1, . . . ,δ

i
h−1︸ ︷︷ ︸

ψit

) (2)

and similarly for joint policies.
Since policies can be represented as trees (remember Figure 3), a different

way to decompose them is by considering sub-trees. Define the time-to-go τ
at stage t as

τ = h− t.

Now qiτ=k denotes a k-steps-to-go sub-tree policy for agent i. That is, qiτ=k

is a policy tree that has the same form as a full policy for the horizon-
k problem. Within the original horizon-h problem qiτ=k is a candidate for
execution starting at stage t = h−k. The set of k-steps-to-go sub-tree policies

Decentralized POMDPs 9

for agent i is denoted Qiτ=k. A joint sub-tree policy qτ=k ∈ Qτ=k specifies a
sub-tree policy for each agent.

Figure 4 shows the different structures in a policy for a fictitious Dec-
POMDP with h = 3. It represents decision rules by dotted ellipses. It also
shows a past policy ϕi2 and illustrates how policy concatenation 〈ϕi2◦δi2〉 = πi

forms the full policy. This full policy also corresponds to a 3-steps-to-go
sub-tree policy qiτ=3; two of the sub-tree policies are indicated using dashed
ellipses.

a

a

a

ǎǎǎ

ǎ

oo

o

ǒǒ

ǒ

t = 0

t = 1

t = 2

ϕi

2

δi
0

δi
1

δi
2

qi
τ=2

qi
τ=1

Fig. 4: Structure of a policy for an agent with actions {a,ǎ} and observations
{o,ǒ}. A policy πi can be divided into decision rules δi or sub-tree policies qi.

Definition 7 (Policy consumption). Providing a length-k (joint) sub-tree
policy qτ=k with a sequence of l < k (joint) observations consumes a part
of qτ=k leading to a (joint) sub-tree policy which is a sub-tree of qτ=k. In
particular, consumption

w� by a single joint observation o is written as

qτ=k−1 = qτ=k

w�
o
. (3)

For instance, in Figure 4, qiτ=1 = qiτ=2

w�
ǒ
.

3.4 The Quality of Joint Policies

Joint policies differ in how much reward they can expect to accumulate, which
will serve as a criterion of their quality. Formally, we consider the expected
cumulative reward of a joint policy, also referred to as its value.

Definition 8. The value V (π) of a joint policy π is defined as

V (π) , E
[h−1∑
t=0

R(st,at)
∣∣∣I,π],

10 Frans A. Oliehoek

where the expectation is over states and observations.

This expectation can be computed using a recursive formulation. For the
last stage t = h− 1, the value is given simply by the immediate reward

V π(sh−1,ōh−1) = R (sh−1,π(ōh−1)) .

For all other stages, the expected value is given by:

V π(st,ōt) = R (st,π(ōt)) +
∑

st+1∈S

∑
o∈O

Pr(st+1,o|st,π(ōt))V
π(st+1,ōt+1).

(4)
Here, the probability is simply the product of the transition and observation
probabilities Pr(s′,o|s,a) = Pr(o|a,s′) Pr(s′|s,a). In essence, fixing the joint
policy transforms the Dec-POMDP to a Markov chain with states (st,ōt).
Evaluating this equation via dynamic programming will result in the value
for all (s0,ō0)-pairs. The value V (π) is then given by weighting these pairs
according to the initial state distribution I. Note that given a fixed joint
policy π, a history ōt actually induces a joint sub-tree policy. As such, it is
possible to rewrite (4) in terms of sub-tree policies. Executing qτ=k over the
last k stages, starting from a state s at stage t = h− k will achieve:

V (st,qτ=k) = R(st,at) +
∑

st+1∈S

∑
o∈O

Pr(st+1,o|st,at)V (st+1,qτ=k

w�
o
) (5)

where at is the joint action specified by (the root of) qτ=k.
Finally, as is apparent from the above equations, the probabilities of states

and histories are important in many computations. The following equation
recursively specifies the probabilities of states and joint AOHs under a (po-
tentially stochastic) past joint policy:

Pr(st,θ̄t|I,ϕt) =
∑

st−1∈S

∑
at−1∈A

Pr(st,ot|st−1,at−1) Pr(at−1|θ̄t−1,ϕt)

Pr(st−1,θ̄t−1|I,ϕt). (6)

4 Solution of Finite-Horizon Dec-POMDPs

This section gives an overview of methods proposed for finding exact and ap-
proximate solutions for finite-horizon Dec-POMDPs. For the infinite-horizon
problem, which is significantly different, some pointers are provided in Sec-
tion 5.

Decentralized POMDPs 11

4.1 Brute Force Search & Dec-POMDP Complexity

Because there exists an optimal deterministic joint policy for a finite-horizon
Dec-POMDP, it is possible to enumerate all joint policies, evaluate them as
described in Section 3.4 and choose the best one. However, the number of
such joint policies is

O

(
|A†|

n(|O†|h−1)

|O†|−1

)
,

where |A†| and |O†| denote the largest individual action and observation sets.
The cost of evaluating each joint policy is O

(
|S| × |O†|nh

)
. It is clear that

this approach therefore is only suitable for very small problems. This analysis
provides some intuition about how hard the problem is. This intuition is
supported by the complexity result due to Bernstein et al (2002).

Theorem 1 (Dec-POMDP complexity). The problem of finding the opti-
mal solution for a finite-horizon Dec-POMDP with n ≥ 2 is NEXP-complete.

NEXP is the class of problems that takes non-deterministic exponential
time. Non-deterministic means that, similar to NP, it requires generating a
guess about the solution in a non-deterministic way. Exponential time means
that verifying whether the guess is a solution takes exponential time. In
practice this means that (assuming NEXP 6= EXP) solving a Dec-POMDP
takes doubly exponential time in the worst case. Moreover, Dec-POMDPs
cannot be approximated efficiently: Rabinovich et al (2003) showed that even
finding an ε-approximate solution is NEXP-complete.

4.2 Alternating Maximization

Joint Equilibrium based Search for Policies (JESP) (Nair et al, 2003c) is
a method that is guaranteed to find a locally optimal joint policy, more
specifically, a Nash equilibrium: a tuple of policies such that for each agent i its
policy πi is a best response for the policies employed by the other agents π−i.
It relies on a process called alternating maximization. This is a procedure that
computes a policy πi for an agent i that maximizes the joint reward, while
keeping the policies of the other agents fixed. Next, another agent is chosen
to maximize the joint reward by finding its best response. This process is
repeated until the joint policy converges to a Nash equilibrium, which is a
local optimum. This process is also referred to as hill-climbing or coordinate
ascent. Note that the local optimum reached can be arbitrarily bad. For
instance, if agent 1 opens the left (aOL) door right away in the Dec-Tiger
problem, the best response for agent 2 is to also select aOL. To reduce the
impact of such bad local optima, JESP can use random restarts.

12 Frans A. Oliehoek

JESP uses a dynamic programming approach to compute the best-response
policy for a selected agent i. In essence, fixing π−i allows for a reformulation
of the problem as an augmented POMDP. In this augmented POMDP a state
š = 〈s,ō−i〉 consists of a nominal state s and the observation histories of the
other agents ō−i. Given the fixed deterministic policies of other agents π−i,
such an augmented state š is Markovian and all transition and observation
probabilities can be derived from π−i and the transition and observation
model of the original Dec-POMDP.

4.3 Optimal Value Functions for Dec-POMDPs

This section describes an approach more in line with methods for single agent
MDPs and POMDPs: we identify an optimal value function Q∗ that can be
used to derive an optimal policy. Even though computation of Q∗ itself is
intractable, the insight it provides is valuable. In particular, it has a clear
relation with the two dominant approaches to solving Dec-POMDPs: the
forward and the backward approach which will be explained in the following
subsections.

4.3.1 Selecting Sub-Tree Policies

Let us start by considering Figure 5, which illustrates a tree of joint AOHs.
For a particular joint AOH (a node in Figure 5), we can try to determine
which joint sub-tree policy qτ=k is optimal. Recall that V (st,qτ=k) the value
of qτ=k starting from st is specified by (5). Also, let b(s) , Pr(s|I,θ̄t) be the
joint belief corresponding to θ̄t which can be computed using Bayes’ rule in
the same way as the POMDP belief update (see Chapter ??). Given an initial
belief I and joint AOH θ̄t, we can compute a value for each joint sub-tree
policy qτ=k that can be used from that node onward via

V (I,θ̄t,qτ=k) =
∑
s∈S

b(s)V (s,qτ=k). (7)

Now, it is possible to rewrite (7) recursively:

V (I,θ̄t,qτ=k) = R(θ̄t,at) +
∑
o

Pr(o|b,a)V (I,θ̄t+1,qτ=k

w�
o
), (8)

where the expected immediate reward is given by:

R(θ̄t,a) =
∑
st∈S

b(st)R(st,a). (9)

Decentralized POMDPs 13

...

... ...

...

... ...

...

R(θ̄0,ǎ
1a2)a1a2

ǎ1a2

ǎ1a2

ǎ1ǎ2

o1o2

o1o2

o1ǒ2 ǒ1o2

ǒ1o2

ǒ1ǒ2

θ̄0

θ̄1 θ̄1

θ̄2† θ̄2† θ̄2 θ̄2

Fig. 5: Tree of joint AOHs θ̄ for a fictitious 2-agent Dec-POMDP with actions{{
a1,ǎ1

}
,
{
a2,ǎ2

}}
and observations

{{
o1,ǒ1

}
,
{
o2,ǒ2

}}
. Given I, the AOHs

induce a ‘joint belief’ b(s) over states. Solid lines represent joint actions and
dashed lines joint observations. Due to the size of the tree it is only partially
shown. Highlighted joint actions represent a joint policy. Given a joint sub-
tree policy at a node (the action choices made in the sub-tree below it), the
value is given by (8). However, action choices are not independent in different
parts of the trees: e.g., the two nodes marked † have the same θ̄1 and therefore
should specify the same sub-tree policy for agent 1.

Therefore one would hope that a dynamic programming approach would be
possible, where, for each θ̄t one could choose the maximizing qτ=k. Unfor-
tunately, running such a procedure on the entire tree is not possible because
of the decentralized nature of a Dec-POMDP: it is not possible to choose
maximizing joint sub-tree policies qτ=k independently, since this could lead
to a centralized joint policy.

The consequence is that, even though (8) can be used to compute the value
for a (θ̄t,qτ=k)-pair, it does not directly help to optimize the joint policy,
because we cannot reason about parts of the joint AOH tree independently.
Instead, one should decide what sub-tree policies to select by considering
all θ̄t of an entire stage t at the same time, assuming a past joint policy ϕt.
That is, when we assume we have computed V (I,θ̄t,qτ=k) for all θ̄t and for all
qτ=k, then we can compute a special form of joint decision rule Γt =

〈
Γ it
〉
i∈D

for stage t. Here, the individual decision rules map individual histories to
individual sub-tree policies Γ it : Θ̄it → Qiτ=k. The optimal Γt satisfies:

14 Frans A. Oliehoek

Γ ∗t = arg max
Γt

∑
θ̄t∈Θ̄t

Pr(θ̄t|I,ϕt)V (I,θ̄t,Γt(θ̄t)), (10)

where Γt(θ̄t) =
〈
Γ it (θ̄

i
t)
〉
i∈D denotes the joint sub-tree policy qτ=k resulting

from application of the individual decision rules and the probability is a
marginal of (6).

This equation clearly illustrates that the optimal joint policy at a stage t
of a Dec-POMDP depends on ϕt, the joint policy followed up to stage t.
Moreover, there are additional complications that make (10) impractical to
use:

1. It sums over joint AOHs, the number of which is exponential in both the
number of agents and t.

2. It assumes computation of V (I,θ̄t,qτ=k) for all θ̄t, for all qτ=k.

3. The number of Γt to be evaluated is O(|Q†τ=k||Θ̄
†
t |n), where ‘†’ denotes

the largest set. |Q†τ=k| is doubly exponential in k and |Θ̄†t | is exponential
in t. Therefore the number of Γt is doubly exponential in h = t+ k.

Note that by restricting our attention to deterministic ϕt it is possible to
reformulate (10) as a summation over OHs, rather than AOHs (this involves
adapting V to take ϕt as an argument). However, for such a reformulation,
the same complications hold.

4.3.2 Selecting Optimal Decision Rules

This section shifts the focus back to regular decision rules δi—as introduced
in Section 3.3—that map from OHs (or AOHs) to actions. We will specify a
value function that quantifies the expected value of taking actions as specified
by δt and continuing optimally afterward. That is, we replace the value of
sub-trees in (10) by the optimal value of decision rules. The optimal value
function for a finite-horizon Dec-POMDP is defined as follows.

Theorem 2 (Optimal Q∗). The optimal Q-value function Q∗(I,ϕt,θ̄t,δt)
is a function of the initial state distribution and joint past policy, AOH and
decision rule. For the last stage, it is given by

Q∗(I,ϕh−1,θ̄h−1,δh−1) = R(θ̄h−1,δh−1(θ̄h−1)), (11)

as defined by (9), and, for all 0 ≤ t < h− 1, by

Q∗(I,ϕt,θ̄t,δt) = R(θ̄t,δt(θ̄t)) +
∑
o

Pr(o|θ̄t,δt(θ̄t))Q∗(I,ϕt+1,θ̄t+1,δ
∗
t+1),

(12)
with ϕt+1 = 〈ϕt ◦ δt〉, θ̄t+1 = (θ̄t,δt(θ̄t),o) and

Decentralized POMDPs 15

a1a1

ǎ1

ǎ1 ǎ1

ǎ1

ǎ1

o1o1

o1

ǒ1ǒ1

ǒ1

a2

a2

a2

a2

ǎ2ǎ2ǎ2

o2o2

o2

ǒ2ǒ2

ǒ2

t = 0

t = 1

t = 2

ϕ1

2
ϕ2

2

ϕ
2

δ∗
2

Fig. 6: Computation of Q∗. The dashed ellipse indicates the optimal decision
rule δ∗2 for stage t = 2, given that ϕ2 = 〈ϕ1 ◦ δ1〉 is followed for the first two
stages. The entries Q∗(I,θ̄1,ϕ1,δ1) are computed by propagating relevant
Q∗-values of the next stage. For instance, the Q∗-value under ϕ2 for the
highlighted joint history θ̄1 =

〈
(ǎ1,ǒ1),(a2,o2)

〉
is computed by propagating

the values of the four successor joint histories, as per (12).

δ∗t+1 = arg max
δt+1

∑
θ̄t+1∈Θ̄t+1

Pr(θ̄t+1|I,ϕt+1)Q∗(I,ϕt+1,θ̄t+1,δt+1). (13)

Proof. Because of (11), application of (13) for the last stage will maximize the
expected reward and thus is optimal. Equation (12) propagates these optimal
values to the preceding stage. Optimality for all stages follows by induction.

Note that ϕt is necessary in order to compute δ∗t+1, the optimal joint
decision rule at the next stage, because (13) requires ϕt+1 and thus ϕt.

The above equations constitute a dynamic program. When assuming that
only deterministic joint past policies ϕ can be used, the dynamic program
can be evaluated from the end (t = h− 1) to the beginning (t = 0). Figure 6
illustrates the computation of Q∗. When arriving at stage 0, the past joint
policy is empty ϕ0 = () and joint decision rules are simply joint actions, thus
it is possible to select

δ∗0 = arg max
δ0

Q∗(I,ϕ0,θ̄0,δ0) = arg max
a

Q∗(I,(),(),a).

Then given ϕ1 = δ∗0 we can determine δ∗1 using (13), etc.5 This procedure, we
refer to as forward-sweep policy computation (FSPC) using Q∗. The principle
of FSPC is that a new decision rule is selected given the past joint policy
found so far and is illustrated in Figure 7a.

Unfortunately, computing Q∗ itself is intractable, since it means evaluating
the dynamic program of Theorem 2 for all past joint policies. In particular,

5 Note that performing the maximization in (13) has already been done and can be cached.

16 Frans A. Oliehoek

(11) will need to be evaluated for all (ϕh−1,δh−1) and these pairs have a
direct correspondence to all joint policies: π = 〈ϕh−1 ◦ δh−1〉. Therefore, the
time needed to evaluate this DP is doubly exponential in h. This means that
the practical value of Q∗ is limited.

The identified Q∗ has a form quite different from Q-value functions en-
countered in MDPs and POMDPs. We still use the symbol ‘Q’, because δt
can be seen as an action on the meta-level of the planning process. In this
process (I,ϕt) can be interpreted as the state and we can define V and Q
with their usual interpretations. In particular, it is possible to write

V ∗(I,ϕt) = max
δt

Q∗(I,ϕt,δt) (14)

where Q∗ is defined as

Q∗(I,ϕt,δt) =
∑
θ̄t

Pr(θ̄t|I,ϕt)Q∗(I,ϕt,θ̄t,δt).

By expanding this definition of Q∗ using (12), one can verify that it indeed
has the regular interpretation of the expected immediate reward induced by
first taking ‘action’ δt plus the cumulative reward of continuing optimally
afterward (Oliehoek, 2010).

4.4 Forward Approach: Heuristic Search

The previous section explained that once Q∗ is computed, it is possible to
extract π∗ by performing forward-sweep policy computation: repeatedly ap-
plying (13) for consecutive stages t = 0,1, . . . ,h − 1. When processing stage
t, stages 0 . . . t− 1 have been processed already. Therefore a past joint policy
ϕt = (δ0, . . . ,δt−1) is available and the probability Pr(θ̄t|I,ϕt) is defined.
Unfortunately, computing Q∗ itself is intractable. One idea to overcome this
problem is to use an approximation Q̂ that is easier to compute. We refer to
this as the forward approach to Dec-POMDPs.

4.4.1 Dec-POMDPs as Series of Bayesian Games

A straightforward approach is to try and apply forward-sweep policy com-
putation using a heuristic Q-value function Q̂. This is essentially what the
method introduced by Emery-Montemerlo et al (2004) does. It represents a
Dec-POMDP as a series of collaborative Bayesian games (CBGs), one for

each stage t, with an approximate payoff function Q̂(θ̄t,a). A Bayesian game
(BG) (Osborne and Rubinstein, 1994) is an extension of a strategic form
game in which the agents have private information. A CBG is a BG with

Decentralized POMDPs 17

.

.

.

δ0

δ1

δh−1

ϕ
0

ϕ
1

π

(a) Forward-sweep policy computation

(FSPC) can be used with Q∗ or a heuris-
tic Q̂.

. . .

. . .

δ0
δ′
0

δ′′
0

δ1 δ′
1

ϕ
0

ϕ
1 ϕ′

1
ϕ′′

1

ϕ
2 ϕ′

2

(b) (Generalized) MAA∗ performs back-

tracking and hence only is useful with
(admissible) heuristics Q̂.

Fig. 7: Forward approach to Dec-POMDPs.

identical payoffs. By solving CBGs for consecutive stages it is possible to find
an approximate solution. This is forward-sweep policy computation (with Q̂).

In a Dec-POMDP, the crucial difficulty in making a decision at some stage t
is that the agents lack a common signal on which to condition their actions.
They must instead base their actions on their individual histories. Given
I and ϕt, this situation can be modeled as a CBG. Such a CBG B(I,ϕt)
consists of:

• the set of agents,
• their joint actions A,
• the set of their joint AOHs Θ̄t,
• a probability distribution over them Pr(θ̄t|I,ϕt), and

• a payoff function Q̂(θ̄t,a).

In the CBG agents use policies that map from their individual AOHs to
actions. That is, a policy of an agent i for a CBG corresponds to a decision
rule δit for the Dec-POMDP. The solution of the CBG is the joint decision

rule δt that maximizes the expected payoff with respect to Q̂:

δ̂t
∗

= arg max
δt

∑
θ̄t∈Θ̄t

Pr(θ̄t|I,ϕt)Q̂(θ̄t,δt(θ̄t)). (15)

Again, if ϕt is deterministic, the probability of θ̄t = 〈āt,ōt〉 is non-zero for
exactly one āt, which means that attention can be restricted to OHs and
decision rules that map from OHs to actions.

18 Frans A. Oliehoek

4.4.2 Heuristic Q-Value Functions

While the CBG for a stage is fully specified given I,ϕt and Q̂, it is not obvious

how to choose Q̂. Here we discuss this issue.

Note that, for the last stage t = h − 1, δ̂t
∗

has a close relation6 with
the optimal decision rule selected by (13): if for the last stage the heuristic

specifies the immediate reward Q̂(θ̄t,a) = R(θ̄t,a), both will select the same

actions. That is, in this case δ̂t
∗

= δ∗t .
While for other stages it is not possible to specify such a strong correspon-

dence, note that FSPC via CBGs is not sub-optimal per se: It is possible to
compute a value function of the form Qπ(θ̄t,a) for any π. Doing this for a π∗

yields Qπ
∗

and when using the latter as the payoff functions for the CBGs,
FSPC is exact (Oliehoek et al, 2008b).7

However, the practical value of this insight is limited, since it requires
knowing an optimal policy to start with. In practice, research has consid-
ered using an approximate value function. For instance, it is possible to
compute the value function QM(s,a) of the ‘underlying MDP’: the MDP
with the same transition and reward function as the Dec-POMDP (Emery-
Montemerlo et al, 2004; Szer et al, 2005). This can be used to compute

Q̂(θ̄t,a) =
∑
s b(s)QM(s,a), which can be used as the payoff function for the

CBGs. This is called QMDP. Similarly, it is possible to use the value func-
tion of the ‘underlying POMDP’ (QPOMDP) (Roth et al, 2005b; Szer et al,
2005), or the value function of the problem with 1-step delayed communica-
tion (QBG) (Oliehoek and Vlassis, 2007).

A problem in FSPC is that (15) still maximizes over δt that map from
histories to actions; the number of such δt is doubly exponential in t. There
are two main approaches to gain leverage. First, the maximization in (15) can
be performed more efficiently: approximately via alternating maximization
(Emery-Montemerlo et al, 2004), or exactly via heuristic search (Kumar and
Zilberstein, 2010b; Oliehoek et al, 2010). Second, it is possible to reduce the
number of histories under concern via pruning (Emery-Montemerlo et al,
2004), approximate clustering (Emery-Montemerlo et al, 2005) or lossless
clustering (Oliehoek et al, 2009).

6 Because Q∗ is a function of ϕt and δt, (13) has a slightly different form than (15). The

former technically does not correspond to a CBG, while the latter does.
7 There is a subtle but important difference between Qπ∗ (θ̄t,a) and Q∗(I,ϕt,θ̄t,δt): the
latter specifies the optimal value given any past joint policy ϕt while the former only
specifies optimal value given that π∗ is actually being followed.

Decentralized POMDPs 19

4.4.3 Multi-Agent A*

Since FSPC using Q̂ can be seen as a single trace in a search tree, a natural
idea is to allow for back-tracking and perform a full heuristic search as in
multi-agent A∗ (MAA∗) (Szer et al, 2005), illustrated in Figure 7b.

MAA∗ performs an A∗ search over past joint policies ϕt. It computes a

heuristic value V̂ (ϕt) by taking V 0...t−1(ϕt), the actual expected reward over

the first t stages, and adding V̂ t...h−1, a heuristic value for the remaining h−t
stages. When the heuristic is admissible—a guaranteed overestimation—so is
V̂ (ϕt). MAA∗ performs standard A∗ search (Russell and Norvig, 2003): it
maintains an open list P of partial joint policies ϕt and their heuristic values

V̂ (ϕt). On every iteration MAA∗ selects the highest ranked ϕt and expands
it, generating and heuristically evaluating all ϕt+1 = 〈ϕt ◦ δt〉 and placing

them in P. When using an admissible heuristic, the heuristic values V̂ (ϕt+1)
of the newly expanded policies are an upper bound to the true values and
any lower bound v? that has been found can be used to prune P. The search
ends when the list becomes empty, at which point an optimal fully specified
joint policy has been found.

There is a direct relation between MAA∗ and the optimal value functions
described in the previous section: V ∗ given by (14) is the optimal heuristic

V̂ t...h−1 (note that V ∗ only specifies reward from stage t onward).
MAA∗ suffers from the same problem as FSPC via CBGs: the number of δt

grows doubly exponential with t, which means that the number of children
of a node grows doubly exponential in its depth. In order to mitigate the
problem, it is possible to apply lossless clustering (Oliehoek et al, 2009), or
to try and avoid the expansion of all child nodes by incrementally expanding
nodes only when needed (Spaan et al, 2011).

4.4.4 Generalized MAA*

Even though Figure 7 shows a clear relation between FSPC and MAA∗, it
is not directly obvious how they relate: the former solves CBGs, while the
latter performs heuristic search. Generalized MAA∗ (GMAA∗) (Oliehoek
et al, 2008b) unifies these two approaches by making explicit the ‘Expand’
operator.

Algorithm 1 shows GMAA∗. When the Select operator selects the high-
est ranked ϕt and when the Expand operator works as described for MAA∗,
GMAA∗ simply is MAA∗. Alternatively, the Expand operator can construct
a CBG B(I,ϕt) for which all joint CBG-policies δt are evaluated. These can
then be used to construct a new set of partial policies ΦExpand = {〈ϕt ◦ δt〉}
and their heuristic values. This corresponds to MAA∗ reformulated to work
on CBGs. It can be shown that when using a particular form of Q̂ (includ-
ing the mentioned heuristics QMDP, QPOMDP and QBG), the approaches are

20 Frans A. Oliehoek

Initialize: v?←−∞ , P←{ϕ0 = ()}
repeat
ϕt← Select(P)

ΦExpand← Expand(I,ϕt)
if ΦExpand contains full policies ΠExpand ⊆ ΦExpand then

π′← arg maxπ∈ΠExpand
V (π)

if V (π′) > v? then

v?←V (π′) {found new lower bound}
π?←π′
P←{ϕ ∈ P | V̂ (ϕ) > v?} {prune P}

ΦExpand←ΦExpand \ΠExpand {remove full policies}
P←(P \ϕt) ∪ {ϕ ∈ ΦExpand | V̂ (ϕ) > v?} {remove processed/add new ϕ }

until P is empty

Algorithm 1: (Generalized) MAA∗

identical (Oliehoek et al, 2008b). GMAA∗ can also use an Expand operator
that does not construct all new partial policies, but only the best-ranked
one, ΦExpand = {〈ϕt ◦ δ

∗
t 〉}. As a result the open list P will never contain

more than one partial policy and behavior reduces to FSPC. A generaliza-
tion called k-GMAA∗ constructs the k best-ranked partial policies, allowing
to trade off computation time and solution quality. Clustering of histories
can also be applied in GMAA∗, but only lossless clustering will preserve
optimality.

4.5 Backwards Approach: Dynamic Programming

The forward approach to Dec-POMDPs incrementally builds policies from the
first stage t = 0 to the last t = h− 1. Prior to doing this, a Q-value function
(optimal Q∗ or approximate Q̂) needs to be computed. This computation
itself, the dynamic program represented in Theorem 2, starts with the last
stage and works its way back. The resulting optimal values correspond to the
expected values of a joint decision rule and continuing optimally afterwards.
That is, in the light of (10) this can be interpreted as the computation of the
value for a subset of optimal (useful) joint sub-tree policies.

This section treats dynamic programming (DP) for Dec-POMDPs (Hansen,
Bernstein, and Zilberstein, 2004). This method also works backwards, but
rather than computing a Q-value function, it directly computes a set of use-
ful sub-tree policies.

Decentralized POMDPs 21

4.5.1 Dynamic Programming for Dec-POMDPs

The core idea of DP is to incrementally construct sets of longer sub-tree
policies for the agents: starting with a set of one-step-to-go (τ = 1) sub-
tree policies (actions) that can be executed at the last stage, construct a
set of 2-step policies to be executed at h − 2, etc. That is, DP constructs
Qiτ=1,Q

i
τ=2, . . . ,Q

i
τ=h for all agents i. When the last backup step is completed,

the optimal policy can be found by evaluating all induced joint policies π ∈
Q1
τ=h × · · · ×Qnτ=h for the initial belief I as described in Section 3.4.

a

a

a

a

a

a

ǎ

ǎ ǎǎ

ǎ

ǎ ǎǎ

oo

o

oo

o

ǒǒ

ǒ

ǒǒ

ǒ

Fig. 8: Difference between policy construction in MAA∗ (left) and dynamic
programming (right) for an agent with actions a,ǎ and observations o,ǒ.
Dashed components are newly generated, dotted components result from the
previous iteration.

DP formalizes this idea using backup operations that construct Qiτ=k+1

from Qiτ=k. For instance, the right side of Figure 8 shows how qiτ=3, a 3-steps-
to-go sub-tree policy, is constructed from two qiτ=2 ∈ Qiτ=2. In general, a one
step extended policy qiτ=k+1 is created by selecting a sub-tree policy for each
observation and an action for the root. An exhaustive backup generates all
possible qiτ=k+1 that have policies from the previously generated set qiτ=k ∈
Qiτ=k as their sub-trees. We will denote the sets of sub-tree policies resulting

from exhaustive backup for each agent i by Qe,iτ=k+1.
Unfortunately, sets of sub-tree policies maintained grow doubly exponen-

tially with k.8 To counter this source of intractability, it is possible to prune
dominated sub-tree policies from Qe,iτ=k, resulting in smaller maintained sets

Qm,iτ=k (Hansen et al, 2004). The value of a qiτ=k depends on the probability
distribution over states when it is started (at stage t = h− k) as well as the
probability with which the other agents j 6= i select their sub-tree policies.
Therefore, a qiτ=k is dominated if it is not maximizing at any point in the

multi-agent belief space: the simplex over S×Qm,−iτ=k . It is possible to test for

8 Since the qiτ=k are essentially full policies for the horizon-k problem, their number is
doubly exponentially in k.

22 Frans A. Oliehoek

dominance by linear programming. Removal of a dominated sub-tree policy
qiτ=k of an agent i may cause a qjτ=k of another agent j to become domi-
nated. Therefore DP iterates over agents until no further pruning is possible,
a procedure known as iterated elimination of dominated policies (Osborne
and Rubinstein, 1994).

In practice, the pruning step in DP often is not able to sufficiently re-
duce the maintained sets to make the approach tractable for larger prob-
lems. Bounded DP (BDP) can be used to compute a bounded approximation
(Amato et al, 2007). It performs more aggressive ε-pruning: a qiτ=k that is
maximizing in some region of the multi-agent belief space, but improves the
value in this region by at most ε, is also pruned. Because iterated elimina-
tion using ε-pruning can still lead to an unbounded reduction in value, BDP
performs one iteration of ε-pruning, followed by iterated elimination using
normal pruning.

Even when many sub-tree policies can be pruned, DP can run into prob-
lems during the exhaustive backup. Incremental policy generation (IPG) is
a technique to mitigate this problem by performing a one-step state reach-
ability analysis (Amato et al, 2009). During the back up of sub-trees for an
agent i, IPG analyzes the set of states S〈ai,oi〉 that have non-zero probability
after each 〈ai,oi〉-pair (a particular observation may exclude many states).
Subsequently, in constructing the set Qe,iτ=k+1, only sub-tree policies that are

non-dominated for S〈ai,oi〉 are selected for action ai and observation oi. This
can lead to much smaller sets of sub-tree policies.

An additional difficulty in DP is that, in order to perform pruning, all the
V (s,qτ=k) values need to be computed and stored, which takes |Qe,†τ=k|n ×
|S| real numbers. As such, DP runs out of memory well before it runs out
of time. In order to address this problem Boularias and Chaib-draa (2008)
represent these values more compactly by making use of a sequence form
(Koller et al, 1994) representation. A disadvantage is that this approach can
lead to keeping dominated policies, however. As such there is a trade-off
between space required to store the values for all sub-tree policies and the
number of sub-tree policies.

4.5.2 Point-Based DP

DP only removes qiτ=k that are not maximizing at any point in the multi-agent
belief space. Point-based DP (PBDP) (Szer and Charpillet, 2006) proposes
to improve pruning of the set Qe,iτ=k by considering only a subset Bi ⊂ P(S×
Q−iτ=k) of reachable multi-agent belief points. Only those qiτ=k that maximize
the value at some bi ∈ Bi are kept. The definition of reachable is slightly
involved.

Definition 9. A multi-agent belief point bit is reachable if there exists a prob-
ability distribution Pr(st,θ̄

−i
t |I,ϕt) (for any deterministic ϕt) and an induced

mapping Γ−it = 〈Γ jt 〉j 6=i with Γ jt : Θ̄jt → Qjτ=k that result in bit.

Decentralized POMDPs 23

That is, a belief point bi is reachable if there is a past joint policy that will
result in the appropriate distribution over states and AOHs of other agents
such that, when combined with a mapping of those AOHs to sub-tree policies,
bi is the resulting distribution over states and sub-tree policies.

PBDP can be understood in the light of (10). Suppose that the range of the
Γ it are restricted to the sets generated by exhaustive backup: Γ it : Θ̄it → Qe,iτ=k.
Solving (10) for a past joint policy ϕt will result in Γ ∗t which will specify, for
all agents, all the useful sub-tree policies qiτ=k ∈ Q

e,i
τ=k given ϕt. Solving (10)

for all ϕt will result in the set of all potentially useful qiτ=k ∈ Q
e,i
τ=k.

Given a ϕt and a Γ−it , (10) can be rewritten as a maximization from the
perspective of agent i to compute its best response:9

BRi(θ̄it,ϕt,Γ
−i
t) = arg max

qiτ=k

∑
θ̄−it

∑
st

Pr(st,θ̄
−i
t |θ̄it,I,ϕt)V (st,

〈
Γ−it (θ̄−it),qiτ=k

〉
).

(16)
That is, given ϕt and Γ−it , each θ̄it generates a multi-agent belief point, for
which (16) performs the maximization. The set Qm,iτ=k := {BRi(θ̄it,ϕt,Γ−it)}
of best responses for all ϕt, Γ

−i
t and θ̄it, contains all non-dominated sub-tree

policies, thus yielding an exact pruning step.
PBDP uses the initial belief to overcome the need to test for dominance

over the entire multi-agent belief space. It can also result in more pruning,
since it avoids maintaining sub-tree policies that are maximizing in a part
of this space that cannot be reached. Still, the operation described above is
intractable because the number of (θ̄it,ϕt,Γ

−i
t) is doubly exponential in t and

because the maintained sets Qm,iτ=k can still grow doubly exponentially.

4.5.3 Memory-Bounded DP

Memory-bounded DP (MBDP) (Seuken and Zilberstein, 2007b) is an approx-
imate method that addresses these complexity issues by making two approx-
imations. This first approximation is the assumption that the joint sub-tree
policies that are maximizing for a joint belief are likely to specify good candi-
date individual sub-tree policies. I.e., instead of performing (16) to compute
candidate sub-tree policies MBDP performs:

∀θ̄t qθ̄tτ=k = arg max
qτ=k∈Qeτ=k

V (I,θ̄t,qτ=k), (17)

where Qe
τ=k , Qe,1τ=k × · · · × Q

e,n
τ=k is the set of qτ=k induced by the sets

exhaustively backed-up sub-trees Qe,iτ=k. If a qiτ=k is not part of any qθ̄tτ=k, it
is assumed to be dominated. Note that V (I,θ̄t,qτ=k), defined by (7), only
depends on θ̄t through the joint beliefs b it induces, so (17) only has to be

9 The summation over states comes from substituting (7) for V (I,θ̄t,qτ=k)).

24 Frans A. Oliehoek

evaluated for distinct b. Also note that this maximization is surprising: it was
explained in Section 4.3.1 that performing this maximization for a particular
node of the AOH tree is not possible. The difference here is that MBDP will

not use the found qθ̄tτ=k as the joint sub-tree policy for θ̄t (which might result
in a centralized joint policy), but rather uses it to construct sets of individual
candidate qiτ=k.

The second approximation is that MBDP maintains sets Qm,iτ=k of a fixed
size, M , which has two main consequences. First, the size of the candidate

sets Qe,iτ=k formed by exhaustive backup is O(|A†|M |O
†|), which clearly does

not depend on the horizon. Second, (17) does not have to be evaluated for
all distinct b; rather MBDP samples M joint belief points b on which (17) is
evaluated.10 To perform this sampling, MBDP uses heuristic policies.

In order to perform the maximization in (17), MBDP loops over the

|Qe
τ=k| = O(|A†|nMn|O†|) joint sub-tree policies for each of the sampled belief

points. To reduce the burden of this complexity, many papers have proposed
new methods for performing this point-based backup operation (Seuken and
Zilberstein, 2007a; Carlin and Zilberstein, 2008; Dibangoye et al, 2009; Am-
ato et al, 2009; Wu et al, 2010a). This backup corresponds to solving a CBG
for each joint action (Kumar and Zilberstein, 2010b; Oliehoek et al, 2010).

Finally, sample-based extensions have been proposed (Wu et al, 2010c,b).
These use sampling to evaluate the quantities V (s,qτ=k) and use particle
representations for the sampled joint beliefs.

4.6 Other Finite-Horizon Methods

There are a few other approaches for finite-horizon Dec-POMDPs, which we
will only briefly describe here. Aras et al (2007) proposed a mixed integer
linear programming formulation for the optimal solution of finite-horizon
Dec-POMDPs, based on representing the set of possible policies for each
agent in sequence form (Koller and Pfeffer, 1997). In this representation,
a policy for an agent i is represented as a subset of the set of sequences
(roughly corresponding to action-observation histories) for the agent. As such
the problem can be interpreted as a combinatorial optimization problem and
solved with a mixed integer linear program.

The fact that solving a Dec-POMDP can be approached as a combinato-
rial optimization problem was also recognized by approaches based on cross-
entropy optimization (Oliehoek et al, 2008a) and genetic algorithms (Eker
and Akın, 2008).

10 If evaluation of (17) leads to duplicate qiτ=k more samples may be necessary.

Decentralized POMDPs 25

5 Further Topics

This section provides pointers to some further topics in Dec-POMDPs.

5.1 Generalization and Special Cases

The generalization of the Dec-POMDP is the partially observable stochastic
game (POSG). It has the same components as a Dec-POMDP, except that
it specifies a collection of reward functions: one for each agent. A POSG
assumes self-interested agents that maximize their individual expected cu-
mulative reward. The consequence of this is that there is no longer a simple
concept of optimal joint policy. Rather the joint policy should be a Nash
Equilibrium (NE), and preferably a Pareto optimal NE. However, there is no
clear way to identify the best one. Moreover, such an NE is only guaranteed
to exist in randomized policies (for a finite POSG), which means that it is no
longer possible to perform brute-force policy evaluation. Also, search meth-
ods based on alternating maximization are no longer guaranteed to converge
for POSGs. The (not point-based) dynamic programming method, discussed
in Section 4.5.1, applies to POSGs since it finds the set of non-dominated
policies for each agent.

Because of the negative complexity results for Dec-POMDPs, much re-
search has focused on special cases to which pointers are given below. For a
more comprehensive overview the reader is referred to the texts by Pynadath
and Tambe (2002); Goldman and Zilberstein (2004); Seuken and Zilberstein
(2008).

Some of the special cases are formed by different degrees of observabil-
ity. These range from fully- or individually observable as in a multi-agent
MDP (Boutilier, 1996) to non-observable. In the non-observable case agents
use open-loop policies and solving it is easier from a complexity point of
view (NP-complete, Pynadath and Tambe 2002). Between these two extremes
there are partially observable problems. One more special case has been iden-
tified, namely the jointly observable case, where not the individual, but the
joint observation identifies the true state. A jointly observable Dec-POMDP is
referred to as a Dec-MDP, which is a non-trivial sub-class of the Dec-POMDP
for which the NEXP-completeness result holds (Bernstein et al, 2002).

Other research has tried to exploit structure in states, transitions and re-
ward. For instance, many approaches are based on special cases of factored
Dec-POMDPs. A factored Dec-POMDP (Oliehoek et al, 2008c) is a Dec-
POMDP in which the state space is factored, i.e., a state s = 〈x1, . . . ,xk〉
is specified as an assignment to a number of state variables or factors. For
factored Dec-POMDPs the transition and reward models can often be speci-
fied much more compactly by making use of Bayesian networks and additive
reward decomposition (the total reward is the sum of a number of ‘smaller’

26 Frans A. Oliehoek

reward functions, specified over a subset of agents). Many special cases have
tried to exploit independence between agents by partitioning the set of state
factors into individual states si for each agent.

One such example is the transition- and observation-independent (TOI)
Dec-MDP (Becker et al, 2004b; Wu and Durfee, 2006) that assumes each
agent i has its own MDP with local states si and transitions, but that these
MDPs are coupled through certain events in the reward function: some combi-
nations of joint actions and joint states will cause extra reward (or penalty).
This work introduced the idea that in order to compute a best response
against a policy πj , an agent i may not need to reason about all the de-
tails of πj , but can use a more abstract representation of the influence of
πj on itself. This core idea was also used in event-driven (ED) Dec-MDPs
(Becker et al, 2004a) that model settings in which the rewards are indepen-
dent, but there are certain events that cause transition dependencies. Mostafa
and Lesser (2009) introduced the EDI-CR, a type of Dec-POMDP that gen-
eralizes TOI and ED-Dec-MDPs. Recently the idea of abstraction has been
further explored by Witwicki and Durfee (2010), resulting in a more general
formulation of influence-based policy abstraction for a more general sub-class
of the factored Dec-POMDP called temporally decoupled Dec-POMDP (TD-
POMDP) that also generalizes TOI- and ED-Dec-MDPs (Witwicki, 2011).
While much more general than TOI Dec-MDPs (e.g., the local states of agents
can overlap) the TD-POMDP is still restrictive as it does not allow multiple
agents to have direct influence on the same state factor.

Finally, there has been a body of work on networked distributed POMDPs
(ND-POMDPs) (Nair et al, 2005; Kim et al, 2006; Varakantham et al, 2007;
Marecki et al, 2008; Kumar and Zilberstein, 2009; Varakantham et al, 2009).
ND-POMDPs can be understood as factored Dec-POMDPs with TOI and
additively factored reward functions. For this model, it was shown that the
value function V (π) can be additively factored as well. As a consequence, it
is possible to apply many ideas from distributed constraint optimization in
order to optimize the value more efficiently. As such ND-POMDPs have been
shown to scale to moderate numbers (up to 20) of agents. These results were
extended to general factored Dec-POMDPs by Oliehoek et al (2008c). In that
case, the amount of independence depends on the stage of the process; earlier
stages are typically fully coupled limiting exact solutions to small horizons
and few (three) agents. Approximate solutions, however, were shown to scale
to hundreds of agents (Oliehoek, 2010).

5.2 Infinite-Horizon Dec-POMDPs

The main focus of this chapter has been on finding solution methods for
finite-horizon Dec-POMDPs. There also has been quite a bit of work on
infinite-horizon Dec-POMDPs, some of which is summarized here.

Decentralized POMDPs 27

The infinite-horizon case is substantially different from the finite-horizon
case. For instance, the infinite-horizon problem is undecidable (Bernstein
et al, 2002), which is a direct result of the undecidability of (single-agent)
POMDPs over an infinite horizon (Madani et al, 1999). This can be under-
stood by thinking about the representations of policies; in the infinite-horizon
case the policy trees themselves should be infinite and clearly there is no way
to represent that in a finite amount of memory.

As a result, research on infinite-horizon Dec-POMDPs has focused on ap-
proximate methods that use finite policy representations. A common choice
is to use finite state controllers (FSCs). A side-effect of limiting the amount
of memory for the policy is that in many cases it can be beneficial to allow
stochastic policies (Singh et al, 1994). Most research in this line of work has
proposed methods that incrementally improve the quality of the controller.
For instance, Bernstein et al (2009) propose a policy iteration algorithm that
computes an ε-optimal solution by iteratively performing backup operations
on the FSCs. These backups, however, grow the size of the controller expo-
nentially. While value-preserving transformations may reduce the size of the
controller, the controllers can still grow unboundedly.

One idea to overcome this problem is bounded policy iteration (BPI) for
Dec-POMDPs (Bernstein et al, 2005). BPI keeps the number of nodes of the
FSCs fixed by applying bounded backups. BPI converges to a local optimum
given a particular controller size. Amato et al (2010) also consider finding an
optimal joint policy given a particular controller size, but instead propose a
non-linear programming (NLP) formulation. While this formulation charac-
terizes the true optimum, solving the NLP exactly is intractable. However,
approximate NLP solvers have shown good results in practice.

Finally, a recent development has been to address infinite-horizon Dec-
POMDPs via the planning-as-inference paradigm (Kumar and Zilberstein,
2010a). Pajarinen and Peltonen (2011) extended this approach to factored
Dec-POMDPs.

5.3 Reinforcement Learning

A next related issue is the more general setting of multi-agent reinforcement
learning (MARL). That is, this chapter has focused on the task of planning
given a model. In a MARL setting however, the agents do not have access
to such a model. Rather, the model will have to be learned on-line (model-
based MARL) or the agents will have to use model-free methods. While there
is a great deal of work on MARL in general (Buşoniu et al, 2008), MARL in
Dec-POMDP-like settings has received little attention.

Probably one of the main reasons for this gap in literature is that it is hard
to properly define the setup of the RL problem in these partially observable
environments with multiple agents. For instance, it is not clear when or how

28 Frans A. Oliehoek

the agents will the observe rewards.11 Moreover, even when the agents can
observe the state, convergence of MARL is not well-understood: from the
perspective of one agent, the environment has become non-stationary since
the other agent is also learning, which means that convergence guarantees for
single-agent RL no longer hold. Claus and Boutilier (1998) argue that, in a
cooperative setting, independent Q-learners are guaranteed to converge to a
local optimum, but not the optimal solution. Nevertheless, this method has on
occasion been reported to be successful in practice (e.g., Crites and Barto,
1998) and theoretical understanding of convergence of individual learners
is progressing (e.g., Tuyls et al, 2006; Kaisers and Tuyls, 2010; Wunder
et al, 2010). There are coupled learning methods (e.g., Q-learning using the
joint action space) that will converge to an optimal solution (Vlassis, 2007).
However, all forms of coupled learning are precluded in the true Dec-POMDP
setting: such algorithms require either full observation of the state and actions
of other agents, or communication of all the state information.

Concluding this section we will provide pointers to a few notable ap-
proaches to RL in Dec-POMDP-like settings. Peshkin et al (2000) introduced
decentralized gradient ascent policy search (DGAPS), a method for MARL in
partially observable settings based on gradient descent. DGAPS represents
individual policies using FSCs and assumes that agents observe the global
rewards. Based in this, it is possible for each agent to independently update
its policy in the direction of the gradient with respect to the return, resulting
in a locally optimal joint policy. This approach was extended to learn policies
for self-configurable modular robots (Varshavskaya et al, 2008). Chang et al
(2004) also consider decentralized RL assuming that the global rewards are
available to the agents. In their approach, these global rewards are interpreted
as individual rewards, corrupted by noise due to the influence of other agents.
Each agent explicitly tries to estimate the individual reward using Kalman
filtering and performs independent Q-learning using the filtered individual
rewards. The method by Wu et al (2010b) is closely related to RL since it
does not need a model as input. It does, however, needs access to a simulator
which can be initialized to specific states. Moreover, the algorithm itself is
centralized, as such it is not directly suitable for on-line RL.

Finally, there are MARL methods for partially observed decentralized
settings that require only limited amounts of communication. For instance,
Boyan and Littman (1993) considered decentralized RL for a packet routing
problem. Their approach, Q-routing, performs a type of Q-learning where
there is only limited local communication: neighboring nodes communicate
the expected future waiting time for a packet. Q-routing was extended to
mobile wireless networks by Chang and Ho (2004). A similar problem, dis-
tributed task allocation, is considered by Abdallah and Lesser (2007). In this
problem there also is a network, but now agents do not send communication
packets, but rather tasks to neighbors. Again, communication is only local.

11 Even in a POMDP, the agent is not assumed to have access to the immediate rewards,

since they can convey hidden information about the states.

Decentralized POMDPs 29

Finally, in some RL methods for multi-agent MDPs (i.e., coupled methods)
it is possible to have agents observe a subset of state factors if they have the
ability to communicate locally (Guestrin et al, 2002; Kok and Vlassis, 2006).

5.4 Communication

The Dec-POMDP has been extended to explicitly incorporate communica-
tion actions, and observations. The resulting model, the Dec-POMDP-Com
(Goldman and Zilberstein, 2003, 2004) includes a set of messages that can
be sent by each agent and a cost function that specifies the cost of sending
each message. The goal in a Dec-POMDP-Com is to:

“find a joint policy that maximizes the expected total reward over the finite horizon.
Solving for this policy embeds the optimal meaning of the messages chosen to be

communicated” — Goldman and Zilberstein (2003)

That is, in this perspective the semantics of the communication actions be-
come part of the optimization problem (Xuan et al, 2001; Goldman and
Zilberstein, 2003; Spaan et al, 2006; Goldman et al, 2007).

One can also consider the case where messages have fixed semantics. In
such a case the agents need a mechanism to process these semantics. For in-
stance, when the agents share their local observations, each agent maintains a
joint belief and performs an update of this joint belief, rather than maintain-
ing the list of observations. It was shown by Pynadath and Tambe (2002) that
under cost-free communication, a joint communication policy that shares the
local observations at each stage is optimal. Much research has investigated
sharing local observations in models similar to the Dec-POMDP-Com (Ooi
and Wornell, 1996; Pynadath and Tambe, 2002; Nair et al, 2004; Becker et al,
2005; Roth et al, 2005b,a; Spaan et al, 2006; Oliehoek et al, 2007; Roth et al,
2007; Goldman and Zilberstein, 2008; Wu et al, 2011).

A final note is that, although models with explicit communication seem
more general than the models without, it is possible to transform the former
to the latter. That is, a Dec-POMDP-Com can be transformed to a Dec-
POMDP (Goldman and Zilberstein, 2004; Seuken and Zilberstein, 2008).

Acknowledgments

I would like to thank Leslie Kaelbling and Shimon Whiteson for the valu-
able feedback they provided and the reviewers for their insightful comments.
Research supported by AFOSR MURI project #FA9550-09-1-0538.

30 Frans A. Oliehoek

References

Abdallah S, Lesser V (2007) Multiagent reinforcement learning and self-organization in

a network of agents. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pp 172–179

Amato C, Carlin A, Zilberstein S (2007) Bounded dynamic programming for decentralized
POMDPs. In: Proc. of the AAMAS Workshop on Multi-Agent Sequential Decision

Making in Uncertain Domains (MSDM)

Amato C, Dibangoye JS, Zilberstein S (2009) Incremental policy generation for finite-
horizon DEC-POMDPs. In: Proc. of the International Conference on Automated Plan-

ning and Scheduling, pp 2–9

Amato C, Bernstein DS, Zilberstein S (2010) Optimizing fixed-size stochastic controllers for
POMDPs and decentralized POMDPs. Autonomous Agents and Multi-Agent Systems

21(3):293–320

Aras R, Dutech A, Charpillet F (2007) Mixed integer linear programming for exact finite-
horizon planning in decentralized POMDPs. In: Proc. of the International Conference

on Automated Planning and Scheduling

Becker R, Zilberstein S, Lesser V (2004a) Decentralized Markov decision processes with
event-driven interactions. In: Proc. of the International Joint Conference on Au-

tonomous Agents and Multi Agent Systems, pp 302–309
Becker R, Zilberstein S, Lesser V, Goldman CV (2004b) Solving transition independent

decentralized Markov decision processes. Journal of Artificial Intelligence Research

22:423–455
Becker R, Lesser V, Zilberstein S (2005) Analyzing myopic approaches for multi-agent com-

munication. In: Proc. of the International Conference on Intelligent Agent Technology,

pp 550–557
Bernstein DS, Givan R, Immerman N, Zilberstein S (2002) The complexity of decentralized

control of Markov decision processes. Mathematics of Operations Research 27(4):819–

840
Bernstein DS, Hansen EA, Zilberstein S (2005) Bounded policy iteration for decentralized

POMDPs. In: Proc. of the International Joint Conference on Artificial Intelligence, pp

1287–1292
Bernstein DS, Amato C, Hansen EA, Zilberstein S (2009) Policy iteration for decentralized

control of Markov decision processes. Journal of Artificial Intelligence Research 34:89–
132

Boularias A, Chaib-draa B (2008) Exact dynamic programming for decentralized POMDPs

with lossless policy compression. In: Proc. of the International Conference on Auto-
mated Planning and Scheduling

Boutilier C (1996) Planning, learning and coordination in multiagent decision processes.

In: Proc. of the 6th Conference on Theoretical Aspects of Rationality and Knowledge,
pp 195–210

Boyan JA, Littman ML (1993) Packet routing in dynamically changing networks: A rein-

forcement learning approach. In: Advances in Neural Information Processing Systems 6,
pp 671–678

Buşoniu L, Babuška R, De Schutter B (2008) A comprehensive survey of multi-agent
reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics, Part C:
Applications and Reviews 38(2):156–172

Carlin A, Zilberstein S (2008) Value-based observation compression for DEC-POMDPs. In:
Proc. of the International Joint Conference on Autonomous Agents and Multi Agent

Systems, pp 501–508

Chang YH, Ho T (2004) Mobilized ad-hoc networks: A reinforcement learning approach.
In: Proceedings of the First International Conference on Autonomic Computing, pp

240–247

Decentralized POMDPs 31

Chang YH, Ho T, Kaelbling LP (2004) All learning is local: Multi-agent learning in global

reward games. In: Advances in Neural Information Processing Systems 16
Claus C, Boutilier C (1998) The dynamics of reinforcement learning in cooperative multia-

gent systems. In: Proc. of the National Conference on Artificial Intelligence, pp 746–752

Cogill R, Rotkowitz M, Roy BV, Lall S (2004) An approximate dynamic programming
approach to decentralized control of stochastic systems. In: Proc. of the 2004 Allerton

Conference on Communication, Control, and Computing

Crites RH, Barto AG (1998) Elevator group control using multiple reinforcement learning
agents. Machine Learning 33(2-3):235–262

Dibangoye JS, Mouaddib AI, Chai-draa B (2009) Point-based incremental pruning heuristic
for solving finite-horizon DEC-POMDPs. In: Proc. of the International Joint Conference

on Autonomous Agents and Multi Agent Systems, pp 569–576

Eker B, Akın HL (2008) Using evolution strategies to solve DEC-POMDP problems. Soft
Computing - A Fusion of Foundations, Methodologies and Applications

Emery-Montemerlo R, Gordon G, Schneider J, Thrun S (2004) Approximate solutions for

partially observable stochastic games with common payoffs. In: Proc. of the Interna-
tional Joint Conference on Autonomous Agents and Multi Agent Systems, pp 136–143

Emery-Montemerlo R, Gordon G, Schneider J, Thrun S (2005) Game theoretic control for

robot teams. In: Proc. of the IEEE International Conference on Robotics and Automa-
tion, pp 1175–1181

Goldman CV, Zilberstein S (2003) Optimizing information exchange in cooperative multi-

agent systems. In: Proc. of the International Joint Conference on Autonomous Agents
and Multi Agent Systems, pp 137–144

Goldman CV, Zilberstein S (2004) Decentralized control of cooperative systems: Catego-
rization and complexity analysis. Journal of Artificial Intelligence Research 22:143–174

Goldman CV, Zilberstein S (2008) Communication-based decomposition mechanisms for

decentralized MDPs. Journal of Artificial Intelligence Research 32:169–202
Goldman CV, Allen M, Zilberstein S (2007) Learning to communicate in a decentralized

environment. Autonomous Agents and Multi-Agent Systems 15(1):47–90

Guestrin C, Lagoudakis M, Parr R (2002) Coordinated reinforcement learning. In: Proc.
of the International Conference on Machine Learning, pp 227–234

Hansen EA, Bernstein DS, Zilberstein S (2004) Dynamic programming for partially observ-

able stochastic games. In: Proc. of the National Conference on Artificial Intelligence,
pp 709–715

Kaisers M, Tuyls K (2010) Frequency adjusted multi-agent Q-learning. In: Proc. of the

International Joint Conference on Autonomous Agents and Multi Agent Systems, pp
309–316

Kim Y, Nair R, Varakantham P, Tambe M, Yokoo M (2006) Exploiting locality of interac-
tion in networked distributed POMDPs. In: Proc. of the AAAI Spring Symposium on

Distributed Plan and Schedule Management

Kok JR, Vlassis N (2006) Collaborative multiagent reinforcement learning by payoff prop-
agation. Journal of Machine Learning Research 7:1789–1828

Koller D, Pfeffer A (1997) Representations and solutions for game-theoretic problems.

Artificial Intelligence 94(1-2):167–215
Koller D, Megiddo N, von Stengel B (1994) Fast algorithms for finding randomized strate-

gies in game trees. In: Proc. of the 26th ACM Symposium on Theory of Computing,
pp 750–759

Kumar A, Zilberstein S (2009) Constraint-based dynamic programming for decentralized

POMDPs with structured interactions. In: Proc. of the International Joint Conference

on Autonomous Agents and Multi Agent Systems, pp 561–568
Kumar A, Zilberstein S (2010a) Anytime planning for decentralized POMDPs using ex-

pectation maximization. In: Proc. of Uncertainty in Artificial Intelligence

32 Frans A. Oliehoek

Kumar A, Zilberstein S (2010b) Point-based backup for decentralized POMDPs: Complex-

ity and new algorithms. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pp 1315–1322

Madani O, Hanks S, Condon A (1999) On the undecidability of probabilistic planning and

infinite-horizon partially observable Markov decision problems. In: Proc. of the National
Conference on Artificial Intelligence, pp 541–548

Marecki J, Gupta T, Varakantham P, Tambe M, Yokoo M (2008) Not all agents are equal:

scaling up distributed POMDPs for agent networks. In: Proc. of the International Joint
Conference on Autonomous Agents and Multi Agent Systems, pp 485–492

Mostafa H, Lesser V (2009) Offline planning for communication by exploiting structured
interactions in decentralized MDPs. In: Proc. of 2009 IEEE/WIC/ACM International

Conference on Web Intelligence and Intelligent Agent Technology, pp 193–200

Nair R, Tambe M, Marsella S (2003a) Role allocation and reallocation in multiagent teams:
towards a practical analysis. In: Proc. of the International Joint Conference on Au-

tonomous Agents and Multi Agent Systems, pp 552–559

Nair R, Tambe M, Marsella S (2003b) Team formation for reformation in multiagent do-
mains like RoboCupRescue. In: Kaminka G, Lima P, Roja R (eds) Proc. of RoboCup-

2002 International Symposium, Lecture Notes in Computer Science

Nair R, Tambe M, Yokoo M, Pynadath DV, Marsella S (2003c) Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In: Proc. of

the International Joint Conference on Artificial Intelligence, pp 705–711

Nair R, Roth M, Yohoo M (2004) Communication for improving policy computation in
distributed POMDPs. In: Proc. of the International Joint Conference on Autonomous

Agents and Multi Agent Systems, pp 1098–1105
Nair R, Varakantham P, Tambe M, Yokoo M (2005) Networked distributed POMDPs: A

synthesis of distributed constraint optimization and POMDPs. In: Proc. of the National

Conference on Artificial Intelligence, pp 133–139
Oliehoek FA (2010) Value-based planning for teams of agents in stochastic partially ob-

servable environments. PhD thesis, Informatics Institute, University of Amsterdam

Oliehoek FA, Vlassis N (2007) Q-value functions for decentralized POMDPs. In: Proc. of
The International Joint Conference on Autonomous Agents and Multi Agent Systems,

pp 833–840

Oliehoek FA, Spaan MTJ, Vlassis N (2007) Dec-POMDPs with delayed communication. In:
AAMAS Workshop on Multi-agent Sequential Decision Making in Uncertain Domains

Oliehoek FA, Kooi JF, Vlassis N (2008a) The cross-entropy method for policy search in

decentralized POMDPs. Informatica 32:341–357
Oliehoek FA, Spaan MTJ, Vlassis N (2008b) Optimal and approximate Q-value functions

for decentralized POMDPs. Journal of Artificial Intelligence Research 32:289–353
Oliehoek FA, Spaan MTJ, Whiteson S, Vlassis N (2008c) Exploiting locality of inter-

action in factored Dec-POMDPs. In: Proc. of The International Joint Conference on

Autonomous Agents and Multi Agent Systems, pp 517–524
Oliehoek FA, Whiteson S, Spaan MTJ (2009) Lossless clustering of histories in decentral-

ized POMDPs. In: Proc. of The International Joint Conference on Autonomous Agents

and Multi Agent Systems, pp 577–584
Oliehoek FA, Spaan MTJ, Dibangoye J, Amato C (2010) Heuristic search for identical

payoff Bayesian games. In: Proc. of The International Joint Conference on Autonomous
Agents and Multi Agent Systems, pp 1115–1122

Ooi JM, Wornell GW (1996) Decentralized control of a multiple access broadcast channel:

Performance bounds. In: Proc. of the 35th Conference on Decision and Control, pp

293–298
Osborne MJ, Rubinstein A (1994) A Course in Game Theory. The MIT Press

Pajarinen J, Peltonen J (2011) Efficient planning for factored infinite-horizon DEC-
POMDPs. In: Proc. of the International Joint Conference on Artificial Intelligence,

(to appear)

Decentralized POMDPs 33

Paquet S, Tobin L, Chaib-draa B (2005) An online POMDP algorithm for complex mul-

tiagent environments. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems

Peshkin L (2001) Reinforcement learning by policy search. PhD thesis, Brown University

Peshkin L, Kim KE, Meuleau N, Kaelbling LP (2000) Learning to cooperate via policy
search. In: Proc. of Uncertainty in Artificial Intelligence, pp 307–314

Pynadath DV, Tambe M (2002) The communicative multiagent team decision problem:

Analyzing teamwork theories and models. Journal of Artificial Intelligence Research
16:389–423

Rabinovich Z, Goldman CV, Rosenschein JS (2003) The complexity of multiagent systems:
the price of silence. In: Proc. of the International Joint Conference on Autonomous

Agents and Multi Agent Systems, pp 1102–1103

Roth M, Simmons R, Veloso M (2005a) Decentralized communication strategies for coordi-
nated multi-agent policies. In: Parker LE, Schneider FE, Shultz AC (eds) Multi-Robot

Systems. From Swarms to Intelligent Automata, vol III, Springer, pp 93–106

Roth M, Simmons R, Veloso M (2005b) Reasoning about joint beliefs for execution-
time communication decisions. In: Proc. of the International Joint Conference on Au-

tonomous Agents and Multi Agent Systems, pp 786–793

Roth M, Simmons R, Veloso M (2007) Exploiting factored representations for decentralized
execution in multi-agent teams. In: Proc. of the International Joint Conference on

Autonomous Agents and Multi Agent Systems, pp 467–463

Russell S, Norvig P (2003) Artificial Intelligence: A Modern Approach, 2nd edn. Pearson
Education

Seuken S, Zilberstein S (2007a) Improved memory-bounded dynamic programming for
decentralized POMDPs. In: Proc. of Uncertainty in Artificial Intelligence

Seuken S, Zilberstein S (2007b) Memory-bounded dynamic programming for DEC-

POMDPs. In: Proc. of the International Joint Conference on Artificial Intelligence,
pp 2009–2015

Seuken S, Zilberstein S (2008) Formal models and algorithms for decentralized decision

making under uncertainty. Autonomous Agents and Multi-Agent Systems 17(2):190–
250

Singh SP, Jaakkola T, Jordan MI (1994) Learning without state-estimation in partially

observable Markovian decision processes. In: Proc. of the International Conference on
Machine Learning, Morgan Kaufmann, pp 284–292

Spaan MTJ, Gordon GJ, Vlassis N (2006) Decentralized planning under uncertainty for

teams of communicating agents. In: Proc. of the International Joint Conference on
Autonomous Agents and Multi Agent Systems, pp 249–256

Spaan MTJ, Oliehoek FA, Amato C (2011) Scaling up optimal heuristic search in Dec-
POMDPs via incremental expansion. In: Proc. of the International Joint Conference on

Artificial Intelligence, (to appear)

Szer D, Charpillet F (2006) Point-based dynamic programming for DEC-POMDPs. In:
Proc. of the National Conference on Artificial Intelligence

Szer D, Charpillet F, Zilberstein S (2005) MAA*: A heuristic search algorithm for solving

decentralized POMDPs. In: Proc. of Uncertainty in Artificial Intelligence, pp 576–583
Tuyls K, Hoen PJ, Vanschoenwinkel B (2006) An evolutionary dynamical analysis of

multi-agent learning in iterated games. Autonomous Agents and Multi-Agent Systems
12(1):115–153

Varakantham P, Marecki J, Yabu Y, Tambe M, Yokoo M (2007) Letting loose a SPIDER

on a network of POMDPs: Generating quality guaranteed policies. In: Proc. of the

International Joint Conference on Autonomous Agents and Multi Agent Systems
Varakantham P, young Kwak J, Taylor ME, Marecki J, Scerri P, Tambe M (2009) Exploit-

ing coordination locales in distributed POMDPs via social model shaping. In: Proc. of
the International Conference on Automated Planning and Scheduling

34 Frans A. Oliehoek

Varshavskaya P, Kaelbling LP, Rus D (2008) Automated design of adaptive controllers

for modular robots using reinforcement learning. International Journal of Robotics Re-
search 27(3-4):505–526

Vlassis N (2007) A Concise Introduction to Multiagent Systems and Distributed Artificial

Intelligence. Synthesis Lectures on Artificial Intelligence and Machine Learning, Morgan
& Claypool Publishers

Witwicki SJ (2011) Abstracting influences for efficient multiagent coordination under un-

certainty. PhD thesis, University of Michigan, Ann Arbor, Michigan, USA
Witwicki SJ, Durfee EH (2010) Influence-based policy abstraction for weakly-coupled

Dec-POMDPs. In: Proc. of the International Conference on Automated Planning and
Scheduling, pp 185–192

Wu F, Zilberstein S, Chen X (2010a) Point-based policy generation for decentralized

POMDPs. In: Proc. of the International Joint Conference on Autonomous Agents and
Multi Agent Systems, pp 1307–1314

Wu F, Zilberstein S, Chen X (2010b) Rollout sampling policy iteration for decentralized

POMDPs. In: Proc. of Uncertainty in Artificial Intelligence
Wu F, Zilberstein S, Chen X (2010c) Trial-based dynamic programming for multi-agent

planning. In: Proc. of the National Conference on Artificial Intelligence, pp 908–914

Wu F, Zilberstein S, Chen X (2011) Online planning for multi-agent systems with bounded
communication. Artificial Intelligence 175(2):487–511

Wu J, Durfee EH (2006) Mixed-integer linear programming for transition-independent

decentralized MDPs. In: Proc. of the International Joint Conference on Autonomous
Agents and Multi Agent Systems, pp 1058–1060

Wunder M, Littman ML, Babes M (2010) Classes of multiagent Q-learning dynamics with
epsilon-greedy exploration. In: Proc. of the International Conference on Machine Learn-

ing, pp 1167–1174

Xuan P, Lesser V, Zilberstein S (2001) Communication decisions in multi-agent coopera-
tion: Model and experiments. In: Proc. of the International Conference on Autonomous

Agents

Zettlemoyer LS, Milch B, Kaelbling LP (2009) Multi-agent filtering with infinitely nested
beliefs. In: Advances in Neural Information Processing Systems 21

	Decentralized POMDPs
	Frans A. Oliehoek
	Introduction
	The Decentralized POMDP Framework
	Histories and Policies
	Histories
	Policies
	Structure in Policies
	The Quality of Joint Policies

	Solution of Finite-Horizon Dec-POMDPs
	Brute Force Search & Dec-POMDP Complexity
	Alternating Maximization
	Optimal Value Functions for Dec-POMDPs
	Forward Approach: Heuristic Search
	Backwards Approach: Dynamic Programming
	Other Finite-Horizon Methods

	Further Topics
	Generalization and Special Cases
	Infinite-Horizon Dec-POMDPs
	Reinforcement Learning
	Communication

	References

