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Abstract. In an e-marketplace populated with a large number of sell-
ers, some of which may be dishonest, the selection of good sellers to do
business with is crucial but challenging especially when buyers do not
have much experience with these sellers. In this paper we introduce the
SALE POMDP, a framework for the seller selection problem that allows
the decision maker to reason both about the quality of the sellers, as
well as the trustworthiness of the advisors. In particular, the framework
allows the agent to ask advisors about the trustworthiness of other ad-
visors while still offering the benefit of optimally trading off information
gathering and exploitation of knowledge as afforded by a POMDP based
approach. Via this model, we present a preliminary investigation on the
benefit of reasoning about trustworthiness of advisors. We also demon-
strate how this enables incorporation of trust propagation as an integral
part of the decision making process.

Keywords: Seller Selection, E-Marketplace, POMDPs.

1 Introduction

We consider the ‘seller selection’ problem in e-marketplaces, where an agent, the
buyer, is assigned with the task of purchasing a particular item and needs to
decide from which of the agents that offer the item it should order. In order to
make this decision, the buyer maintains a belief over the quality levels of the
various sellers. Also it can ask peers about their beliefs in order to improve its
estimate of the quality levels. Only when the buyer is sufficiently sure that it
has identified a seller with sufficient quality, should it go ahead and order the
item (so the problem includes the decision of whether to place an order).

There have been a number of approaches to maintaining Bayesian beliefs
over the quality levels of sellers, by integrating the buyer’s own beliefs as well
as the beliefs of other buyers (advisors) [12, 13]. These approaches tend to focus
only on obtaining an accurate estimate of seller quality, but fail to reason about
when it is necessary to query advisors in order to make optimal decisions.

An approach was suggested to perform full Bayesian decision making by cast-
ing the seller selection problem as a partially observable Markov decision process
(POMDP), named Advisor POMDP [6]. POMDPs provide a generic framework



for optimal decision making for an agent in a stochastic and partially observable
environment [5]. The advantages of a POMDP approach are as follows: 1) rather
than trying to achieve the most accurate estimate of sellers, the approach tries to
select good sellers and does that optimally; reasoning about sellers is a means,
not an end, and 2) a POMDP approach explicitly reasons about information
gaining actions in partially observable environments, which allows the agent to
optimally trade off the cost of obtaining and benefit of more information.

However, the Advisor POMDP framework assumes that all advisors are
equally trustworthy. Following other approaches [12, 13], we acknowledge that
it is important to model the trustworthiness of advisors; modeling the trustwor-
thiness of advisors has a big impact on the optimal policy. We also believe that
by allowing the buyer to query about (other) advisors we can integrate trust
propagation into the decision making process, and thus improve the approach.

We introduce a new model called the (S)eller & (A)dvisor se(LE)ction POMDP
(SALE POMDP), which implements these ideas by explicitly incorporating a
model of the advisors’ trustworthiness in the state description. By asking advi-
sors about both sellers and other advisors, a SALE POMDP-agent can improve
its belief and subsequently take an informed decision on whether to place an
order and if so from which seller. In this paper, we demonstrate how this belief
revision process works, show that taking into account trust of the advisors is
important in the seller selection problem and that, under certain circumstances,
allowing the agent to ask advisors about other advisors allows it to realize a
higher expected utility for its owner.

2 Background

2.1 Reputation Systems

Some sellers in e-marketplaces may be dishonest and not deliver products with
the quality levels as they promised or declared. Thus, seller selection in such
uncertain environments is important. Reputation systems have been introduced
to address this issue and are particularly useful when buyers do not have much
direct experience with sellers [4]. Among them, Bayesian approaches [12, 13] have
drawn large attention. For example, Teacy et al. [12] proposed the TRAVOS
model, which is a trust and reputation model based on the beta probability
density function, and integrates a buyer’s own beliefs about sellers as well as the
beliefs of advisors. However, these approaches do not provide optimal decision
making for the buyer on whether and from which seller to place an order, which
is exactly what our approach tries to offer.

Those Bayesian approaches also suggest to model the trustworthiness of ad-
visors as some advisors may lie about their experience with sellers. For example,
[10] proposes to learn about the advisors by trying to estimate the properties of
sellers and using those to estimate the advisor’s advice given those properties.
This is on a somewhat different time-scale than our approach. In particular, in
order to learn about an advisor, the agent should first have many interactions



with a seller (to be certain enough about the sellers properties) at that point,
the agent can learn what type of advice the advisor gives for such seller proper-
ties. This means, however, that in order to learn about a single advisor multiple
transactions of both our agent and the advisor with the same seller are required.
In contrast, we hope to be able to learn about advisors by asking other advisors,
thereby avoiding the need to engage in costly transactions.

2.2 The Advisor POMDP

Regan et al. [6] introduced the Advisor POMDP, an approach for dealing with the
seller section problem based on the POMDP framework. Formally, an Advisor
POMDP consists of the following elements:

– There are I advisors that can be queried about the reputation of all J sellers.
– S—a set of possible states of the environment. A state s = 〈q, sat〉, where

q ∈ [0, 1]J is a vector indicating the quality qj of each seller and sat ∈
{−1, 0,+1} indicates whether the result of a purchase is satisfactory (+1),
unsatisfactory (−1) or whether no purchase took place yet (0).

– A—a set of actions. There is one action aski for each advisor i, and one buyj
action for each seller j.

– T—a transition function that specifies Pr(s′|s, a), the probability of trans-
fering to a state s′ given that action a was taken in state s. For aski actions,
the state does not change. For buyj action a state s = 〈q, 0〉 changes stochas-
tically to s′ = 〈q,−1〉 or s = 〈q,+1〉 with probabilities depending on qj .

– R—a reward function specifying R(s, a, s′). For ask actions, a small cost is
paid independent of the state. For transitions to a satisfied state (i.e., from
sat = 0 to sat = +1) a reward is received, while transitions to an unsatisfied
state yield a large penalty. Once the state changed to satisfied or unsatisfied,
no further rewards are given.

– Ω—a set of observations o. In the advisor POMDP, the advisors respond
with a tuple o = 〈repj , cfj〉

J

j=1
that expresses the knowledge of that advisor

about all sellers. Here repj is the reputation according to the advisor and
cfj is a measure of how certain the advisor is.

– O—the observation function that specifies Pr(o|a, s). Since the semantics
of the certainty factors are not formalized, there is some freedom in its
specification.

– b0—the initial state distribution.
– h—the horizon of the problem. That is the number of time steps, or stages,

for which we want to plan. We will assume that h is infinite in this paper.

When the agent interacts with the environment, it can maintain a so-called belief
b, i.e., a probability distribution over states via Bayes’ rule. That is, when b(s)
specifies the probability of s (for all s), we can derive b′ an updated belief after
taking some action a and receiving an observation o. Assuming discrete sets of
states and observations (as we will do in the remainder of the paper), this update
can be written as follows:

b′(s′) =
Pr(s′, o|b, a)

Pr(o|b, a)
=

1

Pr(o|b, a)
Pr(o|a, s′)

∑

s

Pr(s′|s, a)b(s). (1)



Here, Pr(o|b, a) is a normalization factor.

These beliefs are the basis for decision making: a policy π maps beliefs to
actions π(b) = a. The goal of solving the POMDP is to find an optimal policy
that maximizes the expected discounted cumulative reward, also called value:

V (π) = E

[

h−1
∑

t=0

γtR(s, a, s′) | π, b0
]

, (2)

with 0 ≤ γ < 1 the discount factor.

Finding an optimal policy π∗ is intractable in general (PSPACE complete [8]),
however, in recent years substantial advances have been made in the approximate
solution of POMDPs (e.g., [7, 11]).

3 Reasoning about which Advisors to Trust

The Advisor POMDP presents a coherent and principled framework to making
decisions in the seller selection problem. However, there are some limitations to
this model, as we now discuss.

A severe limitation is that the Advisor POMDP puts equal trust in all the
advisors.4 In a real system it is absolutely not a priori clear that all advisors can
be trusted and we hypothesize that this may have a big impact on how one should
act (i.e., what the optimal policy is). In fact, there is a large field of research
on trust propagation that deals with the question of how one should adapt the
trust in peers [3, 2]. A disadvantage of current approaches, however, is that they
deal with the problem of most accurately estimating the trust levels, rather
than integrating this type of reasoning with the decision process of selecting
a seller. As a result, it is not clear how one would actually optimally apply
such approaches in the context of seller selection. Here we try to overcome this
problem by presenting a new model that incorporates these ideas from trust
propagation within a POMDP formulation.

Also, in the Advisor POMDP, each advisor gives its ratings about all the
sellers. However, instead of estimating the quality of all sellers, the only goal
should be to select the seller with high quality. As such, the observation in
the advisor POMDP may contain a lot of unnecessary information, leading to
unnecessary communication. Therefore we will consider an approach in which
our agent has to indicate about which seller (or other advisor) it wants to ask.

These ideas lead us to the formulation of a new model called the (S)eller
& (A)dvisor se(LE)ction POMDP (SALE POMDP), which we will formally
introduce in the next section. Section 3.2 will present an example instantiation
of the framework that we use in our experimental evaluation.

4 By using a different observation function it would be possible to have observations
from different advisors result in different beliefs, thereby modeling different levels of
trust. These levels, however, would be assumed known to the agent.



3.1 The SALE POMDP Model

Like the Advisor POMDP, the SALE POMDP is a sub-class of POMDP prob-
lems. On the one hand the SALE POMDP is more complex than the Advisor
POMDP: we assume that the advisors also have a quality, or trustworthiness,
and that this is part of the state space. Moreover we introduce extra actions
as we allow the agent to ask about the quality of other advisors. On the other
hand, we make the simplifying assumption of having discrete sets of quality
levels, which allows us to use standard POMDP solvers.

Since the SALE POMDP is a POMDP, it can be described in terms of states,
actions, observations and rewards.

States. Like in the Advisor POMDP, a state contains the quality levels of all
sellers, however, it also contains the quality, or trustworthiness, of each advisor.
Let Q be the discrete set of seller quality levels and U be the set of advisor
quality levels. Then, a state is a tuple s = 〈q,u, sat〉, where q ∈ QJ is a vector
indicating the quality of each seller, u ∈ UI a vector indicating the quality of
each advisor, and sat ∈ {−1, 0,+1} as before. We also write qj for the j-th
element of q and ui for the i-th element of u. After a buy action is taken, the
decision process ends. This is modeled using sets of terminal states. That is, a
terminal state is a state where sat = +1 or sat = −1. We will think of these sets
of states as single states called satisfied and unsatisfied.

Actions. The model knows the following types of actions:

– seller queryij — ask advisor i about seller j,
– advisor queryii′ — ask advisor i about advisor i′,
– buyj — buy from seller j.
– do not buy — decide not to buy from any seller.

Transitions. As in the Advisor POMDP, we assume that when taking a query
action, the state does not change:

∀i,j Pr(s′|s, seller queryij) = δss′ , (3)

∀i,i′ Pr(s′|s, advisor queryii′) = δss′ , (4)

where δss′ is the Kronecker delta that is 1 if and only if s = s′.
When taking a buyj action, the state will always transition to a terminal

state. The transition probabilities to terminal states give a definition of the
quality levels. In general, chances of transitioning to ‘satisfied’ should be higher
when buying from higher quality sellers j.

Together, the specifications of these transitions imply the assumption that
quality and trust-levels are stationary for the duration of the decision process.

Rewards. The SALE POMDP specifies the following rewards: A small cost as-
sociated with ask actions R(s, seller queryij) = R(s, advisor queryii′) = Rask, a
reward associated with a good purchase R(s, buyj , s

′ = 〈q,u, sat = +1〉) = Rsat,
and a penalty associated with dissatisfaction R(s, buyj , s

′ = 〈q,u, sat = −1〉) =
Runsat. There is a penalty associated with taking the do not buy action when in



fact there is a seller of high enough quality (we use −Rsat), otherwise the reward
for this action is 0.

Observations. When a query action is performed the agent will receive an ob-
servation from the set of discriminated quality levels. That is, after a seller queryij
action, the agent receives an observation o ∈ Q corresponding to the quality of
seller j, while after an advisor queryii′ the agent will get an observation o ∈ U
corresponding to the quality of the advisor i′. When the agent transitions to a
terminal state, it receives the observation ‘ended’. As such O = Q∪U ∪{ended}.

As in the Advisor POMDP, there is no a priori correct way to specify the
observation probabilities. In fact, the probabilities picked for the observation
function define the meaning of different trust levels. In general, the idea is that
trustworthy advisors will give more accurate and consistent answers than un-
trustworthy ones.

Initial State Distribution. The initial state distribution is dependent on the
subjective beliefs of the agent (or its owner) when the need for purchasing an
item arises. In the case that nothing is known, it makes sense to start with a
uniform belief over the quality levels, but a different initial belief could have
resulted from previous interactions.

That is, once the buy action is taken, the resulting belief can be used as the
basis for an initial belief for a new seller selection instantiation. There are two
sources of previous experience: 1) Previous seller selection tasks: the modified
belief state resulting from advice in a previous problem can be retained, and
2) Actual experiences with sellers: even though in the decision making task we
model a transition to a terminal state with a deterministic ended observation,
the actual order will result in the owner of the agent being satisfied or not and
this information can be used to update the final belief of the agent’s previous
seller selection task giving a new initial belief for a new task.5

3.2 Example

Suppose that there are J = 2 sellers for the item in concern, each of which can
have |Q| = 2 quality levels. In this example we use Q = {L,H} for L(ow) and
H(igh) quality. Then we have 2J = 4 possible ‘quality states’ q:

q ∈ {〈L,L〉, 〈L,H〉, 〈H,L〉, 〈H,H〉}. (5)

Also suppose that there are I = 3 advisors, each of which is T (rustworty) or
U(ntrustworty). That is U = {T,U}. This leads to 2I ‘trust states’ u:

u ∈ {〈T, T, T 〉, 〈T, T, U〉, . . . , 〈U,U,U〉}. (6)

As such, an example of a fully specified state is s = 〈〈L,H〉, 〈T,U, U〉, 0〉.
The transition function for the query actions is specified as explained: the un-

derlying state does not change. There is some freedom in specifying the transition

5 In fact this can be an important mechanism to deal with advisors that are consistent
but deceptive and settings in which the majority of advisors is untrustworthy.



ui qj good bad

T H 0.9 0.1
T L 0.1 0.9
U H 0.5 0.5
U L 0.5 0.5

(a) Pr(o|seller queryij , qj , ui) for the pos-
sible observations ‘good’ and ‘bad’.

ui ui′ good bad

T T 0.9 0.1
T U 0.1 0.9
U T 0.5 0.5
U U 0.5 0.5

(b) Pr(o|advisor queryii′ , ui, ui′) for the
possible observations ‘good’ and ‘bad’.

Table 1: Observation probabilities.

probabilities for reaching satisfied and unsatisfied, since this encodes the defini-
tion of the quality levels. In this example, buying from a high quality seller will
lead to satisfied with 80% probability: Pr(sat = −1| 〈sat = 0, qj = L〉 , buyj) =
0.8. Similarly, we will assume that a low quality seller will lead to unsatisfied
with probability 0.8.

In our example, we label the two possible observations ‘good’ (i.e., the advi-
sor says that the seller/other advisor is high quality) and ‘bad’ (the seller/other
advisor is said to be low quality). As mentioned above, the observation probabil-
ities when transferring to a terminal state are fixed: the agent will observe ended
with probability 1. The observation probabilities for the seller queryij action
(ask advisor i about seller j) should be such that asking a trustworthy advisor i
gives more accurate observations. One possible way to specify these probabilities
is shown in Table 1a. Similarly, Table 1b shows example observation probabilities
for the advisor queryii′ action.

4 Experiments

In this section we report upon a first empirical investigation of the SALE POMDP
model. In particular, we demonstrate how the belief update (1) leads to corre-
lation of particular states which forms the basis of improved decision making.
We also show that in our example setting it is important to explicitly take into
account the advisor’s trustworthiness and that asking advisors about other ad-
visors can be beneficial in certain settings.

In order to perform the empirical evaluation we utilize SARSOP [7], a state-
of-the-art POMDP solver, which reads in problems in a standardized POMDP
description format. SARSOP does not exploit the factored structure of our prob-
lem, therefore, in specifying our models, we substituted all the terminals by two
separate states satisfied, unsatisfied, reducing the number of states. Further-
more, the models we used specified two quality and trust levels as in the example
of Section 3.2. Also, unless noted otherwise, the transition and observation mod-
els used the same parameters as described in that section. For the rewards,
we used Rask = −1, Rsat = 50, Runsat = −100. Also, we penalized taking the
do not buy action from states where there was a high quality seller with −50.



4.1 Illustration of Belief Update: Correlation between States

Here we provide some intuition behind the SALE POMDP model by illustrating
the process of belief updating. The basic idea is that the belief updates should
correlate the state factors in meaningful ways. For instance, observing good after
seller queryij should give more weights to states where the seller is high quality
qj = H and the advisor is trustworthy ui = T , and less weights to states where
the seller is low quality qj = L and the advisor is trustworthy ui = U . This
is clearly demonstrated in a number of transitions in Figure 1b, which shows
the policy found for a one seller (J = 1) one advisor (I = 1) SALE POMDP.
Similarly, observing Tj after advisor queryii′ should put more weight on states
where ui′ = T and ui = T , and decrease weight on states where ui′ = U and
ui = T .

4.2 The Impact of Taking into Account Trust

Here we compare (a simplified version of) the Advisor POMDP with one seller
(J = 1) and one advisor (I = 1) to the SALE POMDP model. For both models
we use the same discretization of quality levels (Q = {L,H}), so the only dif-
ference is that the SALE POMDP includes the trustworthiness of the advisor
as a state variable and that the observations are dependent on this factor. The
observation model is as shown in Table 1.

Figure 1 shows the policies found for the two models. It clearly shows that the
policies are qualitatively different. In particular, while in the Advisor POMDP
it is possible to return to the initial belief after observing an equal number of
‘good’ and ‘bad’ observations. In contrast, in the SALE POMDP this leads to
a belief where the advisor is thought to be untrustworthy. As such, the agent is
able to reason about the trustworthiness of the advisor by repeated interactions.

Since, the Advisor POMDP corresponds to the setting in which there is a
single trustworthy advisor, it achieves higher value (mean value of 1000 evalu-
tions is 5.36) than the SALE POMDP (−8.56). However, the policy found for
the Advisor POMDP with only one untrustworthy advisor (i.e., with ‘advice ac-
curacy’ 0.5) is much lower (−19.88). Interestingly, the mean of 5.36 and −19.88
(−7.26) corresponds to the setting where when an advisor type is chosen with
50% probability and then revealed to the agent. We see that the SALE POMDP
achieves value fairly close to this ‘oracle’ upper bound.

4.3 Multiple Advisors: Trust Propagation

We also hypothesize that allowing the agent to query advisors about other ad-
visors, thereby integrating a form of trust propagation in the seller selection
decision procedure, can allow for further improvements. In order to test this
hypothesis, we consider the SALE POMDP framework with three advisors and
compare it to a baseline model: the same SALE POMDP model but without
the advisor queryii′ actions, which we will call the NoAQ model. The top row
of Table 2 lists the results of this comparison. In contrast to our expectation,



(a) Advisor POMDP policy.

(b) (Partial) SALE POMDP policy.

Fig. 1: Comparison of policies found. Thick nodes indicate where buy and
do not buy actions are taken. Nodes also show the belief over (non-terminal)
states.

we see that the NoAQ model actually performs better. However, since the set
of policies for the regular SALE POMDP model is a strict superset of those for
the NoAQ model, we know that the former should be able to achieve at least
the same value. The fact that this does not happen can be attributed to the
additional computational complexity (induced by the additional actions).

The fact that the regular model does not outperform NoAQ also means that
the latter is able to sufficiently figure out which advisors are trustworthy using
only seller query actions (as also discussed in Sect. 4.2). Therefore we form a new
hypothesis that asking about advisors is beneficial when seller query actions do
not provide much information about the trustworthiness of an advisor. This is
confirmed by the other test results shown in the table that show what happens
if the accuracy with which trustworthy advisors report about sellers (i.e., the
‘0.9’ from Table 1a) diminishes.

The mentioned additional computational complexity of the SALE POMDP
model is further demonstrated in the bottom part of the table. It shows that
allowing for additional solution time over 100s is improving the quality of the
policy further, while for NoAQ the further improvement is marginal.



regular NoAQ

mean LB UB mean LB UB

Varying accuracy of advisors w.r.t. seller quality (1000s)
accuracy

0.9 −3.24 −3.67 −2.81 −2.87 −3.30 −2.44
0.8 −5.31 −5.74 −4.87 −6.39 −6.79 −5.99
0.7 −8.08 −8.43 −7.73 −9.77 −10.10 −9.44
0.6 −13.20 −13.50 −12.90 −14.82 −15.09 −14.56

Impact of solution time (0.7 accuracy)
time(s)

100 −8.50 −8.85 −8.15 −9.80 −10.13 −9.47
500 −8.63 −8.99 −8.27 −9.78 −10.11 −9.46

1000 −8.08 −8.43 −7.73 −9.77 −10.10 −9.44

Table 2: Results for the SALE POMDP with multiple advisors. Shown are mean
values from 1000 evaluations, together with 95% confidence bounds.

5 Discussion & Future Work

Here we discuss the limitations of the SALE POMDP model and point to avenues
for future work.

5.1 Overcoming Restricting Modeling Assumptions

A restrictive assumption is that we assume independent responses from the same
advisor. That is a response of an advisor does not depend on a earlier response
from that same advisor. While this is a common assumption (e.g. [10]), it might
not be the most realistic. This restriction can be overcome by modeling a previous
response as part of the state. The state factor for an advisor i could for instance
have value 〈trustworthy, not queried yet〉 or 〈untrustworthy, seller-3-high-quality〉.
The current model can also be a good model for groups of advisors, when we
ask a different person within that particular group (e.g., IP-range).

Another issue is that we are currently assuming a simplistic form of untrust-
worthy: basically (more) random. However, in real-life, untrustworthy advisors
may give very biased answers. In such cases it is much more difficult to identify
untrustworthy advisors, but this would also be a problem for a human decision
maker. Still, the result of the final belief update (transferring to a unsatisfied
state), will correct for the wrong belief that that advisor was trustworthy. More-
over, other approaches to dealing with deceptive advisors based on Bayesian
updating (such as [10]) can be neatly integrated in our approach.

5.2 Scaling Up

Solving POMDPs is intractable in general, but in recent years, huge advances
have been made in approximate solutions: good policies have been found for



problems with thousands of states. Still, our empirical evaluation indicates that
computational costs are a limiting factor in the use of our framework. However,
there are a number of different forms of structure in the proposed POMDP
formulation that can potentially be exploited for faster solutions. For instance,
the SALE POMDP really is a factored POMDP, so we may try and use solvers
that exploit this property such as symbolic Perseus [9]. Moreover, there is other
special structure that we may be able to exploit. For instance, we do not care
about which seller we end up ordering from, but only about whether that seller
has sufficient quality. This means that there are symmetries between sets of
states (e.g., a 〈H,L, T 〉 has the same value as 〈L,H, T 〉) which may be exploited
[1]. Moreover, there may be little difference in value between (beliefs assigning
high probability to) states that have one high-quality seller and states that have
multiple high quality sellers. In future work we hope to exploit these types of
structure for improved computational efficiency.

5.3 Learning Accurate Models

For our proof-of-concept experiments, we specified all the parameters in an ad-
hoc fashion. However, it is important to know that all those numbers can be
estimated in a sensible way. Moreover, for a decentralized peer-to-peer type of
system to work, it is required that each peer (each agent) can adapt its model
by learning because 1) it needs to be able to adapt to changes over time, and 2)
it needs to adapt to the preferences of its owner [10].

Learning POMDP models is a very difficult problem, but there are some
special properties that could be exploited. First, the observation model might
not need to be learned since it in fact encodes the definition of our different
trust-levels.6 Second, the state of the world in this problem does not change (or
perhaps only very slowly), which may lead to easier learning. Finally, we would
like to point out that even if the model is not completely accurate, it is still
possible to get out very high quality policies: The general form of “buy when
certain enough about one seller” does not change. For instance, by setting the
reward function conservatively, we know that the agent might perform too many
queries in case that the model was right, but it also builds in a robustness against
the uncertainty in model parameters.

6 Conclusion

In this paper, we proposed a novel (S)eller & (A)dvisor se(LE)ction POMDP
model (SALE POMDP) to address the problem of seller selection in e-commerce
settings. Our model provides a principled approach for buyers to optimally select
sellers trading off the cost and benefit of seeking more information from advisors.
We provided examples to demonstrate step by step how our model works, and
experiments to demonstrate its effectiveness. Encouraged by this promising first

6 An interesting other question is how we may optimize these definitions.



step, we also discussed several important next steps to improve our model and
increase its applicability.
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