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Abstract

Optimal decentralized decision making in a team of
cooperative agents as formalized by decentralized
POMDPs is a notoriously hard problem. A major
obstacle is that the agents do not have access to a
sufficient statistic during execution, which means
that they need to base their actions on their histo-
ries of observations. A consequence is that even
during off-line planning the choice of decision rules
for different stages is tightly interwoven: decisions
of earlier stages affect how to act optimally at later
stages, and the optimal value function for a stage is
known to have a dependence on the decisions made
up to that point. This paper makes a contribution to
the theory of decentralized POMDPs by showing
how this dependence on the ‘past joint policy’ can
be replaced by a sufficient statistic. These results
are extended to the case of k-step delayed commu-
nication. The paper investigates the practical impli-
cations, as well as the effectiveness of a new prun-
ing technique for MAA* methods, in a number of
benchmark problems and discusses future avenues
of research opened by these contributions.

1 Introduction

Multiagent planning under uncertainty has attracted consider-
able attention in the last decade. In many applications, a team
of agents will be facing a great number of uncertainties—
e.g., due to unpredictable outcomes of actions, limited and
noisy sensors, and failing or absence of communication—
that have to be dealt with in a principled manner. Decentral-
ized partially-observable Markov decision processes (Dec-
POMDPs) [Seuken and Zilberstein, 2008; Olichoek, 2012]
have been put forward as a framework for such problems.
However, optimal decentralized decision making for a team
of cooperative agents as formalized in the framework is a no-
toriously hard problem [Bernstein et al., 2002].

A major obstacle is that the agents only have access to
their individual observations during execution. It is currently
not known, however, if such individual observation histories
can be summarized using more compact (sufficient) statistics,
without fixing the policies of the other agents. This means
that even if we perform the planning in advance (i.e., in an

off-line planning phase) we need to assume that agents base
their actions on their entire histories of observations. A con-
sequence is that even during off-line planning the choice of
decision rules for different stages is tightly interwoven: as in
(single-agent) MDPs [Puterman, 1994], the best future deci-
sions affect optimal decisions for earlier stages, but in Dec-
POMDPs decisions of earlier stages affect how to act opti-
mally at later stages. That is, the optimal value function for
a stage ¢ is known to have a dependence on the policies fol-
lowed at stages O, . ..,t — 1.

This paper makes a contribution to the theory of decentral-
ized POMDPs by showing how this dependence on the ‘past
joint policy’ can be replaced by a probability distribution over
joint action-observation histories, or a joint distribution over
joint observation histories and states. Thereby, it introduces
sufficient plan-time statistics for the past joint policy. We
show how the optimal value functions can be formulated in
terms of these statistics and prove their correctness, hence es-
tablishing the sufficiency of the statistics. Moreover, we also
show how these results can be extended to settings with k-
step delayed communication. In an empirical evaluation, we
investigate the potential for practical implications in a number
of benchmark problems, showing that in certain problems the
use of sufficient statistics can allow for a much more compact
representation of the optimal value function. Additionally,
a new sufficient statistic-based pruning technique for heuris-
tic search methods is shown to have the potential to improve
planning efficiency, although it does not directly address the
bottleneck of current state-of-the-art methods. Finally, we
discuss avenues for future research opened by the identifica-
tion of the proposed plan-time statistics.

This paper is organized as follows. First, in Section 2, we
provide the necessary background on Dec-POMDPs and their
value functions. The main contribution, the identification of
sufficient statistics is presented in Section 3. Section 4 ex-
tends these results delayed-communication settings. The em-
pirical evaluation is described in Section 5. Finally, Section 6
discusses opportunities for future work, and Section 7 con-
cludes.

2 Background

Here we provide a concise review of the necessary back-
ground on Decentralized POMDPs and their value functions.
For a more extensive introduction see [Olichoek, 2012].



2.1 Dec-POMDPs

A Dec-POMDP is a model for multiagent planning under un-
certainty, in which, at every time step or sfage, each agent
selects an action based on its individual observations (we as-
sume no communication unless mentioned explicitly).
Definition 1 (Dec-POMDP). A decentralized partially ob-
servable Markov decision process (Dec-POMDP) is a tuple
(D,S, A, T,R,0,0,h,by), where

e D={1,...,n}is the set of n agents,
S is the finite set of states s,
A is the set of joint actions a = (a, ... a,),
T is the transition function that specifies Pr(s;y1|s¢,a¢),
R(s,a) is the immediate reward function,
O is the set of joint observations 0 = (01, . .. ,0,),
O the observation function: Pr(os41]at,S¢+1),
h is the horizon of the problem,
by € A(S), is the initial state distribution at time ¢t = 0.

The goal in Dec-POMDPs is to find an optimal joint pol-
icy m* that maximizes the expected sum (over stages) of re-
wards. A key difficulty that sets Dec-POMDPs apart from
frameworks as multiagent MDPs [Boutilier, 1996], is that
this joint policy is decentralized: it is a tuple (m;,...,m,)
such that the individual policy 7; of every agent ¢ maps in-
dividual observations histories (OH) 0; ; = (0;,1,...,0i¢)
to actions 771(02 t) = a;¢. The joint OH is denoted
0y = (01,,...,0n,). We also consider stochastic policies,
which map from action-observation histories (AOH) 92 : =
(@i,0,0i,15 - - i1 ,0.¢) to probability distributions over ac-
tions: 7;(a;, t|0z +). Joint AOHs are denoted 5,:.

A policy is a sequence m; = (d;0,-..,0;n—1) of deci-
sion rules that map length-¢ observation histories to actions
9:,t(0i,+) = a;;. We also consider stochastic decision rules

Gi(ai. |9_; +). A joint decision rule J; specifies a decision rule
for each agent. We define a joint policy that is partially spec-
ified ¢ = (do, - - - ,0t—1) as the past joint policy at stage t.

2.2 Optimal Value Functions

As for MDPs [Puterman, 1994; Bertsekas, 2005] and
POMDPs [Kaelbling er al., 1998; Spaan, 2012], for Dec-
POMDPs, it is possible to identify optimal value functions.
To define them, we will need the following preliminary defi-
nitions:

9t,§f ZPI’ 5f|b070f ZR sf,af 5f af|9t) (21)

ZPI‘ Sf‘bo,at Z

St+1

0t+1 |0t;51‘

Pr(0t+1 |at ,St+1) Pr(st+1 |St ,at)5t (at |é;) (22)
Theorem 1 ([Olichoek et al., 2008bl). The optimal value
function for a Dec-POMDP is defined as

Qt(b(h@t;é’h(st) = R(@,(St)-l-
Z Z Pr(étﬂ|5t75t)Qt+1(b07¢t+1,§t+175f+1) (2.3)

at Ot41

(for the last stage the second term is omitted) with ;11 =
(p¢,0¢) the past joint policy formed by concatenating p; and
0¢. This equation in turn defines the optimal decision rule via

Q1 (bo,pr,01) = Z Pr(§t|b07§0t)Qt(b0aS@tagtvét)u (2.4)
0

d; = arg max Q1 (bo,pt,0¢). (2.5)

A number of remarks are in order:

e Note that (2.5) defines 67 ; in (2.3).

e In contrast to other descriptions, this set of equations,
referred to as the ‘sequentially rational’ optimal value
function, determines the optimal value also for joint
AOHs that will never be realized under an optimal joint
policy [Oliehoek et al., 2008b].

o Here, we follow the notation of [Oliehoek, 2010; 20121,
which makes explicit the dependence on by. The defini-
tions of (2.1), (2.2) used here are modified to allow for
stochastic policies.

e While the above formulations do not resemble tradi-
tional Q-function for MDPs, the use of the letter ‘Q’ can
understood by interpreting d; as an action in a meta-level
MDP for the planning process [Oliehoek, 2010]. This
meta-MDP has ‘states’ (bg,p;) with values Vi (bo,p¢)
corresponding to the maximum of (2.5).

Even though the above description is (relatively) concise,
using these equations to compute the optimal joint policy
is cumbersome, as it requires evaluating (2.4), (2.5) for all
past joint policies ¢p_1 at the last stage. As such, even
if the maximization in (2.5) could be performed efficiently,
this algorithm would at best gain one horizon on brute force
search. Therefore, in practice, researchers have resorted
to heuristic search over this space of joint policies [Szer
et al., 2005; Oliehoek et al., 2013], dynamic programming
[Hansen et al., 2004; Boularias and Chaib-draa, 2008; Am-
ato et al., 2009] or approximate methods [Nair er al., 2003;
Emery-Montemerlo et al., 2004; Oliehoek et al., 2008a;
Seuken and Zilberstein, 2008; Kumar and Zilberstein, 2010;
Wu et al., 2010].

3 Sufficient Plan-Time Statistics

In this section we present our main contribution: the identifi-
cation of sufficient statistics of the past joint policy for Dec-
POMDPs. That is, we show how the equations in Theorem 1
can be reformulated such that they no longer depend on the
past joint policy ¢, but rather on a sufficient statistic o, that
summarizes it. Since many ¢; may correspond to the same
statistic, this can lead to substantially more compact repre-
sentations of the optimal value function.

3.1 Statistics for General Policies

Although it is well-known that a Dec-POMDP has at least one
deterministic optimal joint policy, there is no reason to ex-
clude the more general case of stochastic policies from the de-
scription of optimal value functions. Moreover, this assump-
tion will lead to simplest description of a sufficient statistic
o; as follows.



Definition 2 (Sufficient statistic for general policies). The
sufficient statistic for a general ¢, assuming by is known,

is a the distribution over joint AOHs: o4 (6;) 2 Pr(fy|bo,¢¢ ).
Given this definition, we will now posit the equations that

are the equivalent of Theorem 1. The proof of their correct-
ness follows. The optimal value can be expressed as

Qt(b030t7§t76t) = R(gtaét)+
Z Z Pr(014110:,6:)Qtr1(bo,0r41,0:11,6,75)  (3.1)
at Ot41
with the updated statistic—note 0,1 = (6;,a;,0¢41)—
Ut+1(§t+1) = Pr(0t+1|gt7at)6t(at|§t)0t(§t)~ (3.2)
Optimal decision rules can be derived from
b()vo—ta(st Z Jt Qt ban—tvgtv(St) (33)
579" = arg max Q¢ (bg,0¢,04). (3.4)
t

We formally proof the correctness of the above equations,
starting with the sufficiency of o, for predicting the optimal

value Qt(bo,%,é;v(st)-

Theorem 2. For all py, the distribution over AOHs at(@) is
sufficient to predict the optimal value:

Qt(b07¢t7§ta§t) = Qt(b070ta§ta6t)'

Proof. The proof is listed in the appendix. O

Vbo,e”t,ét

The following conclusions follow immediately.

Corollary 1. The non-history-based ‘meta MDP’
Q-functions given by (2.4) and (3.3) are identical:

Qt(bo#?t#st) = Qt(boﬂtﬁt)-

Proof. This follows directly from Theorem 2 and the defini-
tions of the ‘meta MDP’ Q-functions in (2.4) and (3.3). [

Corollary 2. The system of equations given by (3.1) and (3.4)
express the optimal value function.

Proof. This follows directly from their equality to equations
(2.3) and (2.5).

3.2 Deterministic Policies

The above definition of the statistic o; leads to the most
straightforward formulation. However, in the context of de-
terministic policies the statistic is not directly useful; when
restricting to deterministic policies, per definition, each ¢, in-
duces a different Ut(é;). In this sub-section, we fix this prob-
lem by introducing a second statistic that additionally takes
away the dependence on the initial belief b.

Definition 3 (Sufficient statistic for deterministic policies).
The sufficient statistic for a tuple (bo,p:), with ¢, deter-
ministic, is a the distribution over joint OHs and states:

Ut(Stﬁt) £ Pr(st,5t|bo,80t)-

In the following, we will also write o¢(s;|0;) and o(d})
for the conditional and marginal computed from o,. Again,
we will need preliminary definitions for the rewards and ob-
servation probabilities:

= 3" Rs0.8(@)o(s:15),

St

R(04,61,6:) (3.5)

Pf(0t+1 |Ut,5t>5t)zz Z Pr(0t+173t+1 |5t76t(5t))0t(3t|5t)~

St St+1
3.6)
The next statistic (a function of o; and J;) is given by

) = Z Pr(si11,0011]5¢,0¢(01))0¢(5¢,0%).

St

Ot41(St41,0t 41

(3.7)
We are now in a position to give optimal value functions
based on this new sufficient statistic.

Theorem 3. Using the sufficient statistic for deterministic
past joint policies, the optimal value function of a finite-
horizon Dec-POMDP can be written as

Q:(0¢,04,0¢) = R(0,0,0¢)+
ZPT(0t+1|Ut75t75t)Qt+1(Ut+175t+175£qi>§)7 (3.8)

Ot41

where optimal decision rules are defined via

Q:i(01,61) ZUt 01)Qi(04,01,01), (3.9)

oedx (3.10)

= argmax Q+(04,0).
Proof. The proof is similar to that of Theorem 2. A sketch of
the proof is in the appendix. O

3.3 Restricted-length Policies

In the equations for the optimal value function, the role of
the observation history is purely in terms of providing accu-
rate distributions over states o¢(s;|0;) and providing the basis
for action selection. In cases where it is possible to restrict
the class of considered policies to policies that map from the
last k£ observations, it is possible to maintain more compact

statistics oy (s¢,0,") over length-k observation histories."

For Dec-POMDPs, such a restriction in general is sub-
optimal: the most accurate distribution o;(s;|0;) over states
is given by the complete history, and as such, policies should
in general condition on the entire history. Nevertheless, there
may be situations where we can prove that conditioning on
full history is not necessary. An example is the sub-class of
transition independent Dec-MDPs (TI-Dec-MDPs) [Becker
et al., 2003]. For such problems, it can be shown that an
optimal joint policy exists in decentralized mappings from

'The technicalities of such a statistic are similar to the
situation of k-step delayed communication (treated in the
next section) with the difference that o;_j4+1 is not ob-
served, but must be averaged over: Jt+1(st+1,6’tﬁ1) =

Zst Zot—k+1 Pr(st+170t+1 ‘Sh&f(atk))a—t (Staatk)'



the last (k = 1) observation to actions. As such, it is pos-
sible to maintain a more compact statistic o (s¢,0;). Further-
more, since in TI-Dec-MDPs the joint observation identifies
the state and vice versa, this statistic simply reduces to a dis-
tribution over states o (s¢ ), and therefore corresponds exactly
to the so-called state-occupancy that was recently identified
as a sufficient statistic for planning for TI-Dec-MDPs and that
has led to significant improvements in their solutions [Diban-
goye et al., 2012].

4 Delayed Communication

In this section we consider Dec-POMDPs with k-step delayed
communication. That is, we assume that, at every stage t,
all the agents broadcast their individual observations, but that
this information only arrives at stage t+k. The descriptions of
optimal value functions introduced in Section 3 can be gener-
alized to delayed communication. Essentially, this integrates
the insight of the previous section in existing descriptions of
optimal value functions for delayed communication [Ooi and
Wornell, 1996; Oliehoek et al., 2008b]. In this section we will
concentrate on the deterministic past joint policy formulation,
but extension to stochastic policies follows trivially.

Delayed Communication Value Functions. We will fol-
low the description of value functions given in [Oliechoek et
al., 2008b]. The main idea behind the descriptions of value
functions for Dec-POMDPs with k-step delayed communi-
cation is that every stage ¢ is similar to a horizon-k Dec-
POMDP: since the communicated individual observations of
stage t — k will have arrived, each agent knows the joint AOH
6_’;, , and can compute b;_, the distribution over states at that
stage:

be—ro(st—1) = Pr(se—k|bo.Or—r)-

This distribution serves the same role as the initial belief b,
in a Dec-POMDP without communication. In addition, each
agent will know the sequence th = (0i—k+1;---,0i¢) Of
its last k& private observations. Therefore, to act at stage ¢,
the agents have to use a joint decentralized decision rule
6 = (6 ;,...,0F ,) that maps length-k observation histo-

ries to joint actlons 5K (ot ) = a;. However, the optimal JF
depends on ¥, the past joint pohcy since stage t — k. ThlS

% fulfills the same role as ¢; in the normal Dec-POMDP
formulation and also has similar shape: it simply is a tuple of
horizon-k policy trees, one for each agent.

Note that we still assume that planning takes place in ad-
vance, so each agent will be able to determine what ¢ is
(given 6_,). This means that we can form the length-(k + 1)
policy ¢! = (¥ 6%) in exactly the same way as for normal
Dec-POMDPs. The difference, however, is in the way it will
be used, rather than directly plugging gaf“ in the value func-
tion for stage ¢ + 1 (cf. equation 2.3), it will be used to track
the length-£ past joint policy at the next stage. In particular,
at the next stage, each agent will receive o;_ 1 (via commu-
nication). Therefore they will know which part of <pf *1 has
been executed during the last k stages t —k+1, . .. ,t and they
discard the part not needed further. We will write discarding

k+1

the part of ;" that is not consistent with 0;_;1 as

90t+1 = Spt+ ﬂ

The optimal value function for a finite-horizon Dec-
POMDP with k-step delayed, cost and noise free communi-
cation [Oliehoek et al., 2008b] is given by:

Qt(btfkacpfvé?aéf) = R(btaéi{c(ézc)) + Z

Ot+1
Pr(0p41/06,0F (07))Qp iy (k1,051,051 .0571)  (42)

where b; is the joint belief that results from b;_j; and ézf
and where the definitions of R(...) and Pr(os41]...) fol-
low from trivial adaptations of equations (2.1) and (2.2). The
next-stage length-k past joint policy is F 1 1s given by (4.1).
To better interpret (4.2), it is informative to compare this
equation to the equation for Dec-POMDPs without commu-
nication (2.3). Analogous to that setting, also in the case of
k-step delayed communication, we can define the optimal de-
cision rules via:

Qt(bt—kﬁpfa‘sf)

“.1)

Ot—kt1’

2 Z Pr(é‘f|bt7k7§0f)Qt(btfk»@fve_?aéf)ﬂ
o
4.3)

55* = Hzls%x Qt(bt,k,gpf,éf). 4.4)
t

Sufficient Statistics. While the number of past joint poli-
cies considered is only doubly exponential in k£ and not the
full horizon, this number is very large for longer delays. As
such, also in this case, having descriptions of value functions
based on sufficient plan-time statistics can be valuable.

Definition 4 (Sufficient statistic for k-step delayed communi-
cation). A sufficient statistic for a tuple (b;_j,F), with F
deterministic, is the distribution over joint OHs and states:

Ut(st;Ot) Pr(St,Ot |bt ka‘Pt)

This allows us to define R(0y,07,6F) and
Pr(o11|0¢,07,6F), analogous to (3.5), (3.6). The next
statistic is a function of o;, d; and the communicated
joint observation oy_py1. Let 67 = (0—ps1,6, ') and
6&1 = (6f71,0t+1) then the updated statistic is given by

S, Pr(ses1.00s1l56.6F (6)))oe (54,67
P(0t7k+1‘0t)
with P(0t_+1|ot) a normalization constant.

Theorem 4. The optimal value function of a Dec-POMDP
with k-step delayed communication can be written as

Qy(01,6] 0) = R(04,0, 6 )+
ZPI‘ 0t+1\0t70t, )Qt+1(0t+170t+1a5f-:1) 4.5)

Ot41

Sk
ot +1(St41 7Ot+1)

9

where the next-stage statistic 011 is as defined above, and
where optimal decision rules are defined via

O't,(sk Zat Ot Qt Utaot 5 ) (46)



t=1 t=2 t=3
$Y1 o1 P2 02 P3 o3
tiger 9 2 729 20 4.78¢6 4520

broadcast 4 4 64 56 1.63e4 1.16e4
recycling 9 9 729 441 4.78¢6 X
FF 9 9 729 729 4.78¢6 X
gridsmall 25 16 1.56e4 4096 6.10e9 X
hotell 9 1 5.90e4 4 1.7¢e19 —

Table 1: Number of o; vs. number of ¢, .

6k = arg max Q. (04,08). 4.7
6t

Proof. The proof—omitted due lack of space—shows that
Qt(at,atkﬁf) = Q,(bi—_k,p¥,0F) following the the same
steps as the proof of Theorem 2. O

S Experiments

Here we report on an empirical evaluation directed at investi-
gating the potential practical impact of the proposed sufficient
statistics. A potential important consequence of using suffi-
cient statistics is that it allows representing the optimal value
function more compactly. However, the extent to which this
is the case depends on how many ¢, map to the same distribu-
tion oy (s¢,0: ). Therefore, to investigate this potential in prac-
tice, we have examined the number of unique distributions
0¢(s¢,07) in a number of standard benchmark problems.?

The results are shown in Table 1. It shows the number
of past joint policies ¢, for different stages ¢, as well as the
number of unique distributions o (s;,0;) that those histories
induce, given the initial belief by. Entries marked ‘—’ ran
out of time (>1h), and marked ‘X’ ran out of memory (2GB).
This clearly indicates a limitation of using sufficient statistics:
caching the distributions themselves can take a considerable
amount of memory. However, the results also show that there
can be considerable reductions in size, although this is very
much problem dependent. For instance, firefighting (FF) does
not allow for any reduction: every ¢, induces a unique statis-
tic o;. In contrast, tiger and hotell allow for a reductions of
respectively three and four orders of magnitude. Note that
these result clearly illustrate that the reduction due to suffi-
cient statistics is quite different from the clustering technique
used in [Oliehoek et al., 2009]: it is not necessarily the case
that problems that exhibit high clustering (such as broadcast
channel and recycling) also lead to the highest reductions by
using sufficient statistics.

Since certain problems (tiger and hotell) give large re-
ductions, we examined whether it is possible to use these
statistics to increase performance of policy search for these
problems. In particular, we augmented the state-of-the-art
GMAA*-ICE solver [Oliechoek et al., 2013] with sufficient
statistic-based pruning (SSBP): a procedure that checks if the

2 Available from http: //www.masplan.org/.

3Clustering tests if P(s,5_;|0;,0) = P(s,0-:|0},¢) and merges
OHs, thereby collapsing many extensions of . SSBP tests
P(s,0lp) = P(s,0]¢’) and avoids going down a branch ¢ com-
pletely, provided that it went down an equivalent branch ¢’ earlier.

nodes created at depth ¢

SSBP 1 2 3 4 5 6
tiger
yes 1 10 615 28475 4
QMDP.hS 50" 9 69 2319 41130 4
yes 1 2 8 18 162 1
QBGh6 15 9 2 g 18 166 1
hotel1
QMDP, h4  yes 1 4 6 3
no 9 252 11178 10935
QMDP, h5  yes 1 4 12 15 7
no not solvable (out of 2GB mem.)
QBG,h5 no 9 4 3 3 1

Table 2: Number of created child nodes in GMAA-ICE, when
using sufficient statistic-based pruning (SSBP).

statistic o; induced by the current ¢; was already encoun-
tered, allowing for pruning in the search. Effectively this
transforms the GMAA* search tree into a DAG: when reach-
ing a node that was visited before, it is only further expanded
if the value along the new path is higher than before (i.e., the
cost of reaching it is lower). We compare the number of nodes
that are created when pruning based on o; versus when not.

The results are shown in Table 2. It clearly shows that when
using QMDP, many nodes can be pruned. This translates to
improvements in run time, e.g., 1.5s vs 39.9s for QMDP hori-
zon 4. When using tighter heuristics as QBG, however, we
see that these are already perform very well at guiding the
search over past joint policies, such that the effect of using
sufficient statistics is limited. For longer horizons, however,
these heuristics are often difficult to compute and lose their
tightness, meaning that there might still be a practical role
for sufficient statistics in heuristic search algorithms. How-
ever, the current bottleneck that these methods experience—
the complexity of expansion of the nodes for later stages—
will need to be tackled with a different approach.

6 Future Work

This work lies the foundation for a number of future research
directions. Potentially a great advantage of using sufficient
statistics over past joint policies is that the difference between
two statistics can be measured. An important direction of re-
search is therefore to see if a bound on the difference in statis-
tics can imply a bound on difference in value. This would
directly provide a starting point for developing approximate
versions of Dec-POMDP algorithms, which can give guaran-
tees on the error. In fact, [Dibangoye er al., 2013] simulta-
neously to this work identified a similar statistic of the form
Ot (579_;), and showed that the value function is piecewise lin-
ear and convex over this space, a property they show that can
be exploited very effectively by adapting POMDP solution
methods. Future work, should determine whether exploiting
the same property of the more compact o (s,0) statistic pre-
sented here can lead to further improvements.

Another promising direction of research is enabled by the
insight that restricted-length policies allow for more com-
pact statistics. This means that not only the maximization
(3.10) becomes more tractable, but also that there is a larger



chance that past joint policies will result in the same statistic.
As such, artificially restricting the complexity of the policies
gains traction in two complementary ways. Future research
should investigate if this can be leveraged by searching in
spaces of policies of incrementally increasing complexity.

7 Conclusions

This paper introduced sufficient plan-time statistics for Dec-
POMDPs that allow for more compact description of the op-
timal value function. We formally proved that these descrip-
tions are correct, i.e., the proposed statistics are indeed suffi-
cient to predict the future value, and extended these descrip-
tions to the case of k-step delayed communication in Dec-
POMDPs. An empirical evaluation investigated the numeri-
cal impact on the description of optimal value functions for a
number of benchmark problems, showing a potentially large,
but problem-dependent reduction in size. Moreover, it was
demonstrated that using sufficient statistic-based pruning can
potentially speed up heuristic search for Dec-POMDPs, but
that they do not address the current bottleneck for such meth-
ods. Finally, we discussed a number of promising directions
of future work that are enabled by this work.
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A Appendix

Proof of Theorem 2
The proof is by induction over the stages of the problem.

Base Case.
Qt(b0)¢t7§1576t) = R(§t76t) = Qt(b07at7§t76t)'

For the last stage ¢ = h — 1, we have that

Induction Hypothesis. Per induction hypothesis, we as-
sume that, for stage ¢t 4+ 1, o4y is a sufficient statistic. lLe.,
‘past-joint-policy form’ Q-values are equal to ‘statistic form’:

Qes1(00,0t41,0111,0041) = Qua1 (00,04 1,0¢41,0041),
(A.1)
where v§t+1 Ot4+1 (9t+1) £ Pr(9t+1 |b0,(pt+1).
Induction Step. We need to show that for stage ¢, o; is a

sufficient statistic. That is, if Pr(6}|bo,¢:) = 04(6;) then the
Q-values are equal:

Va} [Pr(§t|b07<ﬁt) = Ut(ng)} ==

Qt(bO7S0t7§t75t) = Qt(b07gt7§t55t)a (Az)
Proof: We assume that V(;t {Pr(@|bo,gpt) = at(ﬁ_’t)} (As-

sumpt.1). Now we need to show the identity of the Q-values
of the r.h.s. of (A.2). Using their respective definitions (2.3)
and (3.1), we need to show

Qt+1(b07¢t+1,@+1755ﬁ) = Qt+1(bo,0t+1,9_'t+175fﬂ)~
(A.3)
This is the case if

1. the optimal next decision rule under ‘past-joint-policy

form’, 6717, and the optimal one under ‘sufficient-

statistic form’, d; i*l, are equal.

2. Y., Pr(0p+1]bospis1) = 0rr1(0r41),

since then the IH applies. We first proof item 2):

- 3.2) - - - Assumpt. 1
ot+1(0141) = Pr(og4110¢,a:)0: (at|0:) o (0¢) {assumpe)

Pr(0g+1101,a)8: (a:|0:) Pr(0:|bo,r) = Pr(fpy1]bo,ors1)-

Using this result, we prove item 1) via the LH.: {77 £

argmax Z Pr(ng+1 |b0,@t+1)Qt+1 (bo,<,0t+1 ;5t+175t+1)

St41 £
O¢q1
o o A oSg*
= argmax E Ot41(0t41)Qer1(b0,0141,0141,0041) = 6,7
t+1 <
041

Therefore (A.3) holds true, proving the induction step. O

Proof Sketch of Theorem 3

The proof strategy is—similarly to that of Theorem 2—
to show that, for all deterministic ;, for all bg,d;,
Qi(04,61,0t) = Qi(bo.1,0:,6;). with 0 the joint AOH re-
sulting from 0y and ;. In this case, to show the equal-
ity of (2.3) and (3.8) it is necessary to additionally show
that the immediate reward terms (2.1), (3.5), and observa-
tion probability terms (2.2), (3.6) are equal. This requires

showing that, for all d;, for the 6; resulting from 0; and 4,
Pr(s¢|bo,0:) = 0+(s¢|0:). Moreover, to prove the induction

step we will need to show that Pr(§t|b0,<pt) = 04(0). We
prove these additional requirements here, starting with the

latter. For a deterministic ¢, we can write Pr(f,|bo,o;) =
Pr(Gy|bo,¢)C (01,04 ), where C(fy,¢4) is a term that is 1 iff
9; is consistent with ;. Clearly, since o¢(5;) = Pr(0;|bo,0¢)
and since (for 8, resulting from ;) C (9_; ,p¢) = 1 we can con-
clude Pr(§t|b0,<pt) = 0¢(d;). Using this result, we can write
the joint distribution Pr(s,0;|bo,:)

Pr(3t|b07§t) Pr(6t|b07§0t)c(§ta%0t) = Ut(8t75t)c(5t,¢t)7
from which we can deduce that Pr(st|b()7§t)

_ Ut(styat)c(§t7¢t) :Ut(Stﬁt)
Pr(3;|bo,:)C(Gs,p1) 4(0t)

= 0¢(5¢[0}),

for all @ consistent with ;. Given these results, the remain-
der of the proof follows the proof of Theorem 2. O
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