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ABSTRACT

Multiagent planning under uncertainty has seen important
progress in recent years. Two techniques, in particular, have
substantially advanced efficiency and scalability of planning.
Multiagent heuristic search gains traction by pruning large
portions of the joint policy space deemed suboptimal by
heuristic bounds. Alternatively, influence-based abstraction
reformulates the search space of joint policies into a smaller
space of influences, which represent the probabilistic effects
that agents’ policies may exert on one another. These tech-
niques have been used independently, but never together,
to solve larger problems (for Dec-POMDPs and subclasses)
than previously possible. In this paper, we take the logi-
cal albeit nontrivial next step of combining multiagent A*
search and influence-based abstraction into a single algo-
rithm. The mathematical foundation that we provide, such
as partially-specified influence evaluation and admissible heuris-
tic definition, enables an investigation into whether the two
techniques bring complementary gains. Our empirical re-
sults indicate that A* can provide significant computational
savings on top of those already afforded by influence-space
search, thereby bringing a significant contribution to the
field of multiagent planning under uncertainty.

Categories and Subject Descriptors

I.2.11 [Artificial Intelligence]: Distributed Artificial In-
telligence—Multiagent Systems

General Terms

Algorithms, Theory, Performance

Keywords

Multiagent Planning Under Uncertainty, Heuristic Search,
Multiagent A*, Influence-Based Abstraction, TD-POMDP.

1. INTRODUCTION
Computing good policies for agents that are part of a team

is an important topic in multiagent systems. This task, plan-
ning, is especially challenging under uncertainty, e.g., when
actions may have unintended effects and each agent in the
team may have a different view of the global state of the en-
vironment due to its private observations. In recent years,
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researchers have proposed to gain grip on the problem by
abstracting away from policies of other agents and instead
reasoning about the effects, or influences, of those policies
[1, 2, 22, 23, 25]. However, no methods have been proposed
to effectively search the space of influences other than enu-
meration. In this paper, we fill this void by showing how it
is possible to perform heuristic search of the influence space,
thereby significantly speeding up influence-based planning.
The problem of multiagent planning under uncertainty

can be formalized as a decentralized partially observable
Markov decision process (Dec-POMDP) [3]. However, its
solution is provably intractable (NEXP-complete). As such,
many methods either focus on finding approximate solutions
without quality guarantees [10, 5, 13, 18, 22, 23], or provid-
ing optimal solutions for restricted subclasses. In particular,
more efficient procedures have been developed for problems
that exhibit transition and observation independence [2, 11,
11, 21] or reward independence [1]. Unfortunately, these sub-
classes are too restrictive for many interesting tasks, such as
mobile agents collaborating in the search for a target.
The transition-decoupled POMDP (TD-POMDP) [25] has

recently been introduced as a model that allows for tran-
sition, observation, and reward dependence, while still al-
lowing for more efficient solutions than the general Dec-
POMDP model. The core idea is to exploit independence
between agents by formalizing the influence they can exert
on each other. This abstract representation of interaction-
related behavior parameterizes a search space of joint in-
fluences, which is often significantly smaller than the joint
policy space (cf. [24] chapter 4) and, in principle, cheaper
to search. Nevertheless, like the policy space, the influence
space can still grow exponentially in problem size.
The challenge that we address here is how to search the

influence space efficiently. Whereas previous TD-POMDP
solutions have focused on exhaustive influence-space search,
in general Dec-POMDPs, A* policy-space search guided by
heuristics, i.e., multiagent A* (MAA*), has been shown to
be an extremely powerful method for reducing the computa-
tion required to find optimal solutions [14, 19, 20]. The main
contribution of this paper is to show how the strengths of
heuristic policy-space search can be transferred to influence-
space search.
To accomplish this, we make the following auxiliary con-

tributions: we show how one can define heuristics in influ-
ence space, we prove the admissibility of such heuristics, thus
guaranteeing optimality of A* search, and we provide the
results of an empirical evaluation that shows that our pro-
posed methods can yield significant performance increases,
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Figure 1: HouseSearch environments. ‘1’/‘2’ marks search
robot start positions. ‘t’ marks possible static target loca-
tions.

especially on problems that are hard for exhaustive influence
search. Additionally, we demonstrate how TD-POMDPs
can be used for an important class of problems: locating
objects or targets with a team of agents, which also leads us
to the first application of influence search on problems that
have cyclic dependencies between the agents.

2. INFLUENCE-BASED ABSTRACTION
After describing a motivating problem domain, we review

the TD-POMDP model and influence-based policy abstrac-
tion, and explain how they can be exploited to find optimal
solutions via optimal influence space search.

2.1 Motivating Domain: Locating Targets
Although the TD-POMDP model and the methods pre-

sented in this paper extend to other settings, in this paper
we focus on their application to problems where a team of
agents has to locate a target given a prior probability distri-
bution over its location and a model of its movement. We
assume that the target either remains stationary or moves
in a manner that does not depend on the strategy used by
the searching agents.
More concretely, we consider a problem domain called

HouseSearch in which a team of robots must find a tar-
get in a house with multiple rooms. Such an environment
can be represented by a graph, as illustrated in Fig. 1. At
every time-step, each agent i can stay in its current node n
or move to a neighboring node n�. The location of agent i
is denoted li and that of the target is denoted ltarget. The
movements, or actions ai, of each agent i have a specific
cost ci(li,ai) (e.g., the energy consumed by navigating to a
next room) and can fail; we allow for stochastic transitions
p(l�i|li,ai). Also, each robot receives a penalty ctime for ev-
ery time step that the target is not found. When a robot is
in the same node n as the target, there is a probability of
detecting the target p(detecti|ltarget,li), an event which will
be modeled by a state variable ‘target found by agent i’ (de-
noted fi). When the target is detected, the agents receive
a reward rdetect. Given the prior distribution and model of
target behavior, the goal is to optimize the expected sum of
rewards, thus trading off movement cost and probability of
detecting the target as soon as possible.

2.2 TD-POMDP Model
Here we formalize the planning task for scenarios such as

the HouseSearch task described above. First, we introduce
the single-agent factored POMDP, and then we describe how
a TD-POMDP extends this model to multiple agents.
A factored partially observable Markov decision process for

a single agent (indexed i for consistency with multiagent

NMF MMF

locally affected xli ml
i

nonlocally affected N/A mn
i

unaffectable xui mu
i

Table 1: Different types of state factors that make up si.

notation later on) is a tuple �Si,Ai, Ti, Ri,Oi, Oi�, where
Si = X1 × · · · × Xk is the set of states si induced by a set
of k state variables or factors, Ai is the set of actions that
the agent can take, Ti is the transition model that specifies
Pr(s�i|si,ai), Ri(si,ai,s

�
i) is the reward function, Oi is the set

of observations oi, and Oi is the observation function that
specifies Pr(oi|ai,s

�
i). Because the state space is factored,

it is usually possible to specify Ti, Ri and Oi in a com-
pact manner using a Bayesian network called a two-stage
temporal Bayesian network (2TBN) [4]. Given this model,
the planning task for a POMDP is to find an optimal pol-
icy π that maximizes the expected sum of rewards over h
time steps or stages. Such a policy maps from beliefs, prob-
ability distributions over states, to actions. While solving
a POMDP is widely considered to be an intractable prob-
lem, in the last two decades many exact and approximate
solution methods have been proposed (see, e.g., [7]).
Intuitively, a TD-POMDP is a set of factored POMDPs,

one for each agent, where there is overlap in the state fac-
tors of each agent.1 Moreover, the set of state factors can
be divided into factors that occur only in one agent’s local
state space (‘non-mutual’ factors (NMFs)) and factors that
are ‘mutually modeled’ by more than one agent (MMFs). A
TD-POMDP imposes the restriction that each state factor
can be directly affected by the action of at most one agent.
That is, in the 2TBN, each factor can have an incoming edge
from only 1 action variable. This does not mean that state
factors depend on just one agent, since factors can be indi-
rectly (i.e., via a directed path consisting of multiple edges)
influenced by many agents. This leads to different parts of
an agent’s local state, as summarized in Table 1. Using the
notation defined in this table, we will write the local state
of an agent i as si =

�
xli,x

u
i ,m

l
i,m

n
i ,m

u
i

�
= �xi,,mi�. The

joint reward function for the TD-POMDP is the summation
of the individual reward functions for each agent’s POMDP:
R(s,a) =

�
i Ri(si,ai), and we assume an initial joint state

distribution b0. For a more formal introduction of the TD-
POMDP framework, see [24, 25].
The 2TBN representation of the TD-POMDP’s transi-

tion, observation, and reward model for HouseSearch is
illustrated in Fig. 2. Here, two search agent’s local states
overlap such that both model the target location and the
factors f1,f2. Note that the mutually modeled state factors
can only be characterized as (non)locally affected from the
perspective of a particular agent. E.g., f1 is locally affected
for agent 1, but non-locally affected for agent 2. The figure
also shows that, in this domain, each agent’s reward func-
tion Ri can also be factored as the sum of two components
Rdetect and Rmove. The former models the rewards for de-

1Of course, for such a setting to be well-defined means that
different transition models Ti need to be consistent since
the local transition probabilities can depend on other agents
too. One can alternatively consider the existence of a single
transition model T defined over the joint action and the joint
state.
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Figure 2: A TD-POMDP for HouseSearch.

tection, as well as the time cost (ctime) of not detecting.
This component depends on ft+1

1 , ft+1
2 as well as on ft1, f

t
2:

only when (at least) one of the fi variables switches from
false to true do the agents get the reward, when all four fac-
tors are false the agents get the time penalty and otherwise
the rewards are 0 (but the movement costs remain). The
movement reward components only depend on the agents’
non-mutual locations and local actions.
The TD-POMDP is a non-trival subclass of the factored

Dec-POMDP [15], for which the NEXP-completeness result
still holds [24]. This also means that single-agent POMDP
solution methods do not directly apply. Intuitively, in a
multiagent context, we are now searching for a joint policy
π = �π1, . . . ,πn�. Moreover, an agent can no longer base its
policy on a simple belief over states, as this does not account
for the beliefs and actions of its teammates.

2.3 Influences and Local Models
A well-known solution method for Dec-POMDPs, called

JESP [10], searches for a locally optimal joint policy as fol-
lows: it starts with a random joint policy and then selects
one agent to improve its policy while keeping the other poli-
cies fixed. The improvement of the selected agent is done
by computing a best response via dynamic programming.
From the perspective of a single agent i, by fixing π−i (the
policies of the other agents) the problem can be re-cast as an
augmented POMDP, where the augmented state is a tuple
�s, �o−i� of a nominal state and the observation histories of
the other agents.
Since a TD-POMDP is a Dec-POMDP, JESP directly

applies. However, because of the special structure a TD-
POMDP imposes, we can account for this structure to com-
pute the best response in a potentially more efficient way:
rather than maintaining a JESP belief bi(s, �o−i), agent i can
maintain a condensed belief bi(s

t
i, �m

t−1
i ) over just its own lo-

cal state and the history of mutually modeled factors [25].
Intuitively, this is possible, because all information about
�o−i and the state factors that are not in agent i’s local state
(i.e., xj for j �= i) is captured by �mt

i.
2 That is, �mt

i d-
separates the agent’s observation history �o t

i from those of
other agents �o t−1

−i . For instance, given the DBN connectiv-

2Note that mt
i is contained in sti such that we can write

bi(s
t
i, �m

t−1
i ) = bi(x

t
i, �m

t
i).

Figure 3: The Influence DBN for HouseSearch.

ity in Fig. 2, all information agent 2 has about lt1 is inferred
from the history of ft1 and l

t
target.

A second important observation is that an agent i is only
influenced by other agents via its nonlocal mutually modeled
factors mn

i . E.g., in Fig. 2 agent 1 only influences agent 2
via the f1 factor. Therefore, if, during planning, the value
of this factor at all stages is known, agent 2 can completely
forget about agent 1 and just solve its local POMDP (and
similar for agent 1). This line of reasoning holds even if
agent 2 does not know the exact values of f1 ahead of time,
but instead knows the probability that f1 turns to true for
each stage. This insight lies at the basis of influence-based
policy abstraction: all policy profiles π−i that lead to the
same distributions over non-local MMFs mn,0

i , . . . ,mn,h−1
i

can be clustered together, since they will lead to the same
best response of agent i.
To formalize this idea, an incoming influence point of

agent i, denoted I→i, specifies a collection of conditional
probability tables (CPTs): one for each nonlocally affected
MMF, for each stage t = 1, . . . ,h−1.3 We denote a CPT for
ft1 (from our example) as pft

1
, which specifies probabilities

pft
1
(v|·) for values v ∈ {0,1} of ft1 given its parents (·). In

this example, I→2 = {pf1
1
, pf2

1
, . . . , p

fh−1
1

}. To specify these

CPTs, it is only necessary to use �mi, the history of mutual
features, as the parents [25]. I.e., the CPTs are specified as
p
m

n,t+1
i

(v|�mt
i). With some abuse of notation, we also write

Pr(mn,t+1
i |�mt

i, I→i) for the probability of (some value of) a

non-local factor mn,t+1
i according to I→i. Because the CPTs

can only depend on �mi, an incoming influence point I→i en-
ables the computation of a best response πi independent of
the other agents.
Of course, in general the actions of agent i can also in-

fluence other agents, so in order to find optimal solutions,
we will also need to reason about this influence. We denote
by Ii→ the outgoing influence point of agent i, which speci-
fies a collection of CPTs: one for each of its locally affected
MMFs. Again, these CPTs can depend on only (the history)
of MMFs �mi. An incoming and outgoing influence point to-
gether form a (complete) influence point Ii = �I→i, Ii→�. A
joint influence point I = �I1→, . . . ,In→� specifies an outgo-
ing influence point for each agent. Note that I also specifies
the incoming influences, since every incoming influence point
is specified by the outgoing influence points of the other
agents. Fig. 3 illustrates the dependencies of an influence
point in a so-called influence DBN. For instance, the possi-

3For t = 0, the (non-conditional) distribution is specified by
the initial state distribution b0. The CPTs for subsequent
stages may differ (from one another) because they summa-
rize other agents’ policies, which can depend on history.
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Figure 4: The influence search tree for HouseSearch.

ble CPTs p
ft+1
1

are conditioned on �lttarget, the history of the

target location, as well as ft1, the value of ‘target found by
agent 1’ at the previous stage.
Given Ii, agent i has an augmented local POMDP with

local states, rewards and transitions. In this local model,
a state is a pair �sti, �m

t−1
i � (or equivalently �xti, �m

t
i�), such

that, as discussed above, a belief is of the form bi(s
t
i, �m

t−1
i ).

Given an incoming influence point that dictates the transi-
tion probabilities of its nonlocally-affected MMFs, this local
POMDP is independent of the other agents, but subject to
the constraint that its solution must be a policy that ad-
heres to the probabilities dictated by the outgoing influence
point (specified by Ii). We call such a restricted model to-
gether with the influence point an influence augmented local
model (IALM). Solving the IALM is non-trivial since stan-
dard POMDP solvers will not respect the additional con-
straints. The problem can be solved by reformulating as a
mixed integer linear program (MILP) [24, chapter 5].

2.4 Optimal Influence Search
The key property of these influences is that they can be

used to compactly represent many of the other agents’ poli-
cies. Rather than searching in the larger space of joint poli-
cies, we can search in the space of joint influence points and
for each of them compute the agents’ best responses to com-
pute their value. In particular, the value of a fully specified
joint influence point is:

V (I) =
n�

i=1

Vi(I), (1)

where Vi(I) = Vi(�I→i, Ii→�) is the value of agent i’s best
response against I→i subject to the constraints of satisfy-
ing Ii→, i.e., the value that results from solving its IALM.
Given that we can compute the value of a joint influence

point I, we can optimally solve a TD-POMDP by enumer-
ating all I. Optimal Influence Search (OIS) [25] does this
by constructing a tree, as illustrated in Fig. 4. An outgoing
influence slice Iti→ is that part of agent i’s outgoing influence
point corresponding to a particular stage t. The search tree
contains the outgoing influence slices for all agents for stage
t = 1 on the first n levels, it contains the slices for t = 2
on the next n levels, etc. An influence point is defined by a
complete path from root to leaf. OIS performs an exhaustive
depth-first search to find the optimal joint influence point
from which the optimal joint policy can be reconstructed.
Although an apparently simple search strategy, OIS in fact

demonstrated that influence abstraction can lead to signif-
icant gains in performance, thereby establishing itself as a
state-of-the-art method for computing optimal solutions for
weakly-coupled agents [25].

3. HEURISTIC INFLUENCE SEARCH
The previous section explained how OIS can greatly im-

prove over other methods by searching in the search of joint
influences, which can be much smaller than the space of joint
policies. However, the weakness of OIS is that it needs to
search this space exhaustively. In contrast, for general Dec-
POMDPs, heuristic search methods (in particular A*, see,
e.g., [17]) have shown to be very effective [19]. The main
idea here, therefore, is to extend heuristic search to be able
to search over the joint influence space.
In the subsections that follow, we develop the mechanics

necessary to compute admissible heuristic values for nodes of
the influence search tree. As we describe, this is a non-trivial
extension, due to the fact that an influence summarizes a set
of possible policies.

3.1 Computing Heuristic Values
To guarantee that heuristic search finds the optimal so-

lution we need an admissible heuristic; i.e, a function F
mapping nodes to heuristic values that are guaranteed to be
an over-estimation of the value of the best path from root
to leaf that passes through that node. In our setting this
means that the heuristic F (Ǐ) for a partially specified joint
influence point Ǐ (corresponding to a path from the root of
the tree to a non-leaf node) should satisfy

F (Ǐ) ≥ max
I consistent with Ǐ

V (I). (2)

We will also write I∗|Ǐ for the maximizing argument of the
r.h.s. of (2).
In Dec-POMDPs, it is possible to perform A* search over

partially specified joint policies [14]. For a ‘past joint policy’
ϕ = (π0, . . . ,πt−1) that specifies the joint policy for the
first t stages, it is possible to define F(ϕ) = G(ϕ) + H(ϕ),
where G gives the actual expected reward over the first t
stages 0, . . . ,(t − 1) and where H is a heuristic of the value
achievable for the remaining stages. There are multiple ways
to define H. For instance, one general form [20] is:

H(ϕ) =
�

s

Pr(s|b0,ϕ)Ht(s), (3)

where Ht(s) is a guaranteed overestimation of the expected
value starting from s in stage t. Such an overestimation can
be obtained, for instance, by solving the underlying MDP
(called QMDP ) or POMDP [5, 14] .
Unfortunately, it is not possible to adapt the above ap-

proach to searching influence space in a straightforward fash-
ion. Given an Ǐ, the past joint policy is not fixed, because

π∗|Ǐ the best joint policy for I∗|Ǐ is unknown. Therefore, we
take a somewhat different approach, as detailed next.

3.2 Restricted Scope Restricted Horizon
We exploit the fact that V (I) in (1) can be additively

decomposed. That is we upper bound (1) by:

F (Ǐ) =
n�

i=1

Fi(Ǐ). (4)

Clearly, when Fi(Ǐ) ≥ Vi(I
∗|Ǐ ) for all agents i, then F(Ǐ) ≥

V (I∗|Ǐ ) and F(Ǐ) is admissible.
The problem of computing a heuristic value Fi(Ǐ) is illus-

trated in Figure 5. It shows that for a certain node Ǐ in the
search tree, the influences for the first number (h) of stages
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n,3
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m
l,0
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m
l,1
i

m
l,2
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i

x0
i x1

i x2
i x3

i

oi

ai

Ri oi

ai

Ri oi

ai

Ri oi

ai

Ri

Figure 5: A partially specified joint influence point Ǐ from
the perspective of agent i. Dashed black elipses denote the
agent’s local state. The figure does not include unaffectable
factors. Influences are specified for stage 0,1. Green (dark)
nodes are specified incoming influences, blue (light) nodes
are specified outgoing influences. The dashed boxes denote
the unspecified incoming (green) and outgoing (blue) influ-
ences for stages 2,3.

are specified (up to but not including stage h). For now
we assume that all influences at stage h − 1 are specified,

i.e., we assume that Ǐh−1 is a fully specified influence slice.
Figure 5, in which h = 2, shows that computation of Fi(Ǐ)
depends on only a subset of state factors (i.e., a restricted
scope). In order to actually compute the Fi(Ǐ) , we suggest
a 2-step approach: 1) compute an admissible heuristic for
the stages for which the influence is not yet specified, and
2) subsequently use these heuristic values to solve a con-
strained POMDP over horizon h. We will refer to heuristics
of this form as restricted scope restricted horizon (RSRH)
heuristics.

3.2.1 Step 1: The Unspecified-Influence Stages.

The goal here is to, for each IALM state, to compute a

heuristic value Hh
i , analogous to the term used in (3), that

is an optimistic estimate of the value of that state over the
remaining (unspecified-influence) stages. In particular, we
use an approach similar to QMDP : we compute the value
of the underlying MDP but restricted to local states of the
agent. In order to do so, we make optimistic assumptions on
the unspecified incoming transition influences. Intuitively,
this amounts to assuming that an agent i’s peers will adopt
policies that will exert the most beneficial effect on agent i’s
local state.
Remember that an IALM state �sti, �m

t−1
i � = �xti,�m

t
i�, and

that we write xi =
�
xli,x

u
i

�
and mi =

�
ml

i,m
n
i ,m

u
i

�
. Now

the overestimation we use is:

Ht
i (xi, �mi) � max

ai

�
R(si,ai) +

�

x�
i,m

l�
i ,mu�

i

Pr(x�i,m
l�
i ,m

u�
i |si, ai)max

mn�
i

Ht+1
i (x�i, �m

�
i)
�
, (5)

which upper bounds the value of the underlying restricted-

scope MDP given any incoming influence point I→i:

V I→i
i,MDP (xi, �mi) = max

ai

�
R(si,ai) +

�

x�
i,m

l�
i ,mu�

i ,mn�
i

Pr(x�i,m
l�
i ,m

u�
i ,m

n�
i |xi, �mi, ai,I→i)V

I→i
i,MDP (x

�
i, �m

�
i)
�
. (6)

Also, it is important to note that Pr(x�i,m
l�
i ,m

u�
i |si,ai) in (5)

can be directly computed due to the structure imposed by
the TD-POMDP. As such, our optimistic estimate Ht

i can
be computed via dynamic programming starting at the last
stage h − 1 and working back to stage h.

3.2.2 Step 2: The Specified-Influence Stages.

Here we use Hh
i found in stage 1 to construct a restricted-

horizon constrained POMDP, i.e., the IALM for agent i for
only the first h stages, which we will denote by M (we denote
all quantities of M with bars). For this IALM, we change
the immediate rewards for the ‘last’ stage, stage h − 1, to

include the heuristic Hh
i for the remaining stages:

R
h−1

(xi, �mi, ai) � R(si,ai) +
�

x�
i,m

l�
i ,mu�

i

Pr(x�i,m
l�
i ,m

u�
i |si,ai)max

mn�
i

Hh
i (x

�
i, �m

�
i). (7)

That is, we apply the same optimistic estimate, effectively
transforming the immediate rewards of stage h−1 into opti-
mistic heuristic ‘action-value’ estimates. The result is a com-
pletely specified, restricted-horizon, IALM for agent i that
can be solved in exactly the same way as the full-horizon
IALM. The value it achieves is Fi(Ǐ) � V i(I).

3.2.3 Partially Specified Joint Influence Slices.

So far we assumed that the (outgoing) influences, for all
agents, up to and including stage h−1 were specified. How-
ever, for many nodes in the influence tree in Figure 4 the in-
fluences are only specified for a subset of agents at stage h−1.
However, we can easily overcome this problem by adapting
the computation of Fi(Ǐ) in the following fashion.
If an outgoing influence at stage h − 1 is not specified

we just omit the constraint in the MILP. If an incoming
influence at stage h − 1 is not specified we transform the
transition probability for the last transition in the restricted-
horizon IALM (i.e., the transition from stage h − 2 to h −

1) such that for all �xl,h−1
i ,xu,h−1

i ,ml,h−1
i ,mu,h−1

i � the lo-
cal state will always transition to the fully specified local

state �xl,h−1
i ,xu,h−1

i ,ml,h−1
i ,mn,h−1

i ,mu,h−1
i � with the high-

est heuristic value.

Theorem 1. Fi(Ǐ) is admissible.

The implication of Theorem 1, whose proof is given in
the appendix, is that our heuristic can be used to prune
those influence assignments that are guaranteed to be sub-
optimal. As such, we will be able to expand potentially
far fewer nodes of the influence-space search tree and still
guarantee optimality.

3.3 A Tighter Heuristic
While the heuristic of the previous section is admissible,

it is not very tight, because the second maximization in (5)
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corresponds to always assuming the most optimistic incom-
ing influences. For instance, in the rectangle example, it will
assume that the other agent finds the target in the second
stage t = 1. However, from the possible locations of the
target, we know that it will never be possible for the other
agent to find the target at t = 1, it will take at least two
steps. Next, we present a new heuristic that exploits this
insight to yield a tighter upper bound to use during search.
Note that V I→i

i,MDP (x
t
i, �m

t
i) in (6) can be expanded to

max
ai

�
Ri(si, ai)+

�

�xi,m
l
i,m

u
i �t+1

Pr(�xti,m
l
i,m

u
i �

t+1|xti,m
t
i,ai)

�

m
n,t+1
i

Pr(mn,t+1
i |�mt

i,I→i)V
I→i
i,MDP (x

t+1
i ,�mt+1

i )
�

(8)

due to the structure of the TD-POMDP. An important as-
pect in (8) is that Pr(mn,t+1

i |�mt
i,I→i) exactly corresponds

to one of the entries in p
m

n,t+1
i

that I→i specifies.

Our first heuristic picks the heuristic best values for mn
i ,

which we will denote mn�
i , and then assumes a optimistic

influence I�→i that prescribes Pr(m
n�
i |�mt

i,I
�
→i) = 1. Here the

idea is to use a more realistic (but still optimistic) influence
I∗→i by making use of an upper bound on Pr(mn�

i |�mt
i,I→i),

which may be precomputed by examining the TD-POMDP
CPT for factor mn

i .
In particular, we compute the following upper bounds on

p
m

n,t
i =v

the probability of each value v of a non-local factor

mn,t
i as follows:

UB
m

n,t
i |�mt−1

i
(v) = max

vp∈PPP(m
n,t
i |�mt−1

i )

Pr(v|vp), (9)

where Pr(·|·) is specified by a CPT of the 2TBN, vp denotes
an instantiation of the parents of mn,t

i in the 2TBN, and
where the positive probability parents, PPP(mn,t

i |�mt−1
i ), is

the set of such instantiations that 1) have positive probabil-
ity of occuring, and 2) are consistent with mn,t−1

i (specified
by �mt−1

i ).
We now use these bounds to define the more realistic in-

fluence I∗→i and thus heuristic. In order to compute heuris-
tic value H(xt−1

i , �mt−1
i ), we first order the possible values of

mn,t
i according to their heuristic next-stage value H(xti, �m

t
i).

Next, we define I∗→i to be such that it defines a CPT p
m

n,t
i

that gives maximal weight to the high-ranked values of mn,t
i .

We create this distribution as follows: first we select the
highest ranked value v∗ of mn,t

i and we assign it probabil-
ity UB

m
n,t
i |�mt−1

i
(v∗), then we select the next best ranked

value v� and either assign it the remaining probability mass
(if that is less then its upper bound) or we assign it its up-
per bound and continue with the next-best value, etc. The
heuristic is now defined by substituting the thusly obtained
distribution for Pr(mn,t+1

i |�mt
i,I→i) in (8).

4. EXPERIMENTS
We now present a empirical evaluation of our heuristic

influence-space search method. Our primary hypothesis is
that exhaustive optimal influence-space search (OIS), which
has been shown to solve a number of weakly-coupled transit-
ion-dependent problems more efficiently than policy space
search methods, can gain even more traction if combined
with heuristic search methods. Although it would be inter-
esting to additionally compare with optimal Dec-POMDP
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Figure 6: Runtimes on SatelliteRover.

solution methods that employ heuristic search but not in-
fluence abstraction (e.g., [19]), we expect that the problems
considered here are too large, especially in the number of
individual observations (4 × 2 × 2 = 16 for Diamond, 32 for
Rectangle, and 36 for Squares), which are beyond what opti-
mal Dec-POMDP solvers have demonstrated to handle (the
largest of those problems have 5 individual observations).
In order to test our hypothesis, we performed experiments
both on the HouseSearch configurations shown in Fig. 1
as well as on SatelliteRover, a TD-POMDP test set in-
volving two agents that interact through task dependencies
(we use the version where the agents can wait) [25].
For HouseSearch, we experimented with different de-

grees of stochasticity. I.e., we considered problems rang-
ing from deterministic observations and deterministic ac-
tions, labeled “d.o.d.a.”, to stochastic observations (where
the probability of observing no target when in the same room
as the target is 0.25) and stochastic actions (where the prob-
ability that a move action will fail is 0.1), labeled “s.o.s.a”.
For all problems, the parameters were set to ctime = −5,
ci = −1 for each movement action, and rdetect = 0. Ta-
ble 2 compares the runtimes of OIS with those of A* using
the two variants of our restricted scope restricted horizon
heuristic (where A*1 corresponds to that described in Sec-
tion 3.2 and A*2 corresponds to that described in Section
3.3). As shown, using the simplest variant of our heuristic
can lead to significant speed-ups over depth-first search, es-
pecially on the Diamond configuration where we see as much
as two orders of magnitude improvement (e.g., at horizon 3
of Diamond s.o.s.a). It also allows scaling up to larger time
horizons than was previously possible. We also see that
the heuristic A*2 is indeed tighter, allowing for more prun-
ing and hence faster solutions on almost all problems. For
Rectangle and Squares, however, the benefit of A* over ex-
haustive OIS are less pronounced. (Given space restrictions,
we omit the d.o.d.a., d.o.s.a, and s.o.s.a. variations of these
problems, whose trends were the same as in s.o.d.a.)
We also tested A*1 on SatelliteRover, in which the

lengths of task execution windows were systematically var-
ied to affect the level of influence constrainedness [25]. The
less constrained the agents’ interactions, the larger the influ-
ence space, as demonstrated by the exponentially increasing
runtimes plotted on a logarithmic scale in Fig. 6. Evidently,
it is on these less-constrained problems, which are hardest
for OIS, where we get the most speedup from A*. Here,
A* search leads to significant savings of well over an order
of magnitude (573s vs. 19.9s for IC=1/7), thereby comple-
menting the savings achieved by influence-based abstraction.
The differences between the impact of A* in Diamond,

Rectangle, and Squares warrant a more detailed analysis. In
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Diamond (d.o.d.a) Diamond (s.o.d.a) Diamond (d.o.s.a) Diamond (s.o.s.a) Rectangle (s.o.d.a) Squares (s.o.d.a)

h OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2 OIS A*1 A*2

1 0.28 0.27 0.29 0.19 0.30 0.25 0.22 0.28 0.23 0.25 0.32 0.23 0.08 0.10 0.17 0.21 0.25 0.28
2 1.64 0.83 0.26 2.28 0.92 0.25 3.13 1.86 0.29 8.68 2.41 0.64 0.72 0.71 0.47 1.73 1.33 0.67
3 8.84 1.77 0.68 35.60 5.93 0.89 151.6 11.63 1.38 8,871 52.08 2.37 16.52 17.88 7.85 31.96 34.55 10.22
4 101.6 8.50 1.28 811.4 48.75 2.86 436.0 4.89 3,066 14.39 621.2 412.3 138.6 1,716 1,101 167.5
5 945.0 31.80 7.90 953.1 44.57 178.1 44.52 4,187 6,295

Table 2: Runtimes (in seconds), including heuristic computation (observed to be negligible), on variations of HouseSearch.

the latter two variations, the tighter heuristic appears too
loose to effectively guide heuristic search except on prob-
lems with longer time horizons. Upon closer inspection, we
discovered an inherent bias in the application of our heuris-
tic to HouseSearch problems; it encourages the ‘stay’ ac-
tion. This is because the heuristic evaluation of each agent
makes the optimistic assumption that the other agent will
probably find the target, in which case the agent need not
look itself and incur the associated movement cost. To rem-
edy this problem, we developed a simple specialized adapta-
tion (A*-imc) that ignores the movement cost component of
the factored reward in the first term of Equation 7. While
this modification causes the heuristic to be less tight, it also
takes away the bias against movement actions. Results for
this modification are shown in Table 3. An interesting phe-
nomenon occurs for Rectangle and Squares where for longer
time horizons, runtimes are significantly decreased because
the no-movement bias has been eliminated, but where for for
shorter horizons we see slight increases in runtimes because
here the optimal policy is actually to stay. Likewise, for Dia-
mond, very little movement is required to find the target; in
this case, the search also suffers from the fact that ignoring
movement costs actually loosens the heuristic, causing more
nodes to be expanded. All in all, this demonstrates that us-
ing specialized domain knowledge can significantly increase
the effectiveness of A* influence space search.

Diamond (s.o.d.a) Rectangle Squares

h A*2 A*2-imc A*2 A*2-imc A*2 A*2-imc

1 0.25 0.56 0.17 0.30 0.28 0.50
2 0.25 0.34 0.47 0.57 1.67 1.20
3 0.89 1.10 7.85 7.18 10.22 12.10
4 2.86 3.86 138.6 14.71 167.5 46.95
5 44.57 146.5 4,187 222.0 6,295 422.6

Table 3: Ignoring movement costs in heuristic calculation.

5. RELATEDWORK
Having reviewed Dec-POMDP heuristic search [14, 19, 20]

and TD-POMDP influence-space search [24, 25], which are
most closely related to the work we have developed here, we
now describe connections to other recent models and meth-
ods. For instance, the EDI-CR model [9] makes explicit a
set of joint transition and reward dependencies. The au-
thors propose an MILP-based solution method that is con-
ceptually related to influence abstraction; it clusters action-
observation histories that have equivalent probabilistic ef-
fects so as to reduce the number of joint histories considered.
A significant difference is that, unlike the algorithms we de-
velop here, instead, it entails solving a single joint model
framed as an MILP, instead of decoupling the problem into
influence-abstracted local models.
The DPCL [22, 23] exploits ‘coordination locales’ for ef-

ficient computation of an agent’s response policy by incor-
porating effects of other agents’ policies into a compact lo-
cal model, which is similar the TD-POMDP’s IALM. How-
ever, in contrast to the optimal search methods that we de-
velop, the DPCL has only ever afforded approximate solu-
tions. Other methods have been developed for computing
approximate solutions for general factored Dec-POMDPs,
of which the TD-POMDP could be considered a specialized
instance. Their more general factored structure has been
exploited by using collaborative graphical Bayesian games
in combination with non-serial dynamic programming [15]
and approximate inference [12] in the finite-horizon case. In
the infinite-horizon case finite state controllers and EM [8,
16] have been proposed. In contrast to the work presented
here, these methods search in the policy space rather than
the influence space.

6. CONCLUSIONS & FUTUREWORK
We have introduced heuristic A* search of the influence

space for the optimal solution of multiagent planning prob-
lems formalized as TD-POMDPs. As previous work has
shown, the space of influences can be much smaller than the
space of joint policies and therefore searching the former
can lead to significant improvements in performance. We
illustrated the efficacy of our approach on a optimal decen-
tralized probabilistic search problem, thereby showing the
first application of influence search on TD-POMDPs with
cyclic dependencies between agents. Our empirical evalua-
tion shows that A* search of the influence space can lead
to significant improvements in performance over exhaustive
OIS. In particular, the results indicate that in problems that
are harder (i.e., where there is a high number of possible
influences) A* leads to the most improvements. In other
words, influence abstraction and heuristic search can pro-
vide complementary gains. This suggests that A* search of
influence space can be an important tool in scaling up a large
class of multiagent planning problems under uncertainty.
There are a number of directions for future research. Be-

cause of the connection this paper establishes between search-
ing influence space and MAA* for Dec-POMDPs, it is nat-
ural to try and extend recent improvements in the latter to
the former. One question is whether it is possible to incre-
mentally expand the nodes in the search tree. Such incre-
mental expansion has yielded significant increases in perfor-
mance for Dec-POMDPs [19]. Another interesting question
is whether it is possible to cluster influence points. That is,
it may be possible to characterize when different joint influ-
ence points correspond to best responses that are guaranteed
to be the identical.
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APPENDIX

Proof of Theorem 1. We need to show that

∀Ii Fi(Ǐ) = V i(I) ≥ Vi(I
∗|Ǐ ) (10)

We assume an arbitrary I→i,Ii→ consistent with Ǐ. Since the first
h − 1 stages are identical, (10) clearly holds if

∀bi,ai
Q

h−1
i (bi,ai) ≥ Q

h−1,I→i,Ii→
i (bi,ai). (11)

We choose an arbitrary bi,ai. Expanding both sides, we need to
show that

R
h−1

(bi,ai) ≥ Rh−1(bi,ai) +
�

b�

P(b�|bi,ai)V
h,I→i,Ii→
i (b�i).

(12)
Expanding the expectations over IALM states:

�

xi,�mi

bi(xi, �mi)R
h−1

(xi, �mi,ai) ≥
�

xi,�mi

bi(xi, �mi)

�
R(si,ai) +

�

s�i

�

oi

Pr(s�i,oi|si,ai)V
h,I→i,Ii→
i (x�

i, �m
�
i, b

�
i).

�

Substituting the definition of R:

�

xi,�mi

bi(xi, �mi)
�
R(si,ai) +

�

x�
i,m

l�
i ,mu�

i

Pr(x�
i,m

l�
i ,m

u�
i |si,ai)

max
mn�

i

Hh
i (x

�
i, �m

�
i)
�
≥

�

xi,�mi

bi(xi, �mi)
�
R(si,ai) +

�

s�i

�

oi

Pr(s�i,oi|si,ai)V
h,I→i,Ii→
i (xi, �mi,b

�
i)
�
.

This is proven if we can show that

∀xi,�mi

�

x�
i,m

l�
i ,mu�

i

Pr(x�
i,m

l�
i ,m

u�
i |si,ai)max

mn�
i

Hh
i (x

�
i, �m

�
i)

≥
�

s�i

�

oi

Pr(s�i,oi|si,ai)V
h,I→i,Ii→
i (x�

i, �m
�
i, b

�
i) (13)

We assume arbitrary xi, �mi and now continue with the right hand
side. Since it is well-known that the MDP value function is an
upper bound to the POMDP value function [6], we have

�

s�i

�

oi

Pr(s�i,oi|si,ai)V
h,I→i,Ii→
i (x�

i, �m
�
i,b

�
i)

≤
�

s�i

�

oi

Pr(s�i,oi|si,ai)V
h,I→i,Ii→
i,MDP (x�

i, �m
�
i)

≤
�

s�i

Pr(s�i|si,ai)V
h,I→i,Ii→
i,MDP (x�

i, �m
�
i)

≤
�

s�i

Pr(s�i|si,ai)V
h,I→i
i,MDP (x

�
i, �m

�
i) (14)

The last term denotes the optimal value under only incoming
influences, and the inequality holds because the set of policies
available to agent i without restrictions due to promised outgoing
influences is a strict superset of those when there are outgoing
influences. Now, by (6) we directly get that the last quantity

≤
�

s�i

Pr(s�i|si,ai)H
h
i (x

�
i, �m

�
i) ≤

�

x�
i,m

l�
i ,mu�

i

Pr(x�
i,m

l�
i ,m

u�
i |si,ai)max

mn�
i

Hh
i (x

�
i, �m

�
i), (15)

which concludes the proof.
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