Interpreting Line Drawings of Smooth Shapes
Forrester Cole, William T. Freeman, Frédo Durand, Edward H. Adelson
Massachusetts Institute of Technology

Goal: 3D shape interpretation from line drawings of blobby, “organic” shapes

Success if: Output matches human shape perception (not original 3D shape)

Prior work focused on precise, “blocks world” shapes:

Approach: Example-based
1. Find keypoints in drawing, connect with graph
2. Select set of examples at each keypoint
3. Find most consistent global configuration
4. (Optional) Fit surface to solution

Training Set: Random blobby shapes

Algorithm 1: Label contour orientation and inflate

PROS: matches human perception on some shapes
CONS: brittle; hard to extend beyond occluding contours

1. **Keypoints are line pixels**
 - Keypoints
 - Graph: segmented curves

2. **Look up candidates from training data**
 - Orientation guesses

3. **Average guesses over graph**
 - Consistent contour orientation

4. **Inflate surface and compare with human perception**

Algorithm 2: Reconstruct surface normals from patches

PROS: flexible; generalizes to any kind of line
CONS: ??? (too early to say)

1a. **Place keypoints at image corners at varying scales**
 - Corner strength as defined by [Harris and Stephens 1988]
 - Add extra points to cover all line pixels

1b. **Connect keypoints based on image proximity**
 - All keypoints
 - Graph connectivity

2a. **Find patch candidates based on appearance**
 - Lines
 - Normals
 - Context

2b. **Rate compatibility of neighboring patches**
 - Patch A

3. **Find best global solution with inference on Markov Random Field from keypoint graph**

4. **Fit surface to fine-scale patches**

Key:
- Test image
- Original shape
- MAP solution
- MAP solution, average of all patches
- MAP solution, fine-scale only

PROS: matches human perception on some shapes
CONS: brittle; hard to extend beyond occluding contours

PROS: flexible; generalizes to any kind of line
CONS: ??? (too early to say)

[Malik 1987] [Ulupinar and Nevatia 1993] [Wang et al. 2009]
(a) (b) (c) (d)

100 blobs x 20 views per blob = 2000 training pairs drawn with occluding and suggestive contours [DeCarlo et al. 2003]