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1 Local appearance score

As the paper explains, the basic idea is to define the local appearance score as
the average difference in pixel value between the test image and the candidate
patch, for pixels where ownership is nonzero.

In general the average difference of pixel values is very vulnerable to slight
misalignments in the matching patches. In our patch-based framework, misalign-
ment is the rule rather than the exception. To make our metric robust to (slight)
misalignment, we first blur both the test and candidate patches by a Gaussian
G with σ = r/9. The score is then

Sl = mean(|G(test)−G(cand)| ∗G(ownership)) (1)

where the ownership mask is blurred with the same blur kernel to create a soft
weighting mask.

The score should only be computed for the pixels where ownership is nonzero.
However, naive masking has the undesirable effect of benefiting patches with
vanishingly small masks, since they have fewer chances to make errors. We com-
promise by computing the average error as usual, but rolling off to a constant
“not explained” error kl0 if the area of the ownership mask A is too small:

Sl = rolloff(A)Sl + (1− rolloff(A))kl0 (2)

where

rolloff(A) =

{
1 : A > 0.15

0.5(1− cos(A−0.05
0.1 π)) : A < 0.15

(3)

The constant kl0 is also the error we assign to a null shape candidate (paper
Section 4.3)

2 Shape Interpretation

Given a full set of candidate patches and likelihood scores between them, finding
the most probable shape collage is a straightforward MRF inference task. We
use loopy belief propagation for this purpose.
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In order to produce a complete surface from the most likely collage, we fit
a thin-plate spline to the most likely patches, taking care to allow the spline to
split at occluding contours.

2.1 Inference

To find the most likely shape interpretation we use standard min-sum loopy belief
propagation [1] on the MRF defined by the keypoint graph. We use nc = 20 labels
at each keypoint, where the label values simply index the shape candidates.

The data term d is defined for each of the nv keypoints and is a vector of
length nc where:

di = Likl + Pikp (4)

where Li is the local appearance score, Pi is the prior probability score, and kl
and kp are constants weighing the contribution of each term. Empirically we use
kl = 2 and kp = 0.05.

The compatibility or smoothness term C is defined for each of the ne edges
and is a nc × nc matrix where:

Ci,j = Di,jkd + Si,jks (5)

where Di,j is the depth layer compatibility score, Si,j is the shape compatibility
score, and kd and ks are constant weighting terms. Empirically we use kd = 1,
ks = 0.5.

For null candidates, we use the data term dnull = kl0kl, where kl0 is the
maximum appearance error (Section 1) and kl is the appearance weighting term.
We currently set the compatibility terms Ci,null = 0 and Cnull,null = 0.

Because LBP is not guaranteed to converge to the globally most likely so-
lution, we run the optimization multiple times with randomized starting condi-
tions. We randomize the initial messages within the range [0, max(d) + max(C)].
We also apply a dampening coefficient α = 0.2 to the message updates.

2.2 Surface Fitting

Given the most likely shape candidates we fit a surface that interpolates them as
closely as possible. We formulate the surface as a linear system over the depths
at each pixel. The patch normals are soft constraints, and can be overridden by
other normals or the smoothness term. Solving for depth, rather than normals,
circumvents the problem of enforcing integrability of the result. In this scheme,
we use depth gradients to represent normals, and thin-plate bending energy for
smoothness. The system is defined as (WA)x = (Wb), where A is an m × n
matrix (m > n), W is a diagonal m×m weight matrix, b is an m-element vector
of constraint values, and x is an n-element vector of depth values. We solve for
the best-fitting x in the L2 sense.

For notation, let p ∈ (1..n) represent the pixel in question, p1,0 represent the
pixel immediately to its right, p0,1 represent the pixel immediately above, etc.
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Since each pixel can be covered by multiple patches, we have multiple normal
vector estimates per pixel. Each pixel receives one gradient constraint from each
estimate. To constrain the gradient at p to the gradient given by patch i for this

pixel, {u(i)p , v
(i)
p }, we add the forward difference equations to the system:

xp1,0 − xp = u(i)p

xp0,1 − xp = v(i)p

(6)

We weight each constraint according to the fit of patch i in the MAP con-
figuration, as well as the size of this patch and the pixel p’s location within the
patch. Thus, the weight of a gradient constraint from patch i at pixel p is given
by,

w(i)
p =

1

ai
exp(−Ei)

4√
2πai

exp(−8‖x− ci‖2

ai
) (7)

Ei = di +
∑
j

Ci,j (8)

where ai is the pixel area of patch i, and the second exponential represents a
Gaussian mask about the center, ci, of the patch. The patch fit term, exp(−Ei),
is proportional to the conditional probability, according to our MRF, of the
patch given image data and given all other patches in the MAP configuration.

The smoothness of the solution is maintained by minimizing the thin-plate
bending energy (second derivative of depth) across the shape by adding the
following equations at each p:

xp−1,0 − 2xp + xp1,0 = 0

xp0,−1 − 2xp + xp0,1 = 0

2(xp − xp1,0 − xp0,1 + xp1,1) = 0

(9)

In order to allow the surface to be discontinuous at occluding contours, we
weight the smoothness constraints based on inferred occluding contours. We
construct an image of occluding contours by taking the weighted average of the
occluding contour channels of our MAP patches, using the same weights as in
7. We then filter to remove noise. In addition to using this image to weight
smoothness, we completely exclude all constraints along the ridges of this image
(ridges found by thresholding and morphologically thinning). Normals along
these ridges are assigned by copying over estimated normals from adjacent to
the ridge (for each ridge pixel, the neighbor with minimum depth value is selected
for copying).

To measure and visualize our results, we mask out background pixels using
ground truth.
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3 Training Data

The training data consists of 1920 sets of 9 images each. The nine images include
three types of shape information: depth map, normal map, occluding contours;
and six types of renderings: lines (including suggestive contours), diffuse shad-
ing, glossy shading, texture only, texture with diffuse, texture with glossy. See
Figure 1 for several examples. The texture we use is a solid texture consisting of
regular, stacked black spheres on a white background.

4 Full results

In Figures 2 and 3, we display the inferred appearance and normal map for all
120 of our test image (10 test shapes x 6 styles x 2 training sets).
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depth normals occ. con. lines diffuse glossy texture tx. df. tx. gl.

Fig. 1. Example training images.
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All Styles TrainingSingle Styles Training

28˚ 21˚ 26˚ 23˚ 23˚ 25˚ 28˚ 22˚ 26˚ 25˚ 25˚ 24˚ 30˚

All Styles TrainingSingle Styles Training

22˚ 22˚ 26˚ 21˚ 18˚ 20˚ 26˚ 20˚ 23˚ 20˚ 17˚ 22˚ 36˚

All Styles TrainingSingle Styles Training

32˚ 25˚ 32˚ 23˚ 21˚ 27˚ 36˚ 29˚ 32˚ 23˚ 25˚ 26˚ 43˚

All Styles TrainingSingle Styles Training

26˚ 14˚ 29˚ 20˚ 21˚ 13˚ 26˚ 12˚ 17˚ 22˚ 12˚ 13˚ 30˚

All Styles TrainingSingle Styles Training

28˚ 21˚ 29˚ 26˚ 30˚ 34˚ 27˚ 16˚ 41˚ 25˚ 30˚ 30˚ 43˚

Fig. 2. Full test set results, part 1 (NOTE: the images are small but full resolution.
Try zooming in a PDF reader). Left-most column is original shape. Right-most column
is inflation from shape boundary. Middle columns show image to be interpreted (row
1 in each shape block), interpreted appearance (row 2), and interpreted normal map
(row 3) for shapes rendered in six styles and under two types of training – ‘same style’
renderings and ‘all styles’ of renderings. Number in lower-right-hand corner of normal
maps gives root mean squared angular errors between interpreted normals and normals
of original shape.
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30˚ 22˚ 30˚ 26˚ 31˚ 34˚ 30˚ 20˚ 42˚ 26˚ 31˚ 31˚ 29˚

All Styles TrainingSingle Styles Training

41˚ 31˚ 27˚ 26˚ 19˚ 24˚ 41˚ 30˚ 32˚ 23˚ 18˚ 30˚ 90˚

All Styles TrainingSingle Styles Training

24˚ 12˚ 15˚ 17`˚ 13˚ 14˚ 20˚ 14˚ 13˚ 17˚ 13˚ 15˚ 25˚

All Styles TrainingSingle Styles Training

40˚ 19˚ 21˚ 22˚ 27˚ 23˚ 40˚ 21˚ 31˚ 23˚ 29˚ 21˚ 35˚

All Styles TrainingSingle Styles Training

33˚ 21˚ 25˚ 28˚ 21˚ 23˚ 40˚ 20˚ 22˚ 26˚ 23˚ 27˚ 32˚

All Styles TrainingSingle Styles Training

29˚ 15˚ 21˚ 25˚ 19˚ 22˚ 33˚ 18˚ 18˚ 22˚ 20˚ 19˚ 25˚

45˚

Fig. 3. Full test set results, part 2. See caption in Figure 2


