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Abstract— Planning through contact is a very difficult prob-
lem due to the non-smooth nature of contact. As a result, most
methods must make a tradeoff between physical accuracy and
difficulty of trajectory optimization. To mitigate this issue, we
consider the framework of using indirect relaxations (methods
that may not be physically accurate but have reliable and
tractable solutions) to warm start direct methods (methods
that respect the physics). We consider a regularized model
of soft contact using Softplus as well as common techniques
for relaxing complentarity constraints, and feed them into
exact LCP formulation as well as single-shooting with gradient
descent with ReLU representation of contact dynamics. Our
results surprisingly show that even for a very simple problem,
gradient descent with ReLU dynamics work tractably, reliably,
and even yield lower costs compared to other methods. 1

I. INTRODUCTION

Contact is a crucial part of robot dynamics, as it is the
most important mechanism by which robots interact with
the environment. As such, the problem of planning through
dynamics involving contact is widely recognized in the field
of robotic manipulation [1], [2] and locomotion [3], [4].
Despite the importance of this problem, the difficulty of
solving the problem tractably and reliably is astounding. The
fact that contact forces exist if and only if two objects are
in contact creates a notion of hybridness in the dynamics,
rendering conventional trajectory optimization methods for
smooth dynamics invalid. We refer to this nature of contact
as The Fundamental Nature of Contact.

Definition. (The Fundamental Nature of Contact). Contact
forces between two objects are nonzero if and only if the
objects are geometrically in contact.

When solving trajectory optimization with contact dy-
namics, we are often faced with a tough tradeoff: we can
either respect the fundamental nature of contact and deal
with the resulting difficulty of trajectory optimization, or
we can create a smooth approximation of contact to make
the optimization problem easier, but violate the fundamental
nature of contact. In this work, we label the former as direct
methods, and the latter as indirect methods.

Direct methods obey the fundamental nature of contact by
construction, but are often very difficult class of optimization
problems. Explicitly modeling the contact mode as integer
variables in the presence of nonlinear dynamics leads to
Mixed-Integer Non-linear Porgramming (MINLP), which can
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be extremely hard and time-consuming to solve. If the
dynamics are linear, the trajectory optimization problem can
be transcribed as an instance of Mixed-Integer Program-
ming (MIP) for Piecewise-Affine Dynamics which can be
efficiently solved [5]. However, these techniques are often
confined to linear systems, as linearizing hybrid dynamics
along a trajectory can lead to large numerical approximation
errors around the guard surface.

Without modeling contact modes as integer variables, the
dynamics imposed by contact can be modeled into Com-
plentarity Constraints, leading to Mathematical Programs
with Complementarity Constraints (MPCC). Although some
works have been successful in solving these problems with
Sequential Quadratic Programming (SQP) [6], [7], [8], com-
plementarity constraints still remain as very hard constraints
to satisfy with conventional solvers. As a result, such meth-
ods still remain very time-consuming to solve, and can be
unreliable in producing good solutions in practice.

Finally, a family of single-shooting methods have been
applied to contact trajectory optimization through single-
shooting with gradient descent or iterative Linear Quadratic
Regulators (iLQR) [9], which are convenient to implement
due to the fact that the cost can be formulated a function
of input histories, and the gradients may be computed with
backpropagation. Apart from the known numerical problems
existent in single-shooting, the gradient of nonsmooth contact
dynamics may be hard to define at the guard surface, and
linearizing trajectories in hybrid dynamics again suffer from
the aforementioned approximation.

Yet, recent advances in parameter identification of deep
neural networks using ReLU networks suggest that the ill-
defined gradient at the guard surface may not be as big of
a practical concern as originally thought of. Thus, single
shooting with gradient descent has been applied to control
over learned dynamics [9], [10] quite successfully, although
most of the prior work has not yet attempted to perform
gradient descent on an analytical expression for contact
forces using penalty methods.

Indirect methods often use a smooth and regularized
contact model, and therefore make the resulting optimization
problem easier [11], [12]. However, the resulting formulation
may violate the fundamental nature of contact. Because
the resulting dynamics are smooth under smooth contact
models, conventional trajectory optimization methods such
as single shooting, direct collocation, differential dynamic
programming (DDP) may be utilized.

We note importantly that indirect methods do not always
consider smooth models of contact. For instance, a relaxation
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of complementarity constraint by a bilinear inequality con-
straint with slack variables [6], [7], [8] can allow forces from
a distance and make the optimization problem easier com-
pared to strict complementarity constraints. Such methods
can also be classified as indirect, as the problem is allowed
to violate the fundamental nature of contact.

From a practical point of view, one might question how
important it is that our trajectory respects the fundamental
nature of contact. Indeed, one might argue that this is a
modeling problem that is apparent in every engineering task.
However, violating the fundamental nature of contact is
different from that of truncation error or parameter error,
which smoothly grows in time. For instance, consider a
task where a two finger gripper must lift up a cup. If
the trajectory obtained by a method allows forces from a
distance, the robot may try to lift up the cup when not in
contact, completely invalidating the solution. This strongly
suggests that regardless of the method, the final trajectory
must respect the fundamental nature of contact throughout
its entire timestep.

Therefore, we seem to be at an impasse: we cannot obtain
fast and reliable methods that obeys the crucial physics of
contact at the same time. How can we possibly overcome this
impasse? We believe that the key solution lies in combining
the benefits of both direct methods and indirect methods by
iteratively tuning the solution of an indirect method to obey
the fundamental nature of contact. A powerful framework
for doing so comes from warm starting a direct method
with the solution of an indirect method. (i.e. providing the
solution of an indirect method as an initial guess to a
direct method). Similar strategies were taken in prior work
involving trajectory optimization with contact [11].

A natural question that follows is: which combination
of indirect methods and direct methods provide the best
performance? From an optimization perspective, it would be
plausible that better initial guesses makes convergence much
faster, especially if the initial guess is closer to the feasible
set of a difficult constraint. Understanding the synergy of a
particular indirect method and a direct method may reveal a
way to synthesize better indirect methods, such as regularized
contact models or relaxation of constraints, that serve as
better initial guesses for direct methods. Thus, our work
seeks to understand the strength of relaxations that particular
indirect methods have on the direct methods.

In our work, we compare two class of indirect methods:
using traditional trajectory optimization methods (direct col-
location and single shooting) for softplus approximation of
smooth contact, and LCP relaxation through bilinear inequal-
ity constraints. We study how these methods affect warm
starting of direct methods: exact LCP, and single shooting
with gradient descent with contact forces represented as
ReLU functions. Surprisingly, our empirical study showed
that single-shooting gradient descent methods achieve very
tractable and physically accurate performances, especially
when warm-started with regularized contact models. On the
other hand, LCP methods and their relaxations often tend to
be unreliable and costly.

II. PRELIMINARIES

A. Time-Stepping Semi-Implicit Integration

The equations of motions of body configurations q ∈ Rn
and velocities v ∈ Rn subject to external forces λ ∈ Rc can
be described using Lagrangian dynamics in continuous form:

M(q)v̇ +C(q, v)v = B(q)u+ J(q)Tλ, (1)

where M is the positive definite generalized inertia matrix,
C the Coriolis matrix, G the gravitational terms, B(q) the
actuation matrix, and J the Jacobian term resulting from
linearizing forward dynamics. Throughout the work, we also
utilize the notation x to denote the Markovian state of the
system, x = [p, v]T ∈ R2n.

We discretize the equations of motions in time using semi-
implicit time-stepping, as used in [13], due to its accuracy
in modeling energy conservation as well as convenience
in forward simulation. Given a timestep of h, the above
equations are discretized as{

qt+1 − qt = hvt+1

Mt(vt+1 − vt) = −h
(
Ctvt −Btut + Jtλt

)
,

(2)

where the subscripts denotes time. The subscript on the
matrices denote the fact that the matrices are calculated with
respect to values of quantities at time t (e.g. Mt = M(qt)).

B. Soft Contact Approximation

Before optimizing trajectories with contact dynamics,
obtaining the contact forces themselves during forward
simulation may sometimes be an ill-posed problem due
to non-uniqueness such as static interminancy [13]. Other
works have therefore solved linear complementarity prob-
lems (LCP) at each timestep to identify the value of contact
forces [13], implicitly defined contact forces inside the
optimization constraint [6], or solved QPs to find out the
minimum value of contact forces for feasible dynamics [12].

In contrast, we choose to approximate contact with a
spring-like soft-contact model, which facilitates much easier
forward simulation [14], [15]. This comes at the cost of
stiffness in the resulting ODE during forward simulation,
but the formulation can remain general enough to be applied
to physically soft contact.

Given the penetration depth between two bodies φ(q), a
signed distance function, we approximate the contact forces
between the two bodies as

λt = kmax(φ(qt), 0) = k · ReLU(φ(qt)), (3)

where k is the stiffness of the contact, and ReLU is the
rectified linear unit. Damping can also be added to this
formulation to create a viscoelastic model, such as those
motivated by Hertzian contact models [15].

C. Trajectory Optimization with Contact

As usual, we begin by formulating a cost function in Bolza
form, defined on the trajectory T with timesteps of integer
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indices, t ∈ [0, T ]:

J(T ) = xTTQTxT +

T−1∑
t=0

(xTt Qtxt + uTt Rtut). (4)

We formulate a trajectory optimization problem as finding a
sequence of states x0, x1, · · · , xT and inputs u0, u1, · · · , uT
to minimize the cost while obeying the time-discretized
dynamics in (2).

III. INDIRECT METHODS

We first discuss two class of indirect methods that facilitate
solving the optimization problem at the cost of violating the
fundamental nature of contact: contact smoothing with soft-
plus, and LCP relaxation into bilinear inquality constraints.

A. Smooth Contact Modeling

Following the proposed soft contact model in (3), we can
additionally relax the ReLU function with a Softplus, which
can be modeled as

λt = k logε(1 + εφ(qt)), (5)

which has the property that convergence to ReLU is guar-
anteed as ε → 0, and has an analytical derivative (logsitic
function). Such form of soft smoothing contact has been
utilized in [11], and has empirically shown good advantages
as an indirect method. This model is visualized in Fig.2.

With this contact model, we formulate the trajectory
optimization problem

minimize
xt, ut

J(x0, · · · , xT , u0, · · · , ut−1)

subject to qt+1 − qt = hvt+1, vt+1 − vt = hat,

Mtat = −h(Ctvt −Btut − JTt λt),

λt = k logε(1 + εφ(qt)),

x0 = xi xT = xf ∀t,

(6)

which can be considered as a nonlinear direct collocation
method with a fixed timestep. As the smooth contact con-
straint is a convex equality constraint relating penetration
depth and contact force, this problem can converge quickly
if the dynamics are linear with respect to the states and the
contact force.

B. LCP Relaxation

We also consider forms of LCP relaxation methods con-
sidered in [6], [7], [8], by noting that the ReLU function in
(3) can be encoded in the optimization problem using the
following constraints:

λt = kmax(φ(q), 0)) ⇐⇒


λt ≥ 0

λt − kφ(qt) ≥ 0

λTt (λt − kφ(qt)) = 0.
(7)

The intuition behind these constraints can be obtained by
observing the LCP constraints: either the contact forces are
zero, at which there is no contact, or it obeys λt = k(φ(qt)),
at which there is contact. Because the last constraint, known

as complementarity, is often a difficult to impose, [6]
proposed to relax the complementarity constraint with a
bilinear inequality constraint, allowing the complementarity
constraint to be positive:

λt ≥ 0

λt − kφ(qt) ≥ 0

λTt (λt − kφ(qt)) ≤ ε.
(8)

The relaxation effectively allows forces at a distance, and
allows iteratively tuning ε to meet the exact LCP constraints.
This relaxation is visualized in Fig.2.

The full form of the trajectory optimization problem can
be described as

minimize
xt, ut

J(x0, · · · , xT , u0, · · · , ut−1)

subject to qt+1 − qt = hvt+1, vt+1 − vt = hat,

Mtat = −h(Ctvt −Btut − JTt λt),

λt ≥ 0, λt − kφ(qt) ≥ 0,

λTt (λt − kφ(qt)) ≤ ε,
x0 = xi xT = xf ∀t.

(9)

However, the question of whether this is truly the right
relaxation to consider remains. First, if we are going to allow
forces from a distance anyways, why do we pose it as a
nonconvex bilinear inequality constraint that are still difficult
to impose? Given that convex relaxations of nonconvex
bilinear constraints often involve spatial branch and bound
through McCormick envelopes [16], this relaxation does not
seem like big improvement over branch and bound through
Mixed-Integer methods.

Second, does this method truly provide better initial
guesses to the exact LCP formulation in (7)? Although the
method seems intuitive as a relaxed formulation of (7), the
comparative strength of this relaxation over more tractable
contact models (such as softplus) has yet to be theoretically
justified.

Fig. 1. Left: Softplus relaxation of penalthy contact forces. Right: LCP
relaxation into bilinear inequality constraints.

IV. WARM STARTING DIRECT METHODS

Assuming that we have a trajectory T obtained from an
indirect method, we warm start a direct method using this
trajectory as an initial guess. We numerically study which
of the two methods above are better at warm starting direct
methods.
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A. Warm Starting Exact LCP

The exact LCP formulation obeys the fundamental nature
of contact in (7), as contact forces are zero if and only if pen-
etration distance is positive. Thus, the trajectory optimization
problem can be formulated as in (9) with ε = 0.

In order to study the effectiveness of relaxations in Sec.III,
we formulate a metric that represents the worst-case violation
of the exact LCP constraint, formulated as a function:

Dt = max
qt
|λt · (λt − kφ(qt))|. (10)

Since the exact LCP formulation requires that D(λt) = 0,
we can analyze the theoretical complexity of the behavior of
D(λt) as we decrease ε. Note that softplus satisfies the first
two constraints of (8) as an outer approximation.

For the relaxed LCP, it is not hard to see that D ∈ O(ε),
as the maximum violation of D(λt) is exactly ε. In the case
of Softplus, the analytical form for D(λt) can be lengthy,
and arguing about its complexity class is not straightforward.
Instead, we illustrate it with a numerical comparison in Fig.2.
We observe that the bilinear inequality constraint of the
relaxed LCP has a linear convergence rate of ε → 0, while
the convergence of Softplus initially descends faster than the
LCP relaxation, and rapidly degrades as ε→ 0.

Fig. 2. Log-Lot plot of worst-case constraint violation of two relaxation
schemes.

This lesson tells us two things: theoretically, the relaxed
LCP has better convergence properties to the feasible set of
exact LCP compared to softplus relaxations. Second, softplus
might offer faster convergence during the initial stage of the
optimization process if we begin the method with a relatively
high tolerance.

B. Single Shooting with Gradient Descent (GD)

We also consider warm starting a single shooting method,
and additionally fine-tuning it with with gradient descent.
Unlike previous formulations, we directly formulate a sym-
bolic expression for the state history as a function of input
history, and try to minimize a cost function. Previous formu-
lations achieved stability with the use of the terminal state
constraint, while we aim to acehive stability by penalizing
how much the final trajectory deviates away from the goal

state in the cost function. Thus, the unconstrained optimiza-
tion problem may be defined as

minimize
ut

J(x0, · · · , xT , u0, · · · , ut−1), (11)

where x1, · · · , xT are results of forward simulating the
dynamics with the input sequence u0, · · · , uT−1.

We solve this problem using gradient descent, which takes
advantage of the fact that the dynamics imposed by contact
can be formulated as ReLU functions, which are common
in deep learning pipelines. The update rule is illustrated in
(12).

ut ← ut − η∇ut
J(ut), (12)

where η refers to the ‘learning rate’, or rate of descent.
Similar ideas have been proposed in the field of MIP, where
deep ReLU networks have been used as surrogate models of
Mixed-Integer optimization [17].

To warm start this method, we take a trajectory from the
indirect method and use the input trajectory of the indirect
method as an initial guess, and perform gradient descent from
the initial guess.

V. CASE STUDY: 3 CART SYSTEM

To study the effect of warm starting different direct
methods with indirect methods, we set up a toy problem
with contact, motivated by [18], illustrated in Fig.3. The two
carts on the left and right are actuated, while the cart in the
middle is unactuated, and can only moved through contact.
We also assume a global damping on the velocity terms.

Fig. 3. Free Body Diagram of the three cart system

The forward dynamics of this system is given by

qt+1
1 = qt1 + hvt+1

1

qt+1
2 = qt2 + hvt+1

2

qt+1
3 = qt3 + hvt+1

3

vt+1
1 = vt1 + h(−cvt1 − λt1 + u1)

vt+1
2 = vt2 + h(−cvt2 + λt1 − λt3)
vt+1
3 = vt3 + h(−cvt3 + λt3 + u3),

(13)

and the contact forces are given by{
λt1 = max{k(q2 − q1 − d), 0}
λt3 = max{k(q3 − q2 − d), 0}.

(14)

A. Implementation Details

For implementation, we use a timestep of h = 0.01 with
T = 500. The fixed-timestep direct collocation, relaxed and
exact LCP is implemented using a SNOPT [19] wrapper
in Drake [14]. Throughout the results, we only report tra-
jectories where the optimization has succeeded (optimality
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conditions are satisfied in the SNOPT solver). The single
shooting implementation is done in PyTorch [20] without
the use of GPU. We use the Stochastic Gradient Descent
(SGD) solver with a learning rate of η = 500. We simulate
the parameters with each mass of 1kg, spring constant of
k = 30, and viscous damping of c = 2.

B. Comparing Trajectories of Relaxations

We compare trajectories of different relaxation methods
as we iteratively tune ε, and illustrate how the trajectories
change using different relaxation methods. Fig.4 and Fig.5
utilizes regularized contact with the softplus model, respec-
tively with direct collocation and single shooting with gradi-
ent descent. The tolerance in the single shooting example can
be tuned to be exact, where ε = 0 corresponds to gradient
descent on ReLU dynamics (Fig.5). Finally, Fig.6 illustrates
change of trajectories as the bounds on LCP relaxation is
tightened.

Fig. 4. Change of trajectories while iteratively tightening bounds for
smooth contact relaxation with direct collocation. The tolerances used are
ε = [1e− 3, 1e− 5, 1e− 7, 1e− 9]

Fig. 5. Change of trajectories while iteratively tightening bounds for
smooth contact relaxation with gradient descent. The tolerances used are
ε = [1e−3, 1e−5, 1e−7, 0.0], where 0.0 corresponds to gradient descent
with exact ReLU. Darker colors indicate lower tolerances. Note the colors
match with the colors of each quantity in Fig.3.

C. Quantitative Comparison of Warm Starting

To quantitatively compare the results of different indirect
methods with direct methods, we evaluate the resulting final
trajectories using the following criteria:

Fig. 6. Change of trajectories while iteratively tightening bounds for LCP
relaxation. The tolerances used are ε = [1e−1, 1e−2, 1e−3, 0.0], where
0.0 corresponds to the exact LCP constraint. Darker colors indicate lower
tolerances.

1) Resulting cost of the final trajectory
2) Time it took to obtain the trajectory
3) Stability cost of the final trajectory
4) Physical Violations

We utilize sum of input norm for the cost of the final
trajectory (

∑
t u

Tu), and the stability cost is formulated as
the 2-norm difference between the desired final state and the
actual final state. Finally, the physical violation is evaluated
as a sum of LCP violations in (10). The resulting comparison
of the four items are tabulated in Table I.

D. Discussion of Quantiative Results

From the quantitative results in Table I, we hope to discuss
the following lessons from the empirical study.

1) Regularized Contact Models Help Convergence of Di-
rect Methods: Regardless of the choice of the direct method,
we saw that regularized contact models create a very favor-
able condition to warm start the optimization problem. This
is illustrated by how both LCP and ReLU Gradient Descent
(GD) have lower costs when warm started by Softplus
models of contact.

2) LCP Relaxation is rarely a good idea: In practice, we
see that warm starting the optimization with LCP relaxations
take painfully long as nonconvex bilinear constraints. How-
ever, it is even more surprising that strict LCP, when warm-
started with relaxed LCP, yields higher cost compared to just
doing strict LCP from the beginning. In comparison, strict
LCP warm-started with Softplus models yielded much lower
cost compared to no warm starting.

3) LCP is unreliable and costly: It was interesting to
observe that LCP methods often take much longer time to
compute compared to gradient descent methods, but yield
costs that are orders of 2 magnitudes higher than GD
methods. This is also illustrated in Fig.6, where trajectories
obtained by LCP methods tend to be jerky and numerically
ill-conditioned. We remind the reader that optimality condi-
tions were still satisfied.

4) Gradient Descent with ReLU dynamics is surprisingly
effective: Finally, the success of single shooting gradient
descent methods with ReLU model of contact was extremely
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Strict LCP (No Warm Start) ReLU GD (No Warm Start)
Tol.(ε) Cost Stability Physics Time(s) Tol.(ε) Cost Stability Physics Time(s)

0.0 40779.28 0.00 0.00 31.56 0.0 542.56 0.04 0.16 49.59
LCP Relaxation + Strict LCP LCP Relaxation + ReLU GD

Tol.(ε) Cost Stability Physics Time(s) Tol.(ε) Cost Stability Physics Time(s)
1e-2 484.21 0.00 2.99 1407.90 Same as left
1e-3 561.00 0.00 0.34 580.77 Same as left
1e-4 469.94 0.00 0.03 430.16 Same as left

0.0 46415.20 0.00 0.00 20.73 0.0 492.06 0.00 0.20 0.27
Softplus Direct Collocation + Strict LCP Softplus Direct Collocation + ReLU GD

Tol.(ε) Cost Stability Physics Time(s) Tol.(ε) Cost Stability Physics Time(s)
1e-3 197.86 0.00 2445.98 11.64 Same as left
1e-5 261.23 0.00 625.11 9.78 Same as left
1e-7 339.53 0.00 239.50 12.40 Same as left

0.0 16619.35 0.00 0.00 100.07 0.0 360.31 0.00 0.20 1.43
Softplus GD + Strict LCP Softplus GD + ReLU GD

Tol.(ε) Cost Stability Physics Time(s) Tol.(ε) Cost Stability Physics Time(s)
1e-3 149.18 0.41 0.01 4.07 Same as left
1e-5 166.45 0.27 0.11 3.77 Same as left
1e-7 215.14 0.20 0.12 2.94 Same as left

0.0 3748.30 0.00 0.00 151.54 0.0 309.42 0.05 0.21 2.38

TABLE I
COMBINING INDIRECT AND DIRECT METHODS

surprising, given the conventional doubts about numerical
losses encountered by the method. Whether or not this
success will continue on to more complicated systems is
questionable, but the effectivess of the method on our par-
ticular example is beyond doubt, as it consistently yielded
two orders of magnitude lower cost with the two magnitude
lower computing time.

VI. CONCLUSION & FUTURE WORKS

We have considered a framework of warm starting di-
rect methods of contact with less physically accurate, but
easier-to-solve methods in order to produce tractable and
physically accurate trajectories for planning through contact.
We introduced two relaxations: a Softplus approximation for
contact forces, and relaxation of complentarity constraints
into bilinear inequality constraints. Using these relaxations,
we warm started two methods that respect the physics:
the strict LCP method, and the single shooting method
with gradient descent. We have attempted a combination of
different methods on the three cart example of Fig.3.

Through our results, we were able to show that smooth
and regularized models of contact often serve as effec-
tive methods to warm start exact formulations of contact,
strengthening the result obtained in [11].

In contrast, although we made theoretical claims on how
solving the relaxed LCP converges faster to the true LCP
solution compared to the regularized model, our studies
showed that solving the relaxed LCP itself is often unreliable
and computationally costly in practice. Not only is comple-
mentarity a difficult condition to satisfy, but relaxing it to a
nonconvex bilinear inequality constraints also does not seem
to help much.

A particularly surprising result that we demonstrated was
the effectiveness of approximating contact with ReLU dy-
namics, and performing single shooting on this dynamics
with gradient descent. For our simple example, this method
outperformed LCP by orders of magnitude, both in final cost
and computation time. We also note that even in this case,
performing trajectory optimization using smooth models of
contact with SoftPlus and using the solution to warm start
an exact ReLU model helped decrease the cost by a large
margin. This particularly goes against the accepted consensus
about the shortcomings of single-shooting methods, and we
plan to study the reason for its effectiveness in the future.

A big question that remains is whether or not the conclu-
sion from our work can be extended to more complicated
dynamics involving contact. For instance, friction has not
been considered in our example, although [11] proposed
regularizing friction with a logistic-like function. Other ex-
amples include whole-body motion planning of humanoids
or multi-finger manipulation, which involve systems of much
larger dimensions and multiple nonlinearities [21].

We are also very interested in whether single shooting with
gradient descent will still remain effective for adversarial
settings, where unstable systems create exploding/vanishing
gradient problems. We believe that performing direct colloca-
tion with regularized contact models, and then doing gradient
descent ‘fine tuning’ might mitigate some of the problems
associated with directly performing gradient descent.
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