
Variational Inference for the Indian
Buffet Process

Finale Doshi-Velez, Kurt T. Miller, Jurgen Van Gael, Yee Whye Teh

Computational and Biological Learning Laboratory
Department of Engineering
University of Cambridge

Technical Report CBL-2009-001
April 2009



Variational Inference for the Indian Buffet Process

Finale Doshi-Velez∗ Kurt T. Miller∗ Jurgen Van Gael∗ Yee Whye Teh

Cambridge University University of California, Berkeley Cambridge University Gatsby Unit

April 2009

Abstract

The Indian Buffet Process (IBP) is a nonparametric prior for latent feature models
in which observations are influenced by a combination of hidden features. For example,
images may be composed of several objects and sounds may consist of several notes. Latent
feature models seek to infer these unobserved features from a set of observations; the IBP
provides a principled prior in situations where the number of hidden features is unknown.
Current inference methods for the IBP have all relied on sampling. While these methods
are guaranteed to be accurate in the limit, samplers for the IBP tend to mix slowly in
practice. We develop a deterministic variational method for inference in the IBP based on
truncating to finite models, provide theoretical bounds on the truncation error, and evaluate
our method in several data regimes. This technical report is a longer version of Doshi-Velez
et al. (2009).

Keywords: Variational Inference, Indian Buffet Process, Nonparametric Bayes, Linear Gaus-
sian, Independent Component Analysis

1 Introduction

Many unsupervised learning problems seek to identify a set of unobserved, co-occurring features
from a set of observations. For example, given images composed of various objects, we may
wish to identify the set of unique objects and determine which images contain which objects.
Similarly, we may wish to extract a set of notes or chords from an audio file as well as when each
note was played. In scenarios such as these, the number of latent features is often unknown a
priori (they are latent features, after all!).

Unfortunately, most traditional machine learning approaches require the number of latent
features as an input. To apply these traditional approaches to scenarios in which the number
of latent features is unknown, we can use model selection to define and manage the trade-off
between model complexity and model fit. In contrast, nonparametric Bayesian approaches treat
the number of features as a random quantity to be determined as part of the posterior inference
procedure.

The most common nonparametric prior for latent feature models is the Indian Buffet Process
(IBP) (Griffiths and Ghahramani, 2005). The IBP is a prior on infinite binary matrices that
allows us to simultaneously infer which features influence a set of observations and how many
features there are. The form of the prior ensures that only a finite number of features will be
present in any finite set of observations, but more features may appear as more observations
are received. This property is both natural and desirable if we consider, for example, a set of
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images: any one image contains a finite number of objects, but, as we see more images, we
expect to see objects not present in the previous images.

While an attractive model, the combinatorial nature of the IBP makes inference particularly
challenging. Even if we limit ourselves to K features for N objects, there exist O(2NK) possible
feature assignments. In this combinatorial space, sampling-based inference procedures for the
IBP often suffer because they assign specific values to the feature-assignment variables. Hard
variable assignments give samplers less flexibility to move between optima, and the samplers
may need large amounts of time to escape small optima and find regions with high probability
mass. Unfortunately, all current inference procedures for the IBP rely on sampling. These
approaches include Gibbs sampling (Griffiths and Ghahramani, 2005), which may be augmented
with Metropolis split-merge proposals (Meeds et al., 2007), as well as slice sampling (Teh et al.,
2007) and particle filtering (Wood and Griffiths, 2007).

Mean field variational methods, which approximate the true posterior via a simpler distri-
bution, provide a deterministic alternative to sampling-based approaches. Inference involves
using optimisation techniques to find a good approximate posterior. Our mean field approxi-
mation for the IBP maintains a separate probability for each feature-observation assignment.
Optimising these probability values is also fraught with local optima, but using the soft vari-
able assignments—that is, using probabilities instead of sampling specific assignments—gives
the variational method a flexibility that samplers lack. In the early stages of the inference, this
flexibility can help the variational method avoid small local optima.

Variational approximations have provided benefits for other nonparametric Bayesian models,
including Dirichlet Processes (e.g. Blei and Jordan (2004), Kurihara et al. (2007a) and Kurihara
et al. (2007b)) and Gaussian Processes (e.g. Winther (2000), Gibbs and MacKay (2000), and
Snelson and Ghahramani (2006)). Of all the nonparametric Bayesian models studied so far,
however, the IBP is the most combinatorial and is therefore in the most need of a more efficient
inference algorithm.

The remainder of this technical report is organised as follows:

• Background. Section 2 reviews the likelihood model, the IBP model, and the basic Gibbs
sampler for the IBP. It also summarises the notation used in later sections. Appendix A
details the Gibbs sampling Equations used in our tests.

• Variational Method. Section 3 reviews variational inference and outlines our specific
approach, which is based on a truncated representation of the IBP. Sections 4 and 5 contain
all of the update Equations required to implement the variational inference; full derivations
are provided in Appendices C and D. Appendix E describes how similar updates can be
derived for the infinite ICA model of Knowles and Ghahramani (2007).

• Truncation Bound. Section 6 derives bounds on the expected error due to our use of a
truncated representation for the IBP; these bounds can serve as guidelines for what level
of truncation may be appropriate. Extended derivations are in Appendix F.

• Results. Section 7 demonstrates how our variational approach scales to high-dimensional
data sets while maintaining good predictive performance.
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2 Background

In this section, we describe the our likelihood model used and provide background information
on the Indian Buffet Process. Subsection 2.3 summarises the notation used in the remainder of
the report.

2.1 Data Model

Let X be an N×D matrix where each of the N rows contains a D-dimensional observation. In
this report, we consider a linear-Gaussian likelihood model in which X can be approximated by
ZA where Z is an N×K binary matrix and A is a K×D matrix. Each column of Z corresponds
to the presence of a latent feature; znk ≡ Z(n, k) = 1 if feature k is present in observation n
and 0 otherwise. The values for feature k are stored in row k of A. The observed data X is
then given by ZA+ ε, where ε is some measurement noise (see Figure 1). We assume that the
noise is independent of Z and A and is uncorrelated across observations.

Given X, we wish to find the posterior distribution of Z and A. From Bayes rule,

p(Z,A|X) ∝ p(X|Z,A)p(Z)p(A)

where we have assumed that Z and A are independent a priori. The specific application will
determine the likelihood function p(X|Z,A) and the feature prior p(A). In this report, we
consider the case where both the noise ε and the features A have Gaussian priors. We are left
with placing a prior on Z. Since we often do not know K, we desire a prior that allows K to
be determined at inference time. The Indian Buffet Process is one option for such a prior.

X Z A
+= ×. . .

...

D

D

N N ε

K

K

Figure 1: Our likelihood model posits that the data X is the product ZA plus some noise.

2.2 Indian Buffet Process

The IBP places the following prior on [Z], a canonical form of Z that is invariant to the ordering
of the features (see Griffiths and Ghahramani (2005) for details):

p([Z]) =
αK∏

h∈{0,1}N\0Kh!
exp {−αHN} ·

K∏
k=1

(N −mk)!(mk − 1)!
N !

. (1)

Here, K is the number of nonzero columns in Z, mk is the number of ones in column k of Z,
HN is the N th harmonic number, and Kh is the number of occurrences of the non-zero binary
vector h among the columns in Z. The parameter α controls the expected number of features
present in each observation.
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Restaurant Construction. The following culinary metaphor is one way to sample a matrix
Z from the prior described in Equation (1). Imagine the rows of Z correspond to customers and
the columns correspond to dishes in an infinitely long (Indian) buffet. The customers choose
their dishes as follows:

1. The first customer takes the first Poisson(α) dishes.

2. The ith customer then takes dishes that have been previously sampled with probability
mk/i, where mk is the number of people who have already sampled dish k. He also takes
Poisson(α/i) new dishes.

Then, znk is one if customer n tried the kth dish and zero otherwise. The resulting matrix is
infinitely exchangeable, meaning that the order in which the customers attend the buffet has
no impact on the distribution of Z (up to permutations of the columns).

The Indian buffet metaphor leads directly to a Gibbs sampler. Bayes’ rule states

p(znk|Z−nk,A,X) ∝ p(X|A,Z)p(znk|Z−nk).
The likelihood term p(X|A,Z) is easily computed from the noise model while the prior term
p(znk|Z−nk) is obtained by imagining that customer n was the last to enter the restaurant (this
assumption is valid due to exchangeability). The prior term p(znk|Z−nk) is mk/N for active
features. New features are sampled by combining the likelihood model with the Poisson(α/N)
prior on the number of new dishes a customer will try.

If the prior on A is conjugate to the likelihood, we can marginalise out A from the likelihood
p(X|Z,A) and consider p(X|Z). This approach leads to the collapsed Gibbs sampler for the
IBP. Marginalising out A gives the collapsed Gibbs sampler a level of flexibility that allows it
to mix more quickly than an uncollapsed Gibbs sampler.

However, if the likelihood is not conjugate or if the dataset is large and high-dimensional,
p(X|Z) may be much more expensive to compute than p(X|Z,A). In these cases, the Gibbs
sampler must also sample the feature matrix A based on its posterior distribution p(A|X,Z).
For further details and Equations on Gibbs samplers for the IBP, please refer to Appendix A.

Stick-breaking Construction. The restaurant construction directly lends itself to a Gibbs
sampler, but it does not easily lend itself to a variational approach. For the variational approach,
we turn to an alternative (equivalent) construction of the IBP, the stick-breaking construction
of Teh et al. (2007). To generate a matrix Z using the stick-breaking construction, we begin
by assigning a parameter πk ∈ (0, 1) to each column of Z. Given πk, each znk in column k is
sampled as an independent Bernoulli(πk). Since each ‘customer’ samples a dish independently
of the other customers, this representation makes it clear that the ordering of the customers
does not impact the distribution.

The πk themselves are generated by the following stick-breaking process. We first draw a
sequence of independent random variables v1, v2, . . ., each distributed Beta(α, 1). We assign
π1 = v1. For each subsequent k, we assign πk = vkπk−1 =

∏k
i=1 vi, resulting in a decreasing

sequence of probabilities πk. Specifically, given a finite dataset, the probability of seeing feature
k decreases exponentially with k. Larger values of α mean that we expect to see more features
in the data.

2.3 Notation

We now summarise the notation which we use throughout the technical report. Vectors or
matrices of variables are bold face. A subscript of “−i” indicates all components except com-
ponent i. A subscript “·” indicates all components in a given dimension. For example, Z−nk
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is the full Z matrix except the (n, k) entry, and Xn· is the entire nth row of X. Finally, for
probability distributions, a subscript indicates the parameters used to specify the distribution.
For example, qτ (v) = q(v; τ ).

Commonly recurring variables are:

• X: The observations are stored in X, an N × D matrix. The linear-Gaussian model
posits X = ZA+ ε, where ε is a N ×D matrix of independent elements, each with mean
0 and variance σ2

n.

• znk,Z: Each znk indicates whether feature k is present in observation n. Here, n ∈
{1 . . . N} runs over the number of data-points and k ∈ {1 . . .∞} runs over the number of
features. The matrix Z refers to the collection of all znk’s. It has dimensionality N ×K,
where K is the finite number of nonzero features. All other znk, k > K are assumed to be
zero. We use α to denote the concentration parameter of the IBP.

• π: The stick lengths (feature probabilities) are πk.

• ν: The stick-breaking variables are νk.

• A: The collection of Gaussian feature variables, a K × D matrix where each feature is
represented by the vector Ak·. In the linear-Gaussian model, the prior states that the
elements are A are independent with mean 0 and variance σ2

A.

3 Variational Inference

We focus on variational inference procedures for the linear-Gaussian likelihood model (Grif-
fiths and Ghahramani, 2005), in which A and ε are Gaussian, however, these updates can be
easily adapted to other exponential family likelihood models. As an example, we briefly dis-
cuss the variational procedure for the infinite ICA model (Knowles and Ghahramani, 2007) in
Appendix E.

We denote the set of hidden variables in the IBP by W = {π,Z,A} and the set of param-
eters by θ = {α, σ2

A, σ
2
n}. Computing the true log posterior

log p(W |X,θ) = log p(W ,X|θ)− log p(X|θ)

is difficult due to the intractability of computing the log marginal probability log p(X|θ) =
log
∫
p(X,W |θ)dW .

Mean field variational methods approximate the true posterior with a variational distribution
qΦ(W ) from some tractable family of distributions Q (Beal, 2003; Wainwright and Jordan,
2008). Here, Φ denotes the set of parameters used to describe the distribution q. Inference
then reduces to performing an optimisation on the parameters Φ to find the member q ∈ Q
that minimises the KL divergence D(qΦ(W )||p(W |X,θ)). Since the KL divergence D(q||p)
is nonnegative and equal to zero iff p = q, the unrestricted solution to our problem is to set
qΦ(W ) = p(W |X,θ). However, this general optimisation problem is intractable. We therefore
restrict Q to a parameterised family of distributions for which this optimisation is tractable.

Specifically, we present two mean field variational approaches with two different families Q.
In both models, we use a truncated model with truncation level K. A truncation level K means
that Z (in our approximating distribution) is nonzero in at most K columns.

Our first approach minimises the KL-divergence D(q||pK) between the variational distribu-
tion and a finite approximation pK to the IBP described in Section 4; we refer to this approach
as the finite variational method. In this model, we let Q be a factorised family

q(W ) = qτ (π)qφ(A)qν(Z) (2)
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where τ , φ, and ν are optimised to minimise D(q||pK). By minimising with respect to pK and
not the true p, this first approach introduces an additional layer of approximation not present
in our second approach.

Our second approach minimises the KL-divergence to the true IBP posterior D(q||p). We
call this approach the infinite variational method because, while our variational distribution
is finite, its updates are based the true IBP posterior (which contains an infinite number of
features). In this model, we work directly with the stick-breaking weights v instead of directly
with π. The family Q is then the factorised family

q(W ) = qτ (v)qφ(A)qν(Z)

where τ , φ, and ν are the variational parameters. The forms of the distributions q and the
variational updates are specified in Section 5.

Inference in both approaches consists of optimising the parameters of the approximating
distribution to most closely match the true posterior. This optimisation is equivalent to max-
imising a lower bound on the evidence since

log p(X|θ) = Eq[log(p(X,W |θ)] +H[q] +D(q||p) (3)
≥ Eq[log(p(X,W |θ)] +H[q]

where H[q] is the entropy of distribution q, and therefore

arg min
τ,φ,ν

D(q||p) = arg max
τ,φ,ν

Eq[log(p(X,W |θ)] +H[q]. (4)

This optimisation is not convex; in general, we can only hope to find variational parameters
that are a local optima.

To minimise D(q||p), we cycle through each of the variational parameters, and for each one,
perform a coordinate ascent that maximises the right side of Equation (4). In doing so, we also
improve a lower bound on the log-likelihood of the data.

In Sections 4 and 5, we go over the finite and infinite approaches in detail. Appendix B
reviews the key concepts for variational inference with exponential family models.

4 The Finite Variational Approach

In this section, we introduce our finite variational approach, an approximate inference algorithm
for an approximation to the IBP. Specifically, we assume that the IBP can be well approximated
using the finite beta-Bernoulli model pK introduced by (Griffiths and Ghahramani, 2005)

πk ∼ Beta(α/K, 1) for k ∈ {1 . . .K},
znk ∼ Bernoulli(πk) for k ∈ {1 . . .K}, n ∈ {1 . . . N},
Ak· ∼ Normal(0, σ2

AI) for k ∈ {1 . . .K},
Xn· ∼ Normal(Zn·A, σ2

nI) for n ∈ {1 . . . N},

where K is some finite (but large) truncation level. Griffiths and Ghahramani (2005) showed
that as K →∞, this finite approximation converges in distribution to the IBP. Under the finite
approximation, the joint probability of the data and latent variables is

pK(W ,X|θ) =
K∏
k=1

(
p(πk|α)p(Ak·|σ2

AI)
N∏
n=1

p(znk|πk)
)

N∏
n=1

p(Xn·|Zn·,A, σ2
nI).
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Working with the log posterior of the finite approximation,

log pK(W |X,θ) = log pK(W ,X|θ)− log pK(X|θ),

is still intractable, so we use the following variational distribution as an approximation

q(W ) = qτ (π)qφ(A)qν(Z)

where

• qτk
(πk) = Beta(πk; τk1, τk2),

• qφk
(Ak·) = Normal(Ak·; φ̄k,Φk),

• qνnk
(znk) = Bernoulli(znk; νnk).

Inference then involves optimising τ , φ, and ν to either minimise the KL divergence D(q||pK)
or, equivalently, maximise the lower bound on pK(X|θ):

Eq[log(pK(X,W |θ)] +H[q].

While variational inference with respect to the finite beta-Bernoulli model pK is not the same
as variational inference with respect to the true IBP posterior, the variational updates are
significantly easier and, in the limit of large K, the finite beta-Bernoulli model is equivalent to
the IBP.

4.1 Lower Bound on the Marginal Likelihood

We expand the lower bound in this section, leaving the full set of Equations for Appendix C.1.
Note that all expectations in this section are taken with respect to the variational distribution
q. We therefore drop the use of Eq and instead use EW to indicate which variables we are
taking expectations over. Substituting expressions into Equation 3, our lower bound is

log pK(X|θ) ≥ EW [log pK(W ,X|θ)] +H[q],

=
K∑
k=1

Eπ [log pK(πk|α)] +
K∑
k=1

N∑
n=1

Eπ,Z [log pK(znk|πk)] (5)

+
K∑
k=1

EA
[
log pK(Ak·|σ2

AI)
]

+
N∑
n=1

EZ,A
[
log pK(Xn·|Zn·,A, σ2

nI)
]

+H[q].
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Evaluating the expectations are all straightforward exponential family calculations. The full
lower bound is

log pK(X|θ) (6)

≥
K∑
k=1

[
log

α

K
+
( α
K
− 1
)

(ψ(τk1)− ψ(τk1 + τk2))
]

+
K∑
k=1

N∑
n=1

[νnkψ(τk1) + (1− νnk)ψ(τk2)− ψ(τk1 + τk2)]

+
K∑
k=1

[−D
2

log(2πσ2
A)− 1

2σ2
A

(
tr(Φk) + φ̄kφ̄Tk

)]

+
N∑
n=1

[
−D

2
log(2πσ2

n)− 1
2σ2

n

(
Xn·X

T
n·−2

K∑
k=1

νnkφ̄kX
T
n·+2

∑
k<k′

νnkνnk′φ̄kφ̄
T
k′+

K∑
k=1

νnk
(
tr(Φk)+φ̄kφ̄Tk

))]

+
K∑
k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
K∑
k=1

[
1
2

log
(
(2πe)D|Φk|

)]
+

K∑
k=1

N∑
n=1

[−νnk log νnk − (1− νnk) log(1− νnk)] .

where ψ(·) is the digamma function. Derivations are left to Appendix C.1.

4.2 Parameter Updates

We cycle through all the variational parameters and sequentially update them using standard
exponential family variational update Equations (Blei and Jordan, 2004). The full derivations
of these updates are in Appendix C.2.

1. For k = 1, . . . ,K, we update the φ̄k and Φk in Normal(Ak·; φ̄k,Φk) as

Φk =

(
1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

I

φ̄k =

 1
σ2
n

N∑
n=1

νnk

Xn· −
∑
l:l 6=k

νnlφ̄l

( 1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

.

2. For k = 1, . . . ,K, n = 1, . . . , N , update νnk in Bernoulli(znk; νnk) as

νnk =
1

1 + e−ϑ
.

where

ϑ = ψ(τk1)− ψ(τk2)− 1
2σ2

n

(
tr(Φk) + φ̄kφ̄Tk

)
+

1
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

νnlφ̄
T
l


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3. For k = 1, . . . ,K, we update the τk1 and τk2 in Beta(πk; τk1, τk2) as

τk1 =
α

K
+

N∑
n=1

νnk,

τk2 = N + 1−
N∑
n=1

νnk.

5 The Infinite Variational Approach

In this section, we introduce the infinite variational approach, a method for doing approximate
inference for the linear-Gaussian model with respect to a full IBP prior. The model for p is the
full (untruncated) stick-breaking construction for the IBP:

vk ∼ Beta(α, 1) for k ∈ {1, . . . ,∞},

πk =
k∏
i=1

vi for k ∈ {1 . . .∞},

znk ∼ Bernoulli(πk) for k ∈ {1 . . .∞}, n ∈ {1 . . . N},
Ak· ∼ Normal(0, σ2

AI) for k ∈ {1 . . .∞},
Xn· ∼ Normal(Zn·A, σ2

nI) for n ∈ {1 . . . N}.
The joint probability of the data and variables is

p(W ,X|θ) =
∞∏
k=1

(
p(πk|α)p(Ak·|σ2

AI)
N∏
n=1

p(znk|πk)
)

N∏
n=1

p(Xn·|Zn·,A, σ2
nI).

Working with the log posterior

log p(W |X,θ) = log p(W ,X|θ)− log p(X|θ).

is again intractable, so we use a variational approximation. Similar to the approach used by
Blei and Jordan (2004), our variational approach uses a truncated stick-breaking process that
bounds k by K. In the truncated stick-breaking process, πk =

∏k
i=1 vi for k ≤ K and zero

otherwise.
The feature probabilities {π1 . . . πK} are dependent under the prior, while the {v1 . . . vK}

are independent. However, π can be directly derived from v. We use v instead of π as our
hidden variable because it is simpler to work with. Our mean field variational distribution is:

q(W ) = qτ (v)qφ(A)qν(Z)

where

• qτk
(vk) = Beta(vk; τk1, τk2),

• qφk
(Ak·) = Normal(Ak·; φ̄k,Φk),

• qνnk
(znk) = Bernoulli(Znk; νnk).

As with the finite approach, inference involves optimising τ , φ, and ν to minimise the KL
divergence D(q||p), or equivalently to maximise the lower bound on p(X|θ)

Eq[log(p(X,W |θ)] +H[q].

Unfortunately, the update Equations for this approximation are not as straightforward as in
the finite approach.
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5.1 Lower Bound on the Marginal Likelihood

As in the finite approach, we first derive an expression for the variational lower bound. However,
parts of our model are no longer in the exponential family and require nontrivial computations.
We expand upon these parts here, leaving the straightforward exponential family calculations
to Appendix D.1.

The lower bound on p(X|θ) can be decomposed as follows

log p(X|θ) ≥
K∑
k=1

Ev [log p(vk|α)] +
K∑
k=1

N∑
n=1

Ev,Z [log p(Znk|v)] (7)

+
K∑
k=1

EA
[
log p(Ak·|σ2

A)
]

+
N∑
n=1

EZ,A
[
log p(Xn·|Z,A, σ2

n)
]

+H[q],

Except for the second term, all of the terms are exponential family calculations; evaluated they
come out to

log p(X|θ) (8)

≥
K∑
k=1

[logα+ (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

+
K∑
k=1

N∑
n=1

[
νnk

(
k∑

m=1

ψ(τk2)− ψ(τk1 + τk2)

)
+ (1− νnk)Ev

[
log

(
1−

k∏
m=1

vm

)]]

+
K∑
k=1

[−D
2

log(2πσ2
A)− 1

2σ2
A

(
tr(Φk) + φ̄kφ̄Tk

)]

+
N∑
n=1

[
−D

2
log(2πσ2

n)− 1
2σ2

n

(
Xn·X

T
n·−2

K∑
k=1

νnkφ̄kX
T
n·+2

∑
k<k′

νnkνnk′φ̄kφ̄
T
k′+

K∑
k=1

νnk
(
tr(Φk)+φ̄kφ̄Tk

))]

+
K∑
k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
K∑
k=1

1
2

log
(
(2πe)D|Φk|

)
+

K∑
k=1

N∑
n=1

[−νnk log νnk − (1− νnk) log(1− νnk)]

where ψ(·) is the digamma function, and we have left Ev
[
log
(

1−∏k
m=1 vm

)]
, a byproduct

of the expectation of Ev,Z [log p(Znk|v)], unevaluated. This expectation has no closed-form
solution, so we instead lower bound it (and therefore lower bound the log posterior).

In this section, we present a multinomial approximation which leads to a computationally
efficient lower bound and straightforward parameter updates.1 An approach based on a Taylor
series expansion is presented in Appendix D.1. Unlike the multinomial approximation, the
Taylor approximation can be made arbitrarily precise; however, empirically we find that the
multinomial bound is usually only 2-10% looser than a 50-term Taylor series expansion—and
about 30 times faster to compute. Parameter updates under the Taylor approximation do not
have a closed form solution and must be numerically optimised. Thus, we recommend using the
multinomial approximation and the corresponding parameter updates; the Taylor derivation is
provided largely for reference.

1Note that Jensen’s inequality cannot be used here; the concavity of the log goes in the wrong direction.
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To bound Ev
[
log
(

1−∏k
m=1 vm

)]
with the multinomial approximation, we introduce an

auxiliary distribution qk(y) in expectation and apply Jensen’s inequality:

Ev

[
log

(
1−

k∏
m=1

vm

)]
= Ev

log

 k∑
y=1

(1− vy)
y−1∏
m=1

vm


= Ev

log

 k∑
y=1

qk(y)
(1− vy)

∏y−1
m=1 vm

qk(y)


≥ EyEv

[
log(1− vy) +

y−1∑
m=1

log vm

]
+H[qk]

= Ey

[
ψ (τy2) +

(
y−1∑
m=1

ψ(τm1)

)
−
(

y∑
m=1

ψ(τm1 + τm2)

)]
+H[qk].

If we represent the multinomial qk(y) as (qk1, qk2, . . . , qkk), we get

Ev

[
log

(
1−

k∏
m=1

vm

)]
≥

(
k∑

m=1

qkmψ(τm2)

)
+

(
k−1∑
m=1

(
k∑

n=m+1

qkn

)
ψ(τm1)

)
(9)

−
(

k∑
m=1

(
k∑

n=m

qkn

)
ψ(τm1 + τm2)

)
−

k∑
m=1

qkm log qkm.

Equation 9 holds for any qk1, . . . , qkk for all 1 ≤ k ≤ K.
Next we optimise qk(y) to maximise the lower bound. Taking derivatives with respect to

each qki,

0 = ψ(τi2) +
i−1∑
m=1

ψ(τm1)−
i∑

m=1

ψ(τm1 + τm2)− 1− log(qki)− λ

where λ is the Lagrangian variable to ensure that q is a distribution. Solving for qki, we find

qki ∝ exp

(
ψ(τi2) +

i−1∑
m=1

ψ(τm1)−
i∑

m=1

ψ(τm1 + τm2)

)
(10)

where the proportionality ensures that qk a valid distribution. If we plug this multinomial lower
bound back into Ev,Z [log p(znk|v)], we have a lower bound on log p(X|θ). We then optimise
the remaining parameters to maximise the lower bound.

The auxiliary distribution qk is largely a computational tool, but it does have the following
intuition. Since πk =

∏k
i=1 vi; we can imagine the event znk = 1 is equivalent to the event that

a series of variables ui ∼ Bernoulli(vi) all flip to one. If any of the ui’s equal zero, then the
feature is off. The multinomial distribution qk(y) can be thought of as a distribution over the
event that the yth variable uy is the first ui to equal 0.

5.2 Parameter Updates

The updates for the variational parameters for A and Z are still in the exponential family. For
the parameters of A, the updates are identical to those of the finite model. For the parameters
of Z, the updates are again similar to the finite model, except we must use an approximation
for Ev[log(1−∏k

i=1 vi)].
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The updates for the parameters for v, however, strongly depend on how we approximate
with the term Ev[log(1 −∏k

i=1 vi)]. If we use the multinomial lower bound of Section 5.1, the
updates have a nice closed form2. As in the finite approach, we sequentially update each of the
variational parameters in turn:

1. For k = 1, . . . ,K, we update the φ̄k and Φk in Normal(Ak·; φ̄k,Φk) as

Φk =

(
1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

I

φ̄k =

 1
σ2
n

N∑
n=1

νnk

Xn· −
∑
l:l 6=k

νnlφ̄l

( 1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

.

2. For k = 1, . . . ,K, n = 1, . . . , N , update νnk in Bernoulli(znk; νnk) as

νnk =
1

1 + e−ϑ

where

ϑ =
k∑
i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev[log(1−
k∏
i=1

vi)]

− 1
2σ2

n

(
tr(Φk) + φ̄kφ̄Tk

)
+

1
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

νnlφ̄
T
l

 .

We leave the term Ev[log(1−∏k
i=1 vi)] unevaluated because the choice of how to approx-

imate it does not change the form of the update.

3. For k = 1, . . . ,K, we must update the τk1 and τk2 in Beta(vk; τk1, τk2). If we use the
multinomial lower bound for Ev[log(1−∏k

i=1 vi)], then we can first compute qki according
to Equation 10. Then the updates for τk1 and τk2 have the closed form

τk1 = α+
K∑
m=k

N∑
n=1

νnm +
K∑

m=k+1

(
N −

N∑
n=1

νnm

)(
m∑

i=k+1

qmi

)

τk2 = 1 +
K∑
m=k

(
N −

N∑
n=1

νnm

)
qmk.

6 Bound for the Infinite Approximation

Both of our variational inference approaches require us to choose a truncation level K for our
variational distribution. Building on results from (Thibaux and Jordan, 2007; Teh et al., 2007),
we present a bound on how close the marginal distribution of the data X using a truncated
stick-breaking prior will be to the marginal distribution using the true IBP stick-breaking prior.
The bound can serve as a rough guide for choosing K, though the results do not tell us how
good our variational approximations will be.

2Appendix D.2 describes an alternative approach that directly optimises the variational lower bound; however,
we found the direct optimisation was less computationally efficient.
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Our development parallels a bound for the Dirichlet Process by Ishwaran and James (2001)
and presents the first such truncation bound for the IBP. Let us denote the marginal distribution
of observation X by m∞(X) when we integrate W with respect to the true IBP stick-breaking
prior p(W |θ). Let mK(X) be the marginal distribution whenW are integrated out with respect
to the truncated stick-breaking prior with truncation level K, pK(W |θ). For consistency, we
continue to use the notation from the linear-Gaussian model, but the derivation that follows is
independent of the likelihood model.

Intuitively, the error in the truncation will depend on the probability that, given N obser-
vations, we observe more than K features in the data (otherwise the truncation should have no
effect). Using the beta process representation for the IBP (Thibaux and Jordan, 2007) and using
an analysis similar to the one in (Ishwaran and James, 2001), we can show that the difference
between the marginal distributions of X is at most

1
4

∫
|mK(X)−m∞(X)|dX ≤ Pr(∃k > K,n with znk = 1)

= 1− Pr (all zik = 0, i ∈ {1, . . . , N}, k > K)

= 1− E

( ∞∏
i=K+1

(1− πi)
)N

≤ 1−
(

E

[ ∞∏
i=K+1

(1− πi)
])N

. (11)

We begin the derivation of the formal truncation bound by noting that beta-Bernoulli process
construction for the IBP (Thibaux and Jordan, 2007) implies that the sequence of π1, π2, . . .
may be modelled as a Poisson process on the unit interval [0, 1] with rate µ(x) = αx−1dx.
It follows that the sequence of πK+1, πK+2, . . . may be modelled as a Poisson process on the
interval [0, πK ] with the same rate. The Levy-Khintchine formula (Applebaum, 2004) states
that the moment generating function of a Poisson process X with rate µ can be written as

E[exp(tf(X))] = exp
(∫

(exp(tf(y))− 1)µ(y)dy
)
.

where we use f(X) to denote
∑

x∈X f(x).
Returning to Equation 11, if we rewrite the final expectation as

E

[( ∞∏
i=K+1

(1− πi)
)]

= E

[
exp

( ∞∑
i=K+1

log(1− πi)
)]

,

then we can apply the Levy-Khintchine formula to get

E

[
exp

( ∞∑
i=K+1

log(1− πi)
)]

= EπK

[
exp

(∫ πK

0
(exp(log(1− x))− 1)µ(x)dx

)]
= EπK [exp(−απK)].

Finally, we apply Jensen’s inequality, using the fact that πK is the product of independent
Beta(α, 1) variables:

EπK [exp (−απK)] ≥ exp (Eπk
[−απK ])

= exp

(
−α

(
α

1 + α

)K)
.
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Substituting this expression back into Equation (11) gives us the bound

1
4

∫
|mK(X)−m∞(X)|dX ≤ 1− exp

(
−Nα

(
α

1 + α

)K)
. (12)

Similar to truncation bound for the Dirichlet Process, the expected error increases as N and
α, the factors that increase the expected number of features, increase. However, the bound
decreases exponentially quickly as truncation level K is increased.

Figure 2 shows our truncation bound and the true L1 distance based on 1000 Monte Carlo
simulations of an IBP matrix with N = 30 observations and α = 5. As expected, the bound
decreases exponentially fast with the truncation level K. The bound is loose, however; in
practice, we find that a heuristic bound using a Taylor series expansion provides tighter estimates
of the loss. Appendix F describes both this heuristic bound and other (principled) bounds that
can be derived via other applications of Jensen’s inequality.
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Figure 2: Truncation bound and true L1 distance.

7 Experiments

We compared our variational approaches with both Gibbs sampling (Griffiths and Ghahramani,
2005) and particle filtering (Wood and Griffiths, 2007). As variational algorithms are only
guaranteed to converge to a local optima, we applied standard optimisation tricks to avoid small
minima. Each run was given a number of random restarts and the hyperparameters for the noise
and feature variance were tempered to smooth the posterior. We also experimented with several
other techniques such as gradually introducing data and merging correlated features. The latter
techniques proved less useful as the size and dimensionality of the datasets increased; they were
not included in the final experiments.

The sampling methods we compared against were the collapsed Gibbs sampler of Griffiths
and Ghahramani (2005) and a partially-uncollapsed alternative in which instantiated features
are explicitly represented and new features are integrated out. In contrast to the variational
methods, the number of features present in the IBP matrix will adaptively grow or shrink in
the samplers. To provide a fair comparison with the variational approaches, we also tested
finite variants of the collapsed and uncollapsed Gibbs samplers. Details for these samplers are
given in Appendix A. We also tested against the particle filter of Wood and Griffiths (2007).
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All sampling methods were tempered and given an equal number of restarts as the variational
methods.

Both the variational and Gibbs sampling algorithms were heavily optimised for efficient
matrix computation so we could evaluate the algorithms both on their running times and the
quality of the inference. For the particle filter, we used the implementation provided by Wood
and Griffiths (2007). To measure the quality of these methods, we held out one third of the
observations on the last half of the dataset. Once the inference was complete, we computed the
predictive likelihood of the held out data (averaged over restarts).

7.1 Synthetic Data

The synthetic datasets consisted of Z and A matrices randomly generated from the truncated
stick-breaking prior. Figure 3 shows the evolution of the test-likelihood over a thirty minute
interval for a dataset with 500 observations of 500 dimensions and with 20 latent features. The
error bars indicate the variation over the 5 random starts. 3 The finite uncollapsed Gibbs
sampler (dotted green) rises quickly but consistently gets caught in a lower optima and has
higher variance. Examining the individual runs, we found the higher variance was not due to
the Gibbs sampler mixing but due to each run getting stuck in widely varying local optima.
The variational methods were slightly slower per iteration but soon found regions of higher
predictive likelihoods. The remaining samplers were much slower per iteration, often failing to
mix within the allotted interval.
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Figure 3: Evolution of test log-likelihoods over a thirty-minute interval for N = 500, D = 500,
and K = 20. The finite uncollapsed Gibbs sampler has the fastest rise but gets caught in a
lower optima than the variational approach.

Figure 4 shows a similar plot for a smaller dataset with N = 100. Here, the variational
approaches do less well at finding regions of large probability mass than the Gibbs samplers.
We believe this is because in a smaller dataset, the Gibbs samplers mix quickly and explore the
posterior for regions of high probability mass. However, the variational approach is still limited
by performing gradient ascent to one optima.

Figures 5 and 6 show results from a systematic series of tests in which we tested all combina-
tions of observation countN = {5, 10, 50, 100, 500, 1000}, dimensionalityD = {5, 10, 50, 100, 500, 1000},

3The particle filter must be run to completion before making prediction, so we cannot test its predictive
performance over time. We instead plot the test likelihood only at the end of the inference for particle filters
with 10 and 50 particles (the two magenta points).
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Figure 4: Evolution of test log-likelihoods over a thirty-minute interval for N = 100, D = 500,
and K = 25. For smaller N , the Gibbs sampler does better at finding an optima of high
probability mass.

and truncation level K = {5, 10, 15, 20, 25}. Each of the samplers was run for 1000 iterations
on three chains and the particle filter was run with 500 particles. For the variational methods,
we used a stopping criterion that halted the optimisation when the variational lower bound
between the current and previous iterations changed by a multiplicative factor of less than 10−4

and the tempering process had completed.
Figure 5 shows how the computation time scales with the truncation level. The variational

approaches and the uncollapsed Gibbs are consistently an order of magnitude faster than other
algorithms. Figure 6 shows the interplay between dimensionality, computation time, and test
log-likelihood for datasets of size N = 5 and N = 1000 respectively. For N = 1000, the collapsed
Gibbs samplers and particle filter did not finish, so they do not appear on the plot. We chose
K = 20 as a representative truncation level. Each line represents increasing dimensionality
for a particular method (the large dot indicates D = 5, the subsequent dots correspond to
D = 10, 50, etc.). The nearly vertical lines of the variational methods show that they are
quite robust to increasing dimension. Moreover, as dimensionality and dataset size increase,
the variational methods become increasingly faster than the samplers. By comparing the lines
across the likelihood dimension, we see that for the very small dataset, the variational method
often has a lower test log-likelihood than the samplers. In this regime, the samplers are fast
to mix and explore the posterior. However, the test log-likelihoods are comparable for the
N = 1000 dataset.

7.2 Real Data

We applied our variational method to two real-world datasets to test how it would fare with
complex, noisy data not drawn from the IBP prior4. The Yale Faces (Georghiades et al., 2001)
dataset consisted of 721 32x32 pixel frontal-face images of 14 people with varying expressions and
lighting conditions. We set σa and σn based on the variance of the data. The speech dataset
consisted of 245 observations sampled from a 10-microphone audio recording of 5 different
speakers. We applied the ICA version of our inference algorithm, where the mixing matrix S

4Note that our objective was not to demonstrate low-rank approximations.
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smaller dots to D = 10, 50, 100, 500, 1000.
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modulated the effect of each speaker on the audio signals. The feature and noise variances were
taken from an initial run of the Gibbs sampler where σn and σa were also sampled.

Tables 1 and 2 show the results for each of the datasets. All Gibbs samplers were uncollapsed
and run for 200 iterations.5 In the higher dimensional Yale dataset, the variational methods
outperformed the uncollapsed Gibbs sampler. When started from a random position, the un-
collapsed Gibbs sampler quickly became stuck in a local optima. The variational method was
able to find better local optima because it was initially very uncertain about which features
were present in which data points; expressing this uncertainty explicitly through the variational
parameters (instead of through a sequence of samples) allowed it the flexibility to improve upon
its bad initial starting point.

Table 1: Running times in seconds and test log-likelihoods for the Yale Faces dataset.

Algorithm K Time Test Log-Likelihood (×106)

5 464.19 -2.250

Finite Gibbs 10 940.47 -2.246

25 2973.7 -2.247

5 163.24 -1.066

Finite Variational 10 767.1 -0.908

25 10072 -0.746

5 176.62 -1.051

Infinite Variational 10 632.53 -0.914

25 19061 -0.750

The story for the speech dataset, however, is quite different. Here, the variational methods
were not only slower than the samplers, but they also achieved lower test-likelihoods. The
evaluation on the synthetic datasets points to a potential reason for the difference: the speech
dataset is much simpler than the Yale dataset, consisting of 10 dimensions (vs. 1032 in the Yale
dataset). In this regime, the Gibbs samplers perform well and the approximations made by
the variational method become apparent. As the dimensionality grows, the samplers have more
trouble mixing, but the variational methods are still able to find regions of high probability
mass.

8 Summary

The combinatorial nature of the Indian Buffet Process poses specific challenges for sampling-
based inference procedures. In this report, we derived a mean field variational inference proce-
dure for the IBP. Whereas sampling methods work in the discrete space of binary matrices, the
variational method allows for soft assignments of features because it approaches the inference
problem as a continuous optimisation. We showed experimentally that, especially for high di-
mensional problems, the soft assignments allow the variational methods to explore the posterior
space faster than sampling-based approaches.

5On the Yale dataset, we did not test the collapsed samplers because the finite collapsed Gibbs sampler
required one hour per iteration with K = 5 and the infinite collapsed Gibbs sampler generated one sample every
50 hours. In the iICA model, the collapsed Gibbs sampler could not be run because the features A cannot be
marginalised.
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Table 2: Running times in seconds and test log-likelihoods for the speech dataset.

Algorithm K Time Test Log-Likelihood

2 56 -0.7444

Finite Gibbs 5 120 -0.4220

9 201 -0.4205

Infinite Gibbs na 186 -0.4257

2 2477 -0.8455

Finite Variational 5 8129 -0.5082

9 8539 -0.4551

2 2702 -0.8810

Infinite Variational 5 6065 -0.5000

9 8491 -0.5486
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A Gibbs Sampling in the IBP

In this appendix, we briefly review the Gibbs sampling methods used as comparisons to the
variational method. All of these samplers are for the linear-Gaussian likelihood model described
in Section 2.1.

A.1 Collapsed Gibbs Sampler

The collapsed Gibbs sampler maintains samples over Z and integrates out A.

Sampling znk for Existing Features For existing (non-zero) features, the collapsed Gibbs
sampler for the IBP resamples each element of the feature assignment matrix Z via the Equation

p(znk = 1|Z−nk,X) ∝ m−n,k
N − 1

p(X|Z) (13)

where m−n,k is the number of observations not including znk containing feature k. The likelihood
term p(X|Z) is given by

p(X|Z) =
exp(− 1

2σ2
x
(XT (I −Z(ZTZ + σ2

x
σ2

a
I)−1ZT )X))

(2π)
ND
2 σ

(N−K)D
X σKDa |ZTZ + σ2

x
σ2

a
I|D2

. (14)
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Sampling New Features There are an infinite number of remaining columns which contain
all zeroes. For any particular znk, k > K, the probability that znk = 1 is zero. However, we
can sample the number of columns that become non-zero, knew, as a batch. (See (Griffiths and
Ghahramani, 2005) for details.) The number of new features is sampled according to

p(knew) ∝ Poisson
(
knew;

α

N

)
p(X|Znew)

where Znew is the feature-assignment matrix with knew additional columns set to one for object
n and zero otherwise. We compute these probabilities for knew = 0, . . . ,Kmax for some Kmax,
normalise and sample from the resulting multinomial.

Modifications for the Finite Model If we are sampling from a finite model with K features
and a beta-Bernoulli prior on Z, then Equation (13) becomes

p(znk = 1|Z−nk,X) ∝ m−n,k + α/K

N − 1 + α
p(X|Z).

We never need to sample the number of new features since K is fixed.

A.2 Uncollapsed Gibbs Sampler

The disadvantage of the collapsed Gibbs sampler is that Equation (14) can be expensive to
compute. The uncollapsed Gibbs sampler explicitly samples the feature matrix A and therefore
does not need to evaluate Equation (14). Our samples are therfore over Z and A.

Sampling znk for Existing Features The Gibbs sampling Equation for znk for existing
features is now

p(znk = 1|Z−nk,A,X) ∝ m−n,k
N − 1

p(X|Z,A) (15)

where the likelihood term p(X|Z,A) is given by

p(X|Z,A) =
1

(2πσ2
n)ND/2

exp
(
− 1

2σ2
n

tr((X −ZA)>(X −ZA))
)
.

Sampling A for Existing Features The posterior for resampling A given Z and X is

p(A|X,Z) ∼ N
((

Z>Z +
σ2
n

σ2
A

I

)−1

Z>X, σ2
n

(
Z>Z +

σ2
n

σ2
A

I

)−1
)
.

Sampling New Features As in the collapsed sampler, we sample knew, the number of new
non-zero columns instead of sampling each of the infinite number of all-zero columns indepen-
dently. As before, the probability of knew is

p(knew) ∝ Poisson
(
knew;

α

N

)
p(X|Znew,A) (16)

where A represents the initialised features. The likelihood p(X|Znew,A) is given by the integral∫
Anew

p(X|Znew,A)p(Anew).
If we want the sampler to be fully uncollapsed, one option for drawing knew from the dis-

tribution in Equation 16 is to perform a Monte Carlo integration (or, equivalently, importance
sampling). Here we first draw many pairs (knew,Anew) from their respective priors. Next, we
assign a weight to each pair based on the data likelihood p(X|Znew,A,Anew). Finally, we
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sample a pair (knew,Anew) based on the weights and take the knew element of the pair as our
knew. The advantage of using importance sampling in this way is that the approach remains
fully uncollapsed—no integrals need be evaluated. However, since the features of A are drawn
from the prior, the fully uncollapsed approach is slow to mix.

Another option, if we can have a partially collapsed sampler, is to actually compute the
integral in the likelihood in Equation 16—that is, marginalise over the new features. This
option results in a faster mixing sampler, and it was the option used in our tests. The Equations
below describe how to sample knew when Anew is marginalised out. For notation, let Zold be
the current matrix Z and Aold be the current matrix A. Similarly, let Znew and Anew be the
parts of Z and A that correspond to the knew new features. Finally, let Z∗ and A∗ be the
concatenation of the new and old matrices.

Using Bayes rule, we can write

p(knew|X,Zold,Aold) ∝ p(X|Zold,Aold, knew)p(knew) (17)

where p(knew) is Poisson(α/N) and p(X|Zold,Aold, knew) is the likelihood in which Anew has
been marginalised out.

We must now specify p(X|Zold,Aold, knew):

p(X|Zold,Aold, knew)

=
∫
p(X|Zold,Aold,Anew, knew)p(Anew)dAnew

=
1

(2πσ2
n)ND/2

1
(2πσ2

A)knewD/2

∫
exp

(
−1

2
tr
(

1
σ2
n

(X −Z∗A∗)>(X −Z∗A∗) +
1
σ2
A

A>newAnew

))
dAnew

where

(X −Z∗A∗)>(X −Z∗A∗) =

(
X −

[
Zold Znew

] [ Aold

Anew

])>(
X −

[
Zold Znew

] [ Aold

Anew

])

Completing squares to integrate our Anew, and dropping terms that do not depend on knew, we
get

p(X|Zold,Aold, knew)

∝ (σn/σA)knewD

|1knew×knew + σ2
n

σ2
A
I|D/2

× exp

{
1

2σ2
n

tr

(
(X −ZoldAold)>Znew

(
1knew×knew +

σ2
n

σ2
A

I

)−1

Z>new (X −ZoldAold)

)}
.

We can therefore sample knew according to Equation (17). Once we have sampled knew, we
need to sample the newly activated features Anew. Based on the same calculations that give us
p(X|Zold,Aold, knew), we can sample Anew from the distribution

p(Anew|X,Znew,Zold,Aold)
∝ p(X|Znew,Zold,Aold,Anew)p(Anew)

∼ N
((

1knew×knew +
σ2
n

σ2
A

I

)−1

Z>new (X −ZoldAold) , σ2
n

(
1knew×knew +

σ2
n

σ2
A

I

)−1
)
.
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Modifications for the Finite Model If we are sampling from a finite model with K features
and a beta-Bernoulli prior on Z, then Equation (15) becomes

p(znk = 1|Z−nk,X) ∝ m−n,k + α/K

N − 1 + α
p(X|Z,A).

In addition, we never need to sample the number of new features since K is fixed.

B Variational Inference in Exponential Families

Recall that our goal is to find an approximating distribution q ∈ Q with minimum KL divergence
D(q||p) to the true distribution p. Equation (4) rephrased this optimisation problem in terms
of certain expectations and entropies:

arg min
τ,φ,ν

D(q||p) = arg max
τ,φ,ν

Eq[log(p(X,W |θ)] +H[q]. (18)

In general, this optimisation can be quite difficult. However, when the conditional distribu-
tion and variational distribution are both in the exponential family, each step in the coordinate
ascent has a closed form solution (Beal, 2003; Wainwright and Jordan, 2008). If we are updating
the variational parameters ξi that correspond to Wi, then the optimal ξi are the solution to

log qξi(Wi) = EW−i [log p(W ,X|θ)] + c (19)

where the expectation is taken over all W except Wi according to the variational distribution.
In the exponential family, this immediately gives us the updated values of the parameters ξi.

See (Beal, 2003; Wainwright and Jordan, 2008) for more details.

C Derivations for the Finite Variational Approach

This appendix derives the variational lower bound and the variational updates described in
Section 4.

C.1 Variational Lower Bound

We derive expressions for each expectations in Equation (5):

1. For the feature probabilities, which are beta-distributed,

Eπ [log p(πk|α)] = Eπ
[
log
( α
K
π
α/K−1
k

)]
,

= log
α

K
+
( α
K
− 1
)

Eπ log(πk),

= log
α

K
+
( α
K
− 1
)

(ψ(τk1)− ψ(τk1 + τk2)) ,

where ψ(·) is the digamma function.

2. For the feature assignments, which are Bernoulli-distributed given the feature probabili-
ties,

Eπ,Z [log p(znk|πk)] = Eπ,Z
[
log
(
πznk
k (1− πk)1−znk

)]
,

= Eπ,Z [znk log πk + (1− znk) log(1− πk)] ,
= EZ [znk]Eπ[log πk] + (1− EZ [znk])Eπ[log(1− πk)],
= νnkψ(τk1) + (1− νnk)ψ(τk2)− ψ(τk1 + τk2).
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3. For the features, which are Gaussian-distributed,

EA
[
log p(Ak·|σ2

AI)
]

= EA
[
log
(

1
(2πσ2

A)D/2
exp

(
− 1

2σ2
A

AT
k·Ak·

))]
,

= EA
[−D

2
log(2πσ2

A)− 1
2σ2

A

AT
k·Ak·

]
,

=
−D

2
log(2πσ2

A)− 1
2σ2

A

(
tr(Φk) + φ̄kφ̄Tk

)
.

4. For the likelihood, which is also Gaussian,

EZ,A
[
log p(Xn·|Zn·,A, σ2

nI)
]

= EZ,A
[
log
(

1
(2πσ2

n)D/2
exp

(
− 1

2σ2
n

(Xn· −Zn·A) (Xn· −Zn·A)T
))]

,

= EZ,A
[
−D

2
log(2πσ2

n)− 1
2σ2

n

(Xn· −Zn·A) (Xn· −Zn·A)T
]
,

= −D
2

log(2πσ2
n)− 1

2σ2
n

(
Xn·X

T
n· − 2EZ [Zn·]EA[A]XT

n· + EZ,A[Zn·AATZT
n·]
)
,

= −D
2

log(2πσ2
n)

− 1
2σ2

n

(
Xn·X

T
n· − 2

K∑
k=1

νnkφ̄kX
T
n· + 2

∑
k<k′

νnkνnk′φ̄kφ̄
T
k′ +

K∑
k=1

νnk
(
tr(Φk) + φ̄kφ̄Tk

))
,

where the final expectation is derived by

EZ,A[Zn·AATZT
n·] = EZ,A

( K∑
k=1

znkAk·

)(
K∑
k=1

znkAk·

)T ,
= EZ,A

 D∑
d=1

 K∑
k=1

znkA
2
kd +

∑
k,k′:k′ 6=k

znkznk′AkdAk′d

 ,
=

K∑
k=1

vnk
(
tr(Φk) + φ̄kφ̄Tk

)
+ 2

∑
k<k′

vnkvnk′φ̄kφ̄
T
k′ .

5. Finally, for the entropy,

H[q] = −Eq log

[
K∏
k=1

qτk
(πk)

K∏
k=1

qφk
(Ak·)

K∏
k=1

N∏
n=1

qνnk
(znk)

]
,

=
K∑
k=1

Eπ(− log qτk
(πk)) +

K∑
k=1

EA(− log qφk
(Ak·)) +

K∑
k=1

N∑
n=1

EZ(− log qνnk
(znk)),

where

Eπ(− log qτk
(πk)) = log

(
Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
−(τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2).

EA(− log qφk
(Ak·)) =

1
2

log
(
(2πe)D|Φk|

)
.

EZ(− log qνnk
(znk)) = −νnk log νnk − (1− νnk) log(1− νnk).

Putting all the terms together gives us the variational lower bound in Equation (6).
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C.2 Parameter Updates

To optimise the variational parameters, we can directly optimise Equation (6). However, since
both our pK and our variational approximation are in the exponential family, we can instead
use Equation (19) from Appendix B to directly give us the update Equations for each parameter
given all the rest. We take the latter approach in this section to compute the update Equations
for the variational parameters in the finite model. Throughout this section, we let c be a
constant independent of the variable of interest that may change from line to line.

1. For the feature distribution at the optimal φ̄k and Φk

log qφk
(Ak·)

= EA−k,Z [log pK(W ,X|θ)] + c,

= EA−k,Z

[
log pK(Ak·|σ2

A) +
N∑
n=1

log pK(Xn·|Zn·,A, σ2
n)

]
+ c,

= − 1
2σ2

A

(
Ak·A

T
k·
)− 1

2σ2
n

N∑
n=1

EA−k,Z

[
(Xn· −Zn·A) (Xn· −Zn·A)T

]
+ c,

= −1
2

Ak·

(
1
σ2
A

+
∑N

n=1 νnk
σ2
n

)
AT
k· − 2Ak·

 1
σ2
n

N∑
n=1

νnk

Xn· −
∑
l:l 6=k

νnlφ̄l

T
+ c.

Completing the squares and using Equation (19) gives us that for the optimal φ̄k and Φk,
we must have

log qφk
(Ak·) = −1

2
(
Ak·Φ−1

k A
T
k· − 2Ak·Φ−1

k φ̄
T
k

)
+ c,

which gives us that the updates

φ̄k =

 1
σ2
n

N∑
n=1

νnk

Xn· −
∑
l:l 6=k

νnlφ̄l

( 1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

,

Φk =

(
1
σ2
A

+
∑N

n=1 νnk
σ2
n

)−1

I.

2. For the feature state distribution at the optimal νnk,

log qνnk
(znk) = Eπ,A,Z−nk

[log pK(W ,X|θ)] + c,

= Eπ,A,Z−nk

[
log pK(znk|πk) + log pK(Xn·|Zn·,A, σ2

n)
]

+ c,

where

Eπ,Z−nk
[log pK(znk|πk)] = znk

[
ψ(τk1)− ψ(τk2)

]
+ ψ(τk2)− ψ(τk1 + τk2),
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and

EA,Z−nk

[
log pK(Xn·|Zn·,A, σ2

n)
]

= EA,Z−nk

[
− 1

2σ2
n

(Xn· −Zn·A) (Xn· −Zn·A)T
]

+ c,

= − 1
2σ2

n

EA,Z−nk

[−2Zn·AXT
n· +Zn·AA

TZT
n·
]

+ c,

= − 1
2σ2

n

−2znkφ̄kXT
n· + znk

(
tr(Φk) + φ̄kφ̄Tk

)
+ 2znkφ̄k

∑
l:l 6=k

νnlφ̄
T
l

+ c.

Therefore

log qνnk
(znk)

= znk

ψ(τk1)− ψ(τk2)− 1
2σ2

n

tr(Φk) + φ̄kφ̄Tk − 2φ̄kXT
n· + 2φ̄k

∑
l:l 6=k

νnlφ̄
T
l

+ c.

From the canonical parameterisation of the Bernoulli distribution, we get that

log
νnk

1− νnk = ψ(τk1)− ψ(τk2)− 1
2σ2

n

(
tr(Φk) + φ̄kφ̄Tk

)
+

1
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

νnlφ̄
T
l

 ,

≡ ϑ.

Which gives us the update

νnk =
1

1 + e−ϑ
.

3. For the feature probabilities at the optimal τk1 and τk2,

log qτk
(πk) = EA,Z [log pK(W ,X|θ)] + c,

= EA,Z

[
log pK(πk|α) +

N∑
n=1

log pK(znk|πk)
]

+ c,

=
( α
K
− 1
)

log πk +
N∑
n=1

(νnk log πk + (1− νnk) log(1− πk)) + c.

Hence the updates are

τk1 =
α

K
+

N∑
n=1

νnk,

τk2 = 1 +
N∑
n=1

(1− νnk).

D Derivations for the Infinite Variational Approach

This appendix derives the variational lower bound and the variational updates described in
Section 5.
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D.1 Variational Lower Bound

We derive expressions for each expectations in Equation (7):

1. Each stick is independent, and substituting the form of the beta prior we get

Ev [log p(vk|α)] = Ev
[
log
(
αvα−1

k

)]
,

= logα+ (α− 1) Ev log(vk),
= logα+ (α− 1) (ψ(τk1)− ψ(τk1 + τk2)) ,

where ψ(·) is the digamma function.

2. For the feature assignments, which are Bernoulli-distributed given the feature probabili-
ties, we first break the expectation into the following parts

Ev,Z [log p(znk|v)] = Ev,Z
[
log p(znk = 1|v)znkp(znk = 0|v)1−znk

]
= EZ [znk] Ev

[
log

k∏
m=1

vm

]
+ EZ [1− znk] Ev

[
log

(
1−

k∏
m=1

vm

)]

= νnk

(
k∑

m=1

ψ(τk2)− ψ(τk1 + τk2)

)
+ (1− νnk)Ev

[
log

(
1−

k∏
m=1

vm

)]

The second line follows from the definition of v, while the third line follows from the
properties of Bernoulli and beta distributions. In Section 5.1, we discussed how to compute
a lower bound for Ev

[
log
(

1−∏k
m=1 vm

)]
using a multinomial approximation since there

is no closed form method to evaluate it. The end of this subsection discusses an alternative
approach that can give a closer bound but is also much more computationally expensive.

3. For the feature distribution, we simply apply the properties of expectations of Gaussians
to get

EA
[
log p(Ak·|σ2

AI)
]

= EA
[
log
(

1
(2πσ2

A)D/2
exp

(
− 1

2σ2
A

AT
k·Ak·

))]
,

= EA
[−D

2
log(2πσ2

A)− 1
2σ2

A

AT
k·Ak·

]
,

=
−D

2
log(2πσ2

A)− 1
2σ2

A

(
tr(Φk) + φ̄kφ̄Tk

)
.

4. The likelihood for a particular observation is identical to the finite model, so we again
have

EZ,A
[
log p(Xn·|Zn·,A, σ2

nI)
]

= −D
2

log(2πσ2
n)

− 1
2σ2

n

(
Xn·X

T
n· − 2

K∑
k=1

νnkφ̄kX
T
n· + 2

∑
k<k′

νnkνnk′φ̄kφ̄
T
k′ +

K∑
k=1

νnk
(
tr(Φk) + φ̄kφ̄Tk

))
.
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5. The entropy can also be easily computed, since we have chosen exponential family distri-
butions for our variational approximation:

H[q] = −Eq log

[
K∏
k=1

qτk
(vk)

K∏
k=1

qφk
(Ak·)

K∏
k=1

N∏
n=1

qνnk
(znk)

]
,

=
K∑
k=1

Ev(− log qτk
(vk)) +

K∑
k=1

EA(− log qφk
(Ak·)) +

K∑
k=1

N∑
n=1

EZ(− log qνnk
(znk)),

where

Ev(− log qτk
(vk)) = log

(
Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
−(τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2).

EA(− log qφk
(Ak·)) =

1
2

log
(
(2πe)D|Φk|

)
.

EZ(− log qνnk
(znk)) = −νnk log νnk − (1− νnk) log(1− νnk).

Putting all the terms together gives us the variational lower bound in Equation (8).

Alternate Evaluation of Ev
[
log
(

1−∏k
m=1 vm

)]
We describe an Taylor series alternative

to the multinomial lower bound from Section 5.1. As we noted before, advantage of the Taylor
series approximation is that we can make it arbitrarily accurate by including more terms.
However, in practice, the multinomial approximation is nearly as accurate, computationally
much faster, and leads to straightforward parameter updates.

Recall that the Taylor series for log(1− x) = −∑∞n xn

n and it converges for x ∈ (−1, 1). In
our case, x corresponds to the product of probabilities, so the sum will converge unless all of
the vm’s equal zero. Since the distribution over the vm are continuous densities, the series will
almost surely converge.

Applying the Taylor expansion to our desired expectation, we obtain

Ev

[
log

(
1−

k∏
m=1

vm

)]
= Ev

[
−
∞∑
n=1

1
n

k∏
m=1

vnm

]

= −
∞∑
n=1

1
n

k∏
m=1

Γ(τm1 + n)Γ(τm2 + τm1)
Γ(τm1)Γ(τm2 + τm1 + n)

= −
∞∑
n=1

1
n

k∏
m=1

(τm1) · · · (τm1 + n− 1)
(τm2 + τm1) · · · (τm2 + τm1 + n− 1)

where we have used the fact that the moments of x ∼ Beta(α, β) are given by

E[xn] =
Γ(α+ n)Γ(α+ β)
Γ(α)Γ(α+ β + n)

.

If we simply wish to approximate the variational lower bound, we could truncate the series
after a certain number of terms. However, since all of the terms in the Taylor series are negative,
truncating the series will not produce a lower bound. Thus, some extra work is required if we
wish to preserve the lower bound.
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To preserve the lower bound, we first note that if τm2 were an integer, most terms in the
numerator and denominator would cancel for n > τm2. Let T be an integer greater than
bmaxm∈1,...,k(τm2)c, then we can write a lower bound for the series in the following form:

Ev

[
log

(
1−

k∏
m=1

vm

)]

≥ −
T∑
n=1

1
n

k∏
m=1

(τm1) · · · (τm1 + n− 1)
(τm1 + τm2) · · · (τm1 + τm2 + n− 1)

−
k∏

m=1

((τm1) · · · (τm1+bτm2c−1))·
∞∑

n=T+1

1
n

k∏
m=1

1
(τm1+n) · · · (τm1+bτm2c+n−1)

,

where we have factored the final term to make it clear that the second term has n only in the
denominator. A fairly trivial upper bound on the second sum (and therefore lower bound on the
expectation) is: ζ(1+

∑k
m=1bτm2c); a slightly better bound is ζH(1+

∑k
m=1bτm2c, T +1), where

ζH(·, ·) is the generalised or Hurwitz zeta function. The quality of the bound depends on the
choice of T . For larger T , we have to compute more terms in the first summation, but the error
introduced by the fact that the denominator of the second term is (τm1 + n), not n, decreases.
Empirically, we find that setting T = d2 maxm∈1,...,k(τm2)e results in very close approximations.

More formally, we know that the Taylor series reaches the true value from above (since all
of the terms in the series are negative) and that the value of the zeta function is a bound on
the error. Thus, we can place the true expectation in an interval

Ev

[
log

(
1−

k∏
m=1

vm

)]
∈ −

T∑
n=1

1
n

k∏
m=1

(τm1) · · · (τm1 + n− 1)
(τm1 + τm2) · · · (τm1 + τm2 + n− 1)

+ [−ε, 0],

where

ε =
k∏

m=1

((τm1) · · · (τm1 + bτm2c − 1))ζH

(
1 +

k∑
m=1

bτm2c, T + 1

)
.

D.2 Parameter Updates

To optimise the parameters, we can directly optimise Equation (8). However, as in the finite
case, when we are in the exponential family, we can sequentially update each of the parameters
using Equation (19) from Appendix B. Regardless of how we compute the lower bound, the
conditional updates for the featuresA and feature assignments Z remain within the exponential
family, so we can use the exponential family updates. If we use the multinomial lower bound
discussed in Section 5.1, then the updates for τ will also be in the exponential family. However,
the Taylor series approximation from Appendix D.1 requires a numerical optimisation to update
τ .

1. The updates for the featuresA are identical to the finite approximation; see Appendix C.2.

2. The updates for the variational distribution on Z are slightly different. For ν parameters,

log qνnk
(znk) = Ev,A,Z−nk

[log p(W ,X|θ)] + c,

= Ev,A,Z−nk

[
log p(znk|v) + log p(Xn·|Zn·,A, σ2

n)
]

+ c,

where

Ev,Z−nk
[log p(znk|v)] = znk

k∑
i=1

(ψ(τi1)− ψ(τi1 + τi2)) + (1− znk)Ev
[

log

(
1−

k∏
i=1

vi

)]

30



and as in Appendix C.2

EA,Z−nk

[
log p(Xn·|Zn·,A, σ2

n)
]

= − 1
2σ2

n

−2znkφ̄kXT
n· + znk

(
tr(Φk) + φ̄kφ̄Tk

)
+ 2znkφ̄k

∑
l:l 6=k

νnlφ̄
T
l

+ c.

Therefore

log qνnk
(znk) = znk

[
k∑
i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev

[
log

(
1−

k∏
i=1

vi

)]

− 1
2σ2

n

tr(Φk) + φ̄kφ̄Tk − 2φ̄kXT
n· + 2φ̄k

∑
l:l 6=k

νnlφ̄
T
l

]+ c.

From the canonical parameterisation of the Bernoulli distribution, we get that

log
νnk

1− νnk =
k∑
i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev

[
log

(
1−

k∏
i=1

vi

)]

− 1
2σ2

n

(
tr(Φk) + φ̄kφ̄Tk

)
+

1
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

νnlφ̄
T
l


≡ ϑ,

where the remaining expectation can be computed using either the multinomial approxi-
mation or the Taylor series. This gives us the update

νnk =
1

1 + e−ϑ
.

3. The updates for τ depend on how we deal with the term Ev
[
log
(

1−∏k
m=1 vm

)]
. We

first discuss the case of using a multinomial lower bound in which we have a closed form,
exponential family update. We then discuss how numerical optimisation must be used for
the Taylor series lower bound.

Multinomial Lower Bound. When we use the multinomial bound, compute qk and
then hold qk fixed, the terms in Equation (8) that contain τk are

Lτk =

[
α+

K∑
m=k

N∑
n=1

νnm +
K∑

m=k+1

(
N −

N∑
n=1

νnm

)(
m∑

i=k+1

qmi

)
− τk1

]
(Ψ(τk1)−Ψ(τk1 + τk2))

+

[
1 +

K∑
m=k

(
N −

N∑
n=1

νnm

)
qmk − τk2

]
(Ψ(τk2)−Ψ(τk1 + τk2)) + ln

(
Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
.

We can then optimise this with respect to τk to find that the optimal values of τk1 and
τk2 are

τk1 = α+
K∑
m=k

N∑
n=1

νnm +
K∑

m=k+1

(
N −

N∑
n=1

νnm

)(
m∑

i=k+1

qmi

)

τk2 = 1 +
K∑
m=k

(
N −

N∑
n=1

νnm

)
qmk.
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These are equivalent to exponential family updates just like in the finite variational ap-
proximation.

Taylor Series Lower Bound. When we use a Taylor series approximation and truncate
the series (as opposed to using a zeta function lower bound), we find that the terms in
Equation (8) that contain τk are

Lτk = (α− 1) (Ψ(τk1)−Ψ(τk1 + τk2))

+
K∑
m=k

N∑
n=1

νnm (Ψ(τk1)−Ψ(τk1 + τk2))

−
K∑
m=k

N∑
n=1

(1− νnm)
∞∑
r=1

1
r

(τk1) . . . (τk1 + r − 1)
(τk1 + τk2) . . . (τk1 + τk2 + r − 1)

+ ln
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)Ψ(τk1)− (τk2 − 1)Ψ(τk2) + (τk1 + τk2 − 2)Ψ(τk1 + τk2).

These is not a standard exponential family Equation, so we must numerically optimise τk
to increase the lower bound. The derivatives with respect to τk1 are given by

∂Lτk

∂τk1
=

(α− 1) (Ψ′(τk1)−Ψ′(τk1 + τk2)) +
K∑
m=k

N∑
n=1

νnm(Ψ′(τk1)−Ψ′(τk1 + τk2))

−
K∑
m=k

(
N −

N∑
n=1

νnm

) ∞∑
r=1

1
r

(
m∏
i=1

(τi1) . . . (τi1 + r − 1)
(τi1 + τi2) . . . (τi1 + τi2 + r − 1)

)
r∑
j=1

τk2
(τk1 + j − 1)(τk1 + τk2 + j − 1)

−(τk1 − 1)Ψ′(τk1) + (τk1 + τk2 − 2)Ψ′(τk1 + τk2).

Similarly, the derivatives with respect to τk2 are given by

∂Lτk

∂τk2
= (α− 1) (−Ψ′(τk1 + τk2))−

K∑
m=k

N∑
n=1

νnmΨ′(τk1 + τk2)

−
K∑
m=k

(
N −

N∑
n=1

νnm

) ∞∑
r=1

1
r

(
m∏
i=1

(τi1) . . . (τi1 + r − 1)
(τi1 + τi2) . . . (τi1 + τi2 + r − 1)

)
r∑
j=1

−1
τk1 + τk2 + j − 1

−(τk2 − 1)Ψ′(τk2) + (τk1 + τk2 − 2)Ψ′(τk1 + τk2).

These can be computed for any particular parameter choices (and an arbitrary truncation
level of the infinite sum). Also note that several computations can be reused across k,
and others can be computed iteratively across r. We can plug these derivatives into an
optimisation routine to get updates for τk1 and τk2.

E Variational Inference for the iICA model

In this section we describe the variational approach to do approximate inference for the infinite
Independent Component Analysis model. We refer to Knowles and Ghahramani (2007) for
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more details regarding the model, but to set the notation, we state the iICA model

vk ∼ Beta(α, 1) for k ∈ {1, . . . ,∞},

πk =
k∏
i=1

vi for k ∈ {1 . . .∞},

znk ∼ Bernoulli(πk) for k ∈ {1 . . .∞},
snk ∼ Laplace(1) for k ∈ {1 · · ·K}, n ∈ {1 · · ·N},
Ak· ∼ Normal(0, σ2

AI) for k ∈ {1 · · ·∞},
Xn· ∼ Normal((Zn· � Sn·)A, σ2

nI) for n ∈ {1 · · ·N}.
In other words, we can write the joint probability of the data and latent variables as

p(W ,X|θ) =
∞∏
k=1

(
p(πk|α)p(Ak·|σ2

AI)
N∏
n=1

p(znk|πk)p(snk)
)

N∏
n=1

p(Xn·|Zn·,A,S, σ2
nI).

Where � denotes pointwise multiplication between two vectors. As we will discuss in section
E.2, doing exact posterior inference on the latent variables W is intractable. Hence we propose
two different approximation schemes: first we introduce a finite approximation similar to the
derivation in section C for the linear-Gaussian model. Then we describe an infinite variational
approximation to the iICA model analogous to section D for the linear-gaussian model. Similar
to our discussion of the linear-Gaussian model, we will refer to the distribution pK(W ,X|θ)
as the finite approximation of order K while p(W ,X|θ) refers to the exact iICA distribution
defined above.

E.1 The Finite Variational Approach

A finite beta-Bernoulli approximation to the iICA model can be described as follows

πk ∼ Beta(α/K, 1) for k ∈ {1 · · ·K},
znk ∼ Bernoulli(πk) for k ∈ {1 · · ·K}, n ∈ {1 · · ·N},
snk ∼ Laplace(1) for k ∈ {1 · · ·K}, n ∈ {1 · · ·N},
Ak· ∼ Normal(0, σ2

AI) for k ∈ {1 · · ·K},
Xn· ∼ Normal((Zn· � Sn·)A, σ2

nI) for n ∈ {1 · · ·N}.
where K is some finite (but large) truncation level. We refer to the set of hidden variables as
W = {π,Z,A,S} and the set of parameters as θ = {α, σ2

A, σ
2
n}. Using this notation we can

write the joint probability of the data and latent variables as

pK(W ,X|θ) =
K∏
k=1

(
p(πk|α)p(Ak·|σ2

AI)
N∏
n=1

p(znk|πk)p(snk)
)

N∏
n=1

p(Xn·|Zn·,A,S, σ2
nI).

We are interested in the posterior, or equivalently the log posterior, of the latent variables

log pK(W |X,θ) = log pK(W ,X|θ)− log pK(X|θ). (20)

For similar reasons as with the linear-Gaussian model in section 4, computing this quantity is
intractable. Hence we use the following variational distribution as an approximation

q(W ) = qτ (π)qφ(A)qν(Z)qµ,η(S).

where
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• qτk
(πk) = Beta(πk; τk1, τk2),

• qφk
(Ak·) = Normal(Ak·; φ̄k,Φk),

• qνnk
(znk) = Bernoulli(znk; νnk),

• qµnk,ηnk
(snk) = Laplace(snk;µnk, ηnk) where µnk is the mean and ηnk is the scale parameter

of the Laplace distribution.

In contrast to the linear-Gaussian model, we now need to optimize the parameters µ,η in ad-
dition to τ ,φ,ν with the goal of minimizing KL divergence D(q||pK) or equivalently, maximize
the lower bound on pK(X|θ):

Eq[log(pK(X,W |θ)] +H[q].

As we discussed in the context of the linear-Gaussian model, inference with respect to this
beta-Bernoulli model pK is not the same as variational inference with respect to the true iICA
model. The variational updates are significantly easier though and in the limit of large K, the
finite beta-Bernoulli model is equivalent to the iICA model.

E.1.1 Variational Lower Bound

We expand the lower bound on log pK(X|θ) into its components

log pK(X|θ) ≥ EW [log p(W ,X|θ)] +H[q], (21)

=
K∑
k=1

Eπ [log p(πk|α)] +
K∑
k=1

N∑
n=1

Eπ,Z [log p(znk|πk)] +
K∑
k=1

N∑
n=1

ES [log p(snk)]

+
K∑
k=1

EA
[
log p(Ak·|σ2

AI)
]

+
N∑
n=1

EZ,A,S
[
log p(Xn·|Zn·,A,Sn·, σ2

nI)
]

+H[q],

where the expectation are computed with respect to the variational distribution q. We derive
expressions for each expectation in Equation (21):

1. The feature probabilities,

Eπ [log p(πk|α)] = Eπ
[
log
( α
K
π
α/K−1
k

)]
,

= log
α

K
+
( α
K
− 1
)

(ψ(τk1)− ψ(τk1 + τk2)) ,

where ψ(·) is the digamma function.

2. The signal distribution,

ES [log p(snk)] = ES
[
log
(

1
2

exp (−|snk|)
)]

,

= − log 2−
(
|µnk|+ ηnk exp

(
−|µnk|
ηnk

))
.

3. The feature state distribution,

Eπ,Z [log p(znk|πk)] = Eπ,Z
[
log
(
πznk
k (1− πk)1−znk

)]
,

= νnkψ(τk1) + (1− νnk)ψ(τk2)− ψ(τk1 + τk2).
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4. The feature distribution,

EA
[
log p(Ak·|σ2

AI)
]

= EA
[
log
(

1
(2πσ2

A)D/2
exp

(
− 1

2σ2
A

AT
k·Ak·

))]
,

=
−D

2
log(2πσ2

A)− 1
2σ2

A

(
tr(Φk) + φ̄kφ̄Tk

)
.

5. The likelihood,

EZ,A,S
[
log p(Xn·|Zn·,A,S, σ2

nI)
]

= EZ,A,S
[
−D

2
log(2πσ2

n)− 1
2σ2

n

(Xn· − (Zn· � Sn·)A) (Xn· − (Zn· � Sn·)A)T
]
,

= −D
2

log(2πσ2
n)− 1

2σ2
n

(
Xn·X

T
n· − 2

K∑
k=1

νnkµnkφ̄kX
T
n·

+2
∑
k<k′

νnkµnkνnk′µnk′φ̄kφ̄
T
k′ +

K∑
k=1

νnk(2η2
nk + µ2

nk)
(
tr(Φk) + φ̄kφ̄Tk

))
,

where we use the fact that

EZ,S,A[(Zn· � Sn·)AAT (Zn· � Sn·)T ]

= EZ,A,S

( K∑
k=1

(znksnk)Ak·

)(
K∑
k=1

(znksnk)Ak·

)T ,
= EZ,A,S

 D∑
d=1

 K∑
k=1

znks
2
nkA

2
kd +

∑
k,k′:k′ 6=k

(znksnk)(znk′snk′)AkdAk′d

 ,
=

K∑
k=1

νnk(2η2
nk + µ2

nk)
(
tr(Φk) + φ̄kφ̄Tk

)
+ 2

∑
k<k′

νnkµnkνnk′µnk′φ̄kφ̄
T
k′ .

6. Finally, for the entropy,

H[q] = −Eq log

[
K∏
k=1

qτk
(πk)

K∏
k=1

qφk
(Ak·)

K∏
k=1

N∏
n=1

qνnk
(znk)

K∏
k=1

N∏
n=1

qµnk,ηnk
(snk)

]
,

=
K∑
k=1

Eπ(− log qτk
(πk)) +

K∑
k=1

EA(− log qφk
(Ak·))

+
K∑
k=1

N∑
n=1

EZ(− log qνnk
(znk)) +

K∑
k=1

N∑
n=1

ES(− log qµnk,ηnk
(snk)),

where

Eπ(− log qτk
(πk)) = log

(
Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)

−(τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2).

EA(− log qφk
(Ak·)) =

1
2

log
(
(2πe)D|Φk|

)
.

EZ(− log qνnk
(znk)) = −νnk log νnk − (1− νnk) log(1− νnk).

ES(− log qµnk,ηnk
(snk)) = log(2eηnk).

35



Collecting all the above computations together in Equation (21) gives us the variational lower
bound on log pK(X|θ):

log pK(X|θ)

≥
K∑
k=1

[
log

α

K
+
( α
K
− 1
)

(ψ(τk1)− ψ(τk1 + τk2))
]

−KN log 2−
K∑
k=1

N∑
n=1

(
|µnk|+ ηnk exp

(
−|µnk|
ηnk

))

+
K∑
k=1

N∑
n=1

[νnkψ(τk1) + (1− νnk)ψ(τk2)− ψ(τk1 + τk2)]

+
K∑
k=1

[−D
2

log(2πσ2
A)− 1

2σ2
A

(
tr(Φk) + φ̄kφ̄Tk

)]

+
N∑
n=1

[
− D

2
log(2πσ2

n)− 1
2σ2

n

(
Xn·X

T
n· − 2

K∑
k=1

νnkµnkφ̄kX
T
n· + 2

∑
k<k′

νnkµnkνnk′µnk′φ̄kφ̄
T
k′

+
K∑
k=1

νnk(2η2
nk + µ2

nk)
(
tr(Φk) + φ̄kφ̄Tk

))]

+
K∑
k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
K∑
k=1

[
1
2

log
(
(2πe)D|Φk|

)]
+

K∑
k=1

N∑
n=1

[−νnk log νnk − (1− νnk) log(1− νnk) + log(2eηnk)] .

E.1.2 Parameter Updates

When we optimize the lower bound on log pK(X|θ) we perform coordinate-wise gradient ascent
by cycling through the variational parameters and update them in turn. For most parameter
we will be able to use the standard exponential family variational update from Equation (19).
For some parameters we will need to compute the gradient and perform a local gradient ascent
step. Throughout this section, we let c be a constant independent of the variable of interest
that may change from line to line.

1. For the feature distribution at the optimal φ̄k and Φk,

log qφk
(Ak·)

= EA−k,Z,S [log p(W ,X|θ)] + c,

= EA−k,Z,S

[
log p(Ak·|σ2

A) +
N∑
n=1

p(Xn·|Zn·,Sn·,A, σ2
n)

]
+ c,

= − 1
2σ2

A

(
Ak·A

T
k·
)− 1

2σ2
n

N∑
n=1

EA−k,Z,S

[
(Xn· − (Zn· � Sn·)A) (Xn· − (Zn· � Sn·)A)T

]
+ c,

= −1
2

Ak·

(
1
σ2
A

+
∑N

n=1 νnk(2η
2
nk + µ2

nk)
σ2
n

)
AT
k· − 2Ak·

 1
σ2
n

N∑
n=1

νnkµnk

Xn· −
∑
l:l 6=k

νnlµnlφ̄l

T
+ c,
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Completing the square and using Equation (19) gives us that for the optimal parameter
settings we must have

log qφk
(Ak·) = −1

2
(
Ak·Φ−1

k A
T
k· − 2Ak·Φ−1

k φ̄
T
k

)
+ c,

= −1
2
(
Ak· − φ̄k

)
Φ−1
k

(
Ak· − φ̄k

)T + c.

hence the parameter updates are

φ̄k =

 1
σ2
n

N∑
n=1

νnkµnk

Xn· −
∑
l:l 6=k

νnlµnlφ̄l

( 1
σ2
A

+
∑N

n=1 νnk(2η
2
nk + µ2

nk)
σ2
n

)−1

,

Φk =

(
1
σ2
A

+
∑N

n=1 νnk(2η
2
nk + µ2

nk)
σ2
n

)−1

I.

2. For the feature state distribution at the optimal νnk,

log qνnk
(znk) = Eπ,A,Z−nk,S [log p(W ,X|θ)] + c,

= Eπ,A,Z−nk,S

[
log p(znk|πk) + log p(Xn·|Zn·,A,S, σ2

n)
]

+ c,

where

Eπ [log p(znk|πk)] = znk

[
ψ(τk1)− ψ(τk2)

]
+ ψ(τk2)− ψ(τk1 + τk2),

and

EA,Z−nk,S

[
log p(Xn·|Zn·,A, σ2

n)
]

= EA,Z−nk,S

[
− 1

2σ2
n

(Xn· − (Zn· � Sn·)A) (Xn· − (Zn· � Sn·)A)T
]

+ c,

= − 1
2σ2

n

−2znkµnkφ̄kXT
n· + znk(2η2

nk + µ2
nk)
(
tr(Φk) + φ̄kφ̄Tk

)
+ 2znkµnkφ̄k

∑
l:l 6=k

νnlµnlφ̄
T
l

+ c.

Therefore

log qνnk
(znk)

= znk

[
ψ(τk1)− ψ(τk2)− 1

2σ2
n

(
(2η2

nk + µ2
nk)(tr(Φk) + φ̄kφ̄Tk )

−2µnkφ̄kXT
n· + 2µnkφ̄k

∑
l:l 6=k

νnlµnlφ̄
T
l

+ c.

From the canonical parameterisation of the Bernoulli distribution, we get that

log
νnk

1− νnk = ψ(τk1)− ψ(τk2)− 2η2
nk + µ2

nk

2σ2
n

(
tr(Φk) + φ̄kφ̄Tk

)
+
µnk
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

µnlνnlφ̄
T
l

 ,

≡ ϑ.

Which gives us the update

νnk =
1

1 + e−ϑ
.
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3. The updates τki1 and τk2 are only dependent on Z and π and hence are exactly the same
as for the linear-Gaussian model. We refer to section C.2 for details.

4. Finally, because the Laplace prior on the signal matrix S is not in the exponential family
we cannot use the standard variational Bayes update formula as the posterior will not be
in the exponential family anymore. Hence in order to optimise µnk and ηnk we perform a
gradient ascent step on the variational lower bound. Let us denote the variational lower
bound which we derived earlier with F ; then log p(X|θ) ≥ F . The components of F that
depend on µnk and ηnk are

− 1
2σ2

n

(
−2νnkµnkφ̄kXT

n· + 2
(
νnkµnkφ̄k

) (∑
k′:k′ 6=k νnk′µnk′φ̄

T
k′

)
+ νnk(2η2

nk + µ2
nk)
(
tr(Φk) + φ̄kφ̄Tk

))
−|µnk| − ηnk exp

(
− |µnk|

ηnk

)
+ log(2eηnk).

It is now straightforward to compute the derivative of F with respect to the mean param-
eter of the Laplace distribution

∂F

∂µnk
=

1
σ2
n

νnkφ̄kXT
n· −

(
νnkφ̄k

)∑
k 6=k′

νnk′µnk′φ̄
T
k′

− νnkµnk (tr(Φk) + φ̄kφ̄Tk
)

−sign(µnk)
(

1− exp
(
−|µnk|
ηnk

))
,

and the derivative of F with respect to the scale of the Laplace distribution

∂F

∂ηnk
= −2νnkηnk

σ2
n

(tr(Φk) + φ̄kφ̄Tk )− exp
(
−|µnk|
ηnk

)
− |µnk|

ηnk
exp

(
−|µnk|
ηnk

)
+

1
ηnk

.

E.2 The Infinite Variational Approach

We presented the iICA model at the start of section E. Recall that our goal is to compute the
log posterior

log p(W |X,θ) = log p(W ,X|θ)− log p(X|θ),

but this is intractable to compute. We introduce a variational approximation similar to the one
used by Blei and Jordan (2004) which uses a truncated stick-breaking process. In other words
we set πk =

∏k
i=1 vi for k ≤ K and zero otherwise. We use v instead of π for the same reasons

we did so in the linear-Gaussian model of section 5. Our mean field variational distributions is

q(W ) = qτ (v)qφ(A)qν(Z)qµ,η(S).

where

• qτk
(vk) = Beta(vk; τk1, τk2),

• qφk
(Ak·) = Normal(Ak·; φ̄k,Φk),

• qνnk
(znk) = Bernoulli(znk; νnk),

• qµnk,ηnk
(snk) = Laplace(snk;µnk, ηnk) where µnk is the mean and ηnk is the scale parameter

of the Laplace distribution.

38



As with the finite approach, inference involves optimising τ , φ, ν, µ and η to minimise the KL
divergence D(q||p), or equivalently to maximise the lower bound on p(X|θ)

Eq[log(p(X,W |θ)] +H[q].

Although the update Equations for this approximation are not as straightforward as in the
finite approach, we can reuse many of the computations we did for the linear-Gaussian and
beta-Bernoulli iICA approximation.

Variational Lower Bound As in the finite approach, we first derive an expression for the
variational lower bound. However, parts of our model are no longer in the exponential family and
require nontrivial computations. We expand the lower bound on log p(X|θ) into its components

log p(X|θ) ≥ EW [log p(W ,X|θ)] +H[q], (22)

=
K∑
k=1

Eπ [log p(vk|α)] +
K∑
k=1

N∑
n=1

Eπ,Z [log p(znk|πk)] +
K∑
k=1

N∑
n=1

ES [log p(snk)]

+
K∑
k=1

EA
[
log p(Ak·|σ2

AI)
]

+
N∑
n=1

EZ,A,S
[
log p(Xn·|Zn·,A,Sn·, σ2

nI)
]

+H[q],

where the expectation are computed with respect to the variational distribution q. From section
E.1.1 we know how to compute all the expectation for the ICA model part; together with the
theory in section 5.1 on the lower bound for the infinite variational approximation to the linear-
Gaussian model, we can rewrite the expectation in Equation (21) to

log p(X|θ)

≥
K∑
k=1

[logα+ (α− 1) (ψ(τk1)− ψ(τk1 + τk2))]

+
K∑
k=1

N∑
n=1

[
νnk

(
k∑

m=1

ψ(τk2)− ψ(τk1 + τk2)

)
+ (1− νnk)Ev

[
log

(
1−

k∏
m=1

vm

)]]

−KN log 2−
K∑
k=1

N∑
n=1

(
|µnk|+ ηnk exp

(
−|µnk|
ηnk

))

+
K∑
k=1

[−D
2

log(2πσ2
A)− 1

2σ2
A

(
tr(Φk) + φ̄kφ̄Tk

)]

+
N∑
n=1

[
− D

2
log(2πσ2

n)− 1
2σ2

n

(
Xn·X

T
n· − 2

K∑
k=1

νnkµnkφ̄kX
T
n· + 2

∑
k<k′

νnkµnkνnk′µnk′φ̄kφ̄
T
k′

+
K∑
k=1

νnk(2η2
nk + µ2

nk)
(
tr(Φk) + φ̄kφ̄Tk

))]

+
K∑
k=1

[
log
(

Γ(τk1)Γ(τk2)
Γ(τk1 + τk2)

)
− (τk1 − 1)ψ(τk1)− (τk2 − 1)ψ(τk2) + (τk1 + τk2 − 2)ψ(τk1 + τk2)

]

+
K∑
k=1

[
1
2

log
(
(2πe)D|Φk|

)]
+

K∑
k=1

N∑
n=1

[−νnk log νnk − (1− νnk) log(1− νnk) + log(2eηnk)] .

The Ev
[
log
(

1−∏k
m=1 vm

)]
is left unevaluated and as far as we know this expectation has no

closed-form solution. We refer to section 5.1 for a detailed description of its lower bound.
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Parameter Updates For the infinite variational approximation to the iICA model, we need
to update the parameters τ , φ, ν and µ. For the parameters φ and µ, the updates are exactly
the same as for the finite iICA approximation in section C.2. For the parameters of Z we update
νnk in Bernoulli(znk; νnk) as

νnk =
1

1 + e−ϑ

where

ϑ =
k∑
i=1

(ψ(τi1)− ψ(τi1 + τi2))− Ev[log(1−
k∏
i=1

vi)]

−2η2
nk + µ2

nk

2σ2
n

(
tr(Φk) + φ̄kφ̄Tk

)
+
µnk
σ2
n

φ̄k

XT
n· −

∑
l:l 6=k

µnlνnlφ̄
T
l

 .

We leave the term Ev[log(1−∏k
i=1 vi)] unevaluated because the choice of how to approximate

it does not change the form of the update.
Finally, to update τk1 and τk2 in Beta(vk; τk1, τk2) we use the multinomial lower bound for

Ev[log(1−∏k
i=1 vi)] and compute qki according to Equation 10. Then the updates for τk1 and

τk2 have the closed form

τk1 = α+
K∑
m=k

N∑
n=1

νnm +
K∑

m=k+1

(
N −

N∑
n=1

νnm

)(
m∑

i=k+1

qmi

)

τk2 = 1 +
K∑
m=k

(
N −

N∑
n=1

νnm

)
qmk.

F Alternate Bounds for the Infinite Approximation

Recall that our goal in giving a bound for how close mK(X) is to m(X), we must bound

1− E

[ ∞∏
i=K+1

(1− πi)
]N .

There are several ways to apply Jensen’s inequality to this expression. In Section 6, we
derived a bound by noting

1− E

[ ∞∏
i=K+1

(1− πi)
]N ≤ 1−

(
E

[ ∞∏
i=K+1

(1− πi)
])N

However, another approach is to write

1− E

[ ∞∏
i=K+1

(1− πi)
]N ≤ 1− exp

N ∞∑
i=K+1

E log

1−
i∏

j=1

vj

 , (23)

where vj are the stick-breaking weights. This section derives a heuristic bound and a principled
bound both based on this alternate application of Jensen’s inequality.
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To use Equation 23, we need to evaluate or bound
∑∞

i=K+1 E log
(

1−∏i
j=1 vj

)
. We ex-

pand the expectation using the Taylor series approximation of Appendix D.1, noting that the
expectation E[vr] of a Beta(α, 1) random variables is B(α+r,1)

B(α,1) :

∞∑
i=K+1

E log

1−
i∏

j=1

vj

 = −
∞∑

i=K+1

∞∑
r=1

1
r

i∏
j=1

α

α+ r

= −
∞∑
r=1

1
r

∞∑
i=K+1

(
α

α+ r

)i
= −

∞∑
r=1

1
r2

αK+1

(α+ r)K
.

Substituting the expression above into the original bound, we get

1− E

[ ∞∏
i=K+1

(1− πi)
]N ≤ 1− exp

(
−N

∞∑
r=1

1
r2

αK+1

(α+ r)K

)
.

For any truncation level of the sum, we do not necessarily have a true bound, but we find
empirically that it is very close to the true truncation bound.

To get a strict bound,6 we can write

∞∑
r=1

1
r2

αK+1

(α+ r)K
≤ αK+1

(α+ 1)K
+
∫ ∞

1

1
r2

αK+1

(α+ r)K
(24)

=
αK+1

(α+ 1)K
+
∫ 1

0

αK+1

(α+ 1
t )
K

=
αK+1

(α+ 1)K
+
αK+1

K + 1
F (K,K + 1;K + 2;−a)

The first line applies the integral inequality, where we have included the first term to ensure
that we have an upper bound. The last line substitutes t = 1

r into the integral and evaluates.
Next, we apply the reflection law of hypergeometric functions. The reflection law states

1
(1− z)aF

(
a, b; c;

−z
1− z

)
= F (a, c− b; c; z).

Now we can simplify the hypergeometric function in Equation 24 by expanding it into its sum:

∞∑
r=1

1
r2

αK+1

(α+ r)K
≤ αK+1

(α+ 1)K
+

αK+1

(K + 1)(α+ 1)K+1
F (2,K + 1;K + 2;

a

a+ 1
)

=
αK+1

(α+ 1)K
+

αK+1

(α+ 1)K+1

∞∑
j=0

(
α

α+ 1

)j 1 + j

K + 1 + j

≤ αK+1

(α+ 1)K
+

αK+1

(α+ 1)K+1

∞∑
j=0

(
α

α+ 1

)j
= 2(α+ 1)

(
α

α+ 1

)K+1

6We thank Professor John Lewis (MIT) for his insights in deriving this bound.
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which we can plug into our original expression to get

1− exp

(
−N

∞∑
r=1

1
r2

αK+1

(α+ r)K

)
≤ 1− exp

(
−2N(α+ 1)

(
α

α+ 1

)K+1
)
.

We note this bound is very similar to the bound derived using the Levy-Khintchine approach
from Section 6:

1− exp

(
−Nα

(
α

1 + α

)K)
.
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