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Abstract

Spoken language is one of the most intuitive forms of intéwachetween humans and agents. Unfortunately,
agents that interact with people using natural languagsakperience communication errors and do not correctly
understand the user’s intentions. Recent systems havessiolly used probabilistic models of speech, language,
and user behavior to generate robust dialog performand®ipresence of noisy speech recognition and ambiguous
language choices. However, decisions made using thesealplisic models are still prone to errors due to the
complexity of maintaining a complete model of human intemnsi.

In this paper, we describe a decision-theoretic model fondntrobot interaction using natural language. Our
algorithm is based on the Partially Observable Markov Desi®rocess (POMDP), which allows agents to choose
actions that are robust not only to uncertainty from noisyamhbiguous speech recognition but also unknown user
models. Like most dialog systems, a POMDP is defined by a langeber of parameters that may be difficult to
specifya priori from domain knowledge, and learning these parameters fh@nuiser may require an unacceptably
long training period. We describe an extension to the POMDQEehthat allows the agent to acquire a linguistic
model of the user online, including new vocabulary and wdrdi@e preferences. Our approach not only avoids a
training period of constant questioning, but also allowes dlgent to actively query for additional information when
its uncertainty suggests a high risk of mistakes. We dematesour approach both in simulation and on a natural
language interaction system for a robotic wheelchair apgibn.

1 Introduction

Spoken language is one of the most intuitive forms of intsoacbetween humans and agents. The ability for an
agent to understand natural language commands can beagpeseful when interacting with people who may not
be trained to use more conventional robotic interfaces. ekample, when intelligent robots are used as a medical
assistive technology, both care-givers and care recpiemely have experience with robots. In fact, as most people
reach a comfortable level with technology, they often begiaracting with the technology as they would another
person [Reeves and Nass, 1996]. As a result, natural laegean attractive way for robots to interact with users,
minimizing the need for training and increasing the liketidl that the robot will be accepted by the intended users.

Spoken language interaction with a mobile robot is mostdftgplemented as a process consisting of the following
systems:

e A speech recognition system to recover the sequence of wtieled by the user.
¢ A dialog management system to infer the user intent (e.gonantand for the robot to perform some action).
e A motion planning system to respond to the user intent (gajto some location).



For a robot to be able to use natural language to interactpatple, it is critical that the robot react to the user’s
language in ways that are consistent with the user’s expestaof reasonable behavior. In most human-robot inter-
action domains, and especially in medical assistive dospaimrobot that violates user expectations and appears to
make errors periodically will be quickly ignored as untmsithy by the human users. As a result, natural language
interaction must be robust to various errors in the modelset to predict user intent.

One challenge is simply correctly identifying the spokenmae) since speech recognition errors will make the input
to the dialog system a noisy process. For example, the sys@yrhear the words “coffee machine” when the user
asks the robot to go to “copy machine.” A dialog manager thatronodel the likelihood of recognition errors and act
accordingly will have increased robustness in satisfylmreguser’s request correctly. Secondly, the language itsajf
be ambiguous or confusing, and the system may not know whatsysuch as “kitchen,” “kettle,” and “microwave,”
may refer to the same location. In contrast, users may aksohessame word to refer to multiple locations, such as
“elevator” when there are multiple elevators. A dialog mgerathat can model confusion or ambiguity in the user
request and act accordingly will have better success andtobss.

Another set of challenges arise because people may haeedtiffpreferences in how a system responds to the
interaction. For example, different users may have diffetelerances of mistakes by the system, or have differing
levels of patience toward confirmation questions by thessystUnfortunately, humans are challenging to model, and
real-world interaction domains typically require a largember of parameters that are difficult to spedifypriori,
leading to performance errors. Even when the models areradgnom data of human behavior, the long training
periods and the required amount of data may be frustratinbdaaiser. It is therefore also desirable that a dialog
manager be able to take an initial, potentially erroneoudehand improve it online. A dialog manager that can
represent its confidence in its model of the user and can ehai®ns appropriately will not only to avoid errors due
to model uncertainty, but it will also be able take actionern more about the user and improve the model for the
future.

If the dialog manager has an accurate probabilistic modéi@fvord error rates and user preferences, then the
system can infer a distribution over possible recognizéstances, user requests, and user models at each point dur-
ing the interaction. Given such a distribution, the plagniramework known as the Partially Observable Markov
Decision Process (POMDP) can be used to compute decisamettic policies for the interaction. These policies
have the desirable property of choosing actions (i.e.,aiesgs to the user) that minimize expected cost, as opposed
to simply choosing the action that best matches the modlylikser request and model. Additionally, POMDP
policies can explicitly model the value of asking questiansgl gathering information; the optimal POMDP policy
trades between asking questions to reduce uncertainty &¥miding errors), and fulfilling the user’s request within
a reasonable amount of time. The ability to reason aboutratinder uncertainty has led to the successful use of
POMDPs in several assistive health-care [Roy et al., 20@@ytét al., 2005, Fern et al., 2007] and dialog manage-
ment domains [Williams and Young, 2005, Litman et al., 2000]

In this paper, we describe how a POMDP model for human-rottetaction can be extended to allow the natural
language model to be learned online. Although POMDPs haga beed previously for human-robot interaction, the
problem of online learning of decision-theoretic modelsafural language interaction has not been addressed. In
section 4 we describe an approach to passive learning ofitheaction model, in which the system receives feedback
after every action. We present an algorithm that allows thé&d manager to interact with the user while improving
its model, an approach that is particularly important foolatic wheelchair application that must adapt to users and
new environments. The dialog manager adjusts its actiossdban user feedback, and, over time, it learns how to
maximize the reward it expects to receive. By simply analgzhe interaction, the dialog manager also updates its
model of the voice recognition system. Since the agent ordjves a single model, the passive learner can easily be
run in real-time settings, and we show that this approachuslly effective in converging to the optimal policy.

Unfortunately, the approach of passively learning a moaehfreward feedback suffers from several drawbacks.
First, the dialog manager must make mistakes to learn abeutdnsequences of a poor decision. The frequency of
these mistakes quickly drops, but the high variance andepeasd unreliability of the system during this learning phas
quickly leads to user dissatisfaction with the overall sgst Second, requiring the user to supply reward feedbaek aft
each action may be tedious, leading to frustration and umate results. Even with a patient, well-intentioned user,
people are notoriously bad at giving numerical feedba@cdarate responses may lead to incorrect learning. Finally
without being explicitly aware of the quality of its knowige, the dialog manager cannot know if its decisions are



Figure 1: Our dialog manager allows for more natural humanroanication with a robotic wheelchair.

based on a solid or unclear understanding of the world. Taaedhe feedback requirements and to increase the
planner robustness, in section 5 we extend our learningitiigoto allow the system to actively seek feedback about
specific actions. We show how the dialog manager can explitiaintain an estimate of the quality its knowledge
about the world. This knowledge allows the dialog managexskess its confidence in its own decision-making and
decide when additional training is needed. We introducectivecept of a meta-query, that is, a question about an
action that the dialog manager should take. These metaeguake an intuitive form:

“I think you definitely want me to go to the printer. Should | ggothe printer?”

By introducing these meta-queries, the dialog manager smover new vocabulary, word choices, and user prefer-
ences such as risk aversion. Although this active learnthgre introduces an additional computational cost, we
present an approximation to our first POMDP that allows tlaéodi manager to determine when to ask for additional
information, easing the training burden on the user andaieduhe variance of the policy during learning.

Throughout this paper, we focus on natural language intierator assistive technology such as the wheelchair
shown in Figure 1. Our goal is to design a human-robot intemasystem, or dialog manager, that allows both the
user of the wheelchair and a caregiver to give natural ingtrns to the wheelchair, as well as ask the wheelchair
computer for general information that may be relevant tauer’s daily life.

2 ThePOMDP Model

Formally, a POMDP consists of the n-tup{&, A, O, T, Q, R, v}. The setS is a set of states, which, in the
dialog management setting, correspond to what the usealbctiesires from the interaction. For example, in our
robotic wheelchair scenario, the states may correspondcttibns to which the user wishes to go or information
the user wants from the system. The dialog manager canrexttlgirobserve the user’'s desire and must infer it
from a set of observation®. For our basic dialog manager, we take the observations théaumber of times
certain keywords (such as those corresponding to locatiomsormation requests) occur in an n-best list from the
voice recognition system. However, the POMDP can easilpmcsodate observations that are comprised of more
sophisticated natural language processing of the voi@g@rétion output—our algorithms only require that the numbe
of possible observations the dialog manager may receivisésede and finite. The set represents actions that the
dialog manager may take in response to what it hears. Thenaatiay include asking for a clarification, commanding
the robot to perform some physical movement, or doing ngthin

In Figure 2, we show a cartoon of a simple dialog model. Ijtiave model the user as being in the left-most
node, a “start” state in which he or she does not desire amyfndm the dialog management system. Then, at some
point in time, the user speaks to the robot to indicate thatrhghe wants it to perform some task. We denote this



step by the set of vertical stack of nodes in the center of théah Each node represents a different task. The dialog
manager must now interact with the user to determine whatdrgsw Once the task is successfully completed, the
user transitions to the right-most “end” node, in which helwe again does not desire anything from the robot.
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Figure 2: A toy example of a dialog POMDP. The nodes in the lyrae different states of the dialog (i.e., user
requests). Solid lines indicate likely transitions; weLess that the user is unlikely to change their request beferie t
original request is fulfilled. The system automaticallyetssonce we reach the end state.

The transition functiofi” and observation functioft of the POMDP model describe how the sets of states, actions,
and observations behave. The transition funclige’|s, a) places a probability distribution over the states to which
the user in state may transition if the dialog manager takes actiotn our wheelchair scenario, the initial transition
is fairly complex—the system must learn what requestsaapeiori more likely—but we assume that for the most
part, a user will stick to his or her original request unti# ttobot successfully completes the desired task. Transitio
between different tasks, which would correspond to the cisanging his mind about what he wants the system to do,
are considered unlikely.

Similarly, the observation functiof}(o|s, a) places a probability distribution over the observatiohat may be
seen in state after taking actioru. The observation model encodes what keywords the dialogagaaris likely to
hear given its most recent action. For example, the moddhneigcode that the keyword “coffee” is commonly heard
if the dialog manager asks “Where would you like to go?” areluber wishes to go to the coffee machine. However,
if the dialog manager had chosen to ask “Do you want to go tatiffee machine?” the observation model might
state that the most likely observation is the word “yes.” F@MDP model allows for different observations to be
received in the same state (for example, both “coffee” andciine” may be commonly heard if the user wishes to
go to the coffee machine) but the assumption of the standaMP is that we do know the probabilities of hearing
each keyword.

The reward functiorRR(s, a) specifies the immediate reward the dialog manager receiveaking actioru when
the user is in state. In the wheelchair scenario, where the dialog manageriisgity determine where the user wishes
to go, a clarification action such as “Do you want to go to thiéesomachine?” may carry a small negative reward for
causing a minor inconvenience, while incorrectly drivioghe coffee machine may carry a large penalty for taking
the user to the wrong location. To gain a high positive reWardompleting a task and avoid large negative reward
for taking an incorrect movement, the dialog manager maydeeio accept small penalties for asking clarification
questions. Finally, the discount factgre [0,1) measures the relative importance of current and futurerdsvaA
large~ indicates that future rewards are nearly as valuable agmurewards; thus the dialog manager will be more
patient—and perhaps ask many questions—before commitiiag action. Conversely, a smalindicates that time
is of the essence; thus the dialog manager may choose tos@kewhat hasty decision rather than doing nothing and
having time run out.

In making decisions, the dialog manager can only chooseractiased on the knowledge of past actions it has
tried and past observations it has received. It can nevewx kviwat the user actually wanted. In general, the optimal
action to take now will depend aall prior actions and observations; however, keeping a histbayl conversations to
date—and using that entire data set to make decisions—aamimequite cumbersome. Fortunately, it can be shown
that when it comes to making a decision, what really matteithe dialog manager’s belief of what the user may
desire. More formally, the belief is a probability distrtimn over states. If the agent takes some acti@nd hears



observatiorv from an initial beliefb, it can easily update its belief using Bayes rule:
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This probability distribution will evolve as the dialog neger asks clarification questions and receives responses.
Thus, at any point in time, the dialog manager knows howikels that the user is trying to request each possible
task.

Intuitively, we can see how the belief can be used to sele@pgmopriate action. For example, based on the
voice recognition output, if the dialog manager believest the user may wish to the coffee machine or the copy
machine, then it may make sense for it to ask the user fofficiion before commanding the wheelchair to one of
the locations. However, if the dialog manager is almostaiethat the user wants to go to the coffee machine, then
the best course of action may be to command the robotic whaielo the coffee machine and avoid hassling the
user with further questions. An optimal dialog manager Vil each belieb, choose an action that will maximize
its long-term expected reward. We call the mapping fromdfglio actions a policy, and we represent this mapping
using the concept of a value functidf(b). The value of a belief is defined to be the expected long-temard the
dialog manager will receive if it starts a user interactiobéliefb. The optimal value function is piecewise-linear and
convex, so we represeht with the vectors/;; V(b) = max; V; - b. The optimal value function is also unique and
satisfies the Bellman equation:

b*°(s) =

V(b)) = maxQ(b,a),

acA
Q(bv a) = R(ba a) +7 Z T(bllbv a)V(b’),
beB
Q(b,a) = R(b,a)+7 Y Qolb,a)V(b3), @)
0€e0

whereQ(b, a) represents the expected reward for starting in béligerforming actioru, and then acting optimally.
The last equation follows if we note that there are o beliefs that we can transition to after taking actiom
belief b (one corresponding to each observation). The béfjas b after a Bayesian update 6fusing equation (1),
andQ(o|b, a), the probability of seeing after performing: in beliefb (3, g Q(o|s, a)b(s)).

The Bellman equation may be solved iteratively:

Va(b) = maxQu(b,a), 3)
Qu(b,a) = R(b,a)+7 Y Qolb,a)Ve_1(b3). @)
0€e0

Each iteration, obackup brings the value function closer to its optimal value [Gaord1995]. Once the value function
has been computed, it is used to choose actions. After eadnaion, we update the belief using equation (1) and
then choose the next action usimgg max,c 4 Q(b, a) with Q(b, a) given in equation (2).

The exact solution to equation (3) using an iterative bacqyproach is exponentially expensive, so we approx-
imate the true backup operation by backing up at only a snealbEbeliefs. The choice of beliefs determines the
quality of the approximation and thus the performance offialog manager. One approach is the “Point-Based Value
Iteration” algorithm [Pineau et al., 2003], which invoh&arting with some beligf, (such as being in a “dialog-start”
state). Then for each actienn we sample a user responsom the observation distribution and compute the updated
belief stateb? (simulating the effect of one exchange between the userfandilog manager). We add the farthest
new beliefs to our set and repeat the process until we aceientiie desired number of beliefs. Since the beliefs
represent the dialog manager’s confusions over the usgisest, picking beliefs reachable from the starting belief
focuses our computation in situations the dialog manadéely to experience.

3 Modeling POMDP Uncertainty

The behavior of the dialog manager derived from solving &qna (3) and (4) depends critically on accurate choices of
the transition probabilities, observation probabilitiewl the reward. For example, the observation parameterst aff
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Figure 3: (a) The standard POMDP model. (b) The extended PR&iDdel. In both cases, the arrows show which
parts of the model are affected by each other from tirteet + 1. Not drawn are the dependencies from titne 1
onwards, such as the user state and user model’s effect oadbgnized keyword at timie+ 1.

how the system associates particular keywords with padaticequests. Similarly, the reward function affects how
aggressive the dialog manager will be in assuming it undedsta user’s request, given limited and noisy information.
An incorrect specification of the dialog model may lead todwedr that is either overly optimistic or conservative,
depending on how accurately the model captures the usqréceations on the interaction.

At the same time time, learning all the parameters requioespecify a complete dialog model can require a
prohibitively large amount of data. However, while the migolerameters may be difficult to specify exactly, we can
often provide the dialog manager with an initial estimateh® model parameters that will generate a reasonable
policy that can be executed while the model is improved. kamgple, even though we may not be able to attach an
exact numerical value to driving a wheelchair user to thengrimcation, we can at least specify that this behavior
is undesirable. Similarly, we can specify that the exact atical value is initially uncertain. As data about model
parameters accumulate, the parameter estimates showiergerto the correct underlying model with a corresponding
reduction in uncertainty.

In order to formally specify such an adaptative interactiondel, we extend the POMDP model to include the
dialog parameters. Recall from the previous section wedhtced the POMDP as a model of decision making condi-
tioned on the current belief, that is, the probability of Hdwely a user is to be making a particular request. Figuré 3(a
depicts this conventional model, where the arrows in th@lyshow which parts of the model are affect each other
from timet to ¢ 4+ 1. Although the variables below the “hidden” line in Figure@Bére not directly observed by the
dialog manager, the parameters defining the model (i.epdhemeters in the function giving the next state) are fixed
and knowna priori. For instance, the reward at tinids a function of the state at the previous time and the action
chosen by the dialog manager.

If the model parameters are not knoarpriori because the model is uncertain—for example, how much reward
is received by the agent given the previous state and therastilected—then we extend the concept of the belief
to also include the agent’'s uncertainty over possible nsodi this new representation, which we call thedel-
uncertainty POMDPboth the user’s request and the model parameters are hiéidgure 3(b) shows this extended
model, in which the reward at timeis still a function of the state at the previous time and th@aachosen by the
dialog manager, but the parameters are not knavgmiori and are therefore hidden model variables that must be
estimated along with the user state. As the system desigieecan encode our knowledge of the system into the
dialog manager’s initial belief over what dialog modelsétibves are likely—a Bayesian prior over models—and let
the agent improve upon this belief with experience.

We will restrict our discussion to inference of unknown siion, observation and reward function parameters and
assume that the sef§ A, andO are known. This assumption is often reasonable because#icmion of the state,
action, and observation spaces are usually fixed in the eaging stage of an application. For example, if the dialog



Figure 4: An example simplex for a multinomial that can takesé different values (a,b,c). Each point on the
simplex corresponds to a valid multinomial distributiohe tDirichlet distribution places a probability measurerove
this simplex.

manager is designed to service particular requests—bévihgra wheelchair to certain locations or automatically
booking airline tickets—the set of stat8ss known when the system is designed. Similarly, we can pesify what
kinds of statements and movements a robot can make duringenadtion. Specifying the observation space—that
is, all the keywords are important when interacting with lams—is more tricky, but we assume that the designer has
sufficient knowledge of the application to create a list oferds. We also note that we can always augment the list
of keywords as the system interacts with users and discpadterns in their vocabulary.

The need to represent the beliefs over models raises théaueshow to represent beliefs over model parame-
ters. The user state space is a discrete state space, sdardthistogram or multinomial distribution could be used.
However, the rewards are continuous-valued, and parasmieh as the transition functiofisare continuous param-
eters of distributions themselves; a distribution diiés effectively a distribution over distributions. We ddberhow
we model the uncertainty in different model parametersweelo

3.1 Reward Uncertainty

Because each reward is a single scalar value conditionetleostate and action, we have considerable flexibility
over distributions to use. To set an absolute scale for thane values, we fix a large positive reward value for
correctly satisfying a user’s request, and a small penaltgdnfirming a correct request with the user (for the minor
inconvenience of causing the user to communicate with thetrinstead of immediately satisfying the user’s request)
These two values set a scale and spread for the remainingdrsalaes.

Our initial algorithm requires knowledge only of the exgatteward values, so in theory, any distribution may be
used. Our first approach employs Gaussian distributionthegsare easy to update. While it may be reasonable in
some cases for a system designer to specify to the agenneddg@ccurate expected reward values for each action,
we relax this requirementin section 5, where we require &ségmher only to specify a range for each reward parameter,
and we assume that the reward values are uniformly dis&ibétween these ranges.

3.2 Transition and Observation Uncertainty

Since the state space is discrete, ThandS2 parameters define collections of histograms or multinodigttibutions.

A prior over the transition and observation parameters rthestefore be a distribution over possible histograms.
Figure 4 shows how one can visualize the space of all validinmrial distributions for a discrete random variable
X which can have three outcomes—consider a dialog managemtlst choose to go left, right, or forward. Each
possible distributiorp(X) over these three options corresponds to a point on the triangimplex. We want the
dialog manager to be able to update its belief efficientlywsochoose a Dirichlet prior over the transitions and
observations. The Dirichlet provides a measure of theilikeld of each such distribution and is the conjugate prior
to the multinomial, allowing the Dirichlet to be updatedetitly from the observed data. As the dialog manager’s
confidence in a particular model of user behavior increabegrobability mass of the Dirichlet distribution becomes
increasingly concentrated around a single point.



More formally, given a set of parameters...«.,,, the likelihood of the discrete probability distributidtr[z =
1] = p1, Pr[z = 2] = pa, ..., Pr[x = m| = p,, is given by

P(p;a) = n(a) Hp?i*%(l — Zpi),

wheren is a normalizing constant. The expected values of the Datdlistribution are given by

Q;

Elpila] = =m— (5)
Zj @
and the mode is .
a —
i = ml . 6
arg max(p;|a) S oy —mm (6)

Intuitively, the Dirichlet parameters correspond to cauntthow often each event has occurred. Thus, the relative
values of thex parameters indicate how likely each event is, and the dvasinitude of thex parameters indicates
how many observations have been seen. Initially, an exparspecify an educated guess of the distribution—which
we take to be the mode—and a count that represents the hislla@nfidence in his guess. As a simple illustration,
consider the case where the agent asks the user a confirmatstion such as “Would you like me to drive to the
kitchen?” and we assume (1) the user does wish to go to thiekitand (2) there are only two possible responses,
“yes” or “no.” Suppose that the expert is fairly certain thta¢ dialog manager will hear the word “yes” 90% of the
time in this situation. Then he may speciy., = 90 andw,, = 10. This is equivalent to telling the agent that
we have already tried to ask this question 100 times and wbdéyes” 90 times. However, suppose the expert does
not know very much about the noise in the voice recognitistesy. Then he may specity,.s = 9 anda,,, = 1.
These parameters specify the same mean distribution—ffegtekhinks that the voice recognition error rate is around
10%—but now the agent treats this error rate as an estin@tep experiments rather than 100.

The counts analogy extends to the case where the dialog miaisagow operating on its own. Every time it
observes a certain event from a particular state, it incrésrtbe count of that event’s correspondingarameter. The
counts grow monotonically with time, which is consistenthwaur notion that the system should get more confident
about its model of the world as it gains experience. Unfataly, a problem occurs when applying this approach in
a real-world setting. Recall that the specific task that ther wants the agent to perform is hidden; the agent only
receives observations that provide clues as to what thentaskbe. However, the: parameters correspond to what
observations are likely to occur in a specific stat€éTo update the observation probability of an observatiowe
must therefore know what the state was whevas observed. Fortunately, since we assume that the usenlyazne
underlying request, which does not change until it is satisfit is often relatively easy to infer what the user state wa
throughout the dialog by recognizing what action succdlgsfompleted the interactioh.

4 Passive Learning for Natural Language I nteraction

We have introduced the POMDP dialog model that allows the&mgeinteract with a user in noisy conditions, and
we have described how the agent may express uncertaintgiditfiog model itself. In this section, we describe
how the agent, given its belief over possible dialog modelay choose actions to interact with a user. We first
consider a scenario in which the dialog manager knows thdnibwledge of the world is imperfect, but is unable
to take any actions to improve its knowledge of the world. M/hinrealistic, this scenario is a useful baseline for
more sophisticated algorithms. We also note that, everowitbxplicitly taking actions to learn about the the dialog
model, the agent can still improve its knowledge of how teiiatt with the user. For example, suppose that the dialog
manager initially hears the word “tea,” and user respondkeaffirmative when the dialog manager asks if the user
wishes to go to kitchen. Then the dialog manager can incrtbasprobability that word “tea” is associated with the

1We can accomplish this task formally by constructing an HMiMedpresent the completed dialog. This update approach teaal modified
form of the standard Expectation-Maximization algorithend thus the prior will converge to some local optimal diategdel. HMMs and the
forward-backward algorithm are well-developed approadbestatistical inference, especially in the speech-neitiop community. A description
of an HMM and forward-backward algorithm is beyond the scofihis article, but the reader may refer to [Rabiner, 198®Jmhore details.



kitchen. However, if the user responds to the negative, therialog manager can infer that either the word “tea
is not associated with the kitchen, or that “tea” is a commamé output of a voice recognition error. Likewise, the
dialog manager can discover what are the most popular ugaeses. However, other information cannot only be
learned through user interactions. If the dialog managenig listening for location keywords, it cannot determine
the user’s frustration due to a poor action or repeated mumsstin the traditional reinforcement learning framework
employed in this section, the dialog manager gains infaonabout the user’s preferences by asking the user to
provide it with a reward (“reinforcement”) after each iraetion.

Recall that the standard dialog POMDP solution maximizgeeted reward given the uncertainty over the user’s
request (the state); we now desire a solution that maxintimesxpected reward given uncertainty in both the user’s
request and the user model. We begin by rewriting equatipnifich describes the value of performing action
given a belieb over the user’s request:

dai(s) = R(s,a)+7y Z Z T(s'|s,a)Qo|s,a)Vy—1.i(s),
0€0 s'eS
Q(b7 a) = max (Ta,i - b.

The first equation averages over uncertainty caused by moisg recognition, ambiguity in the language or changes
in user intent; this uncertainty is inherent in the intei@tiand cannot be reduced with additional interactions with
the user. The second equation is an expectation over thé¢'sageoertainty in the user’s request; this uncertainty can
be reduced by asking questions to determine what the usaallgcivants. If we assume that the agent cannot learn
about the true model, then uncertainty in the dialog modH fiato the first category, that is, uncertainty that cannot
be removed.
If the model parameters themselves are uncertain, thenwatimythe vectoy, ;,—which is an average over the

inherent uncertainty in the dialog model—now requires aditamhal expectation over possible dialog models, which
we denote by the sét:

Qai(s) = Em[R(s,a)+7 Z Z T(s'|s,a)Q0]s",a)Vi—1.:(s)] (7)
o€0 s'eS
= BulR(s,a)l+7) > EulT(s|s,0)Q(0ls’, a)Vii-1(s)]
0€0 s’eS
= Eu[R(s,a)l+7Y_ > Eu[T(s']s,a)|Ex[Qo]s’, a)]Va-1(s),
0€0 s’eS

whereEy[R(s,a)], Epx[T(s']s,a]) andEy[Q2(o]s’, a)] are the means of the Dirichlet distributions as given by equa
tion (5). The second line follows from the linearity of expe@ns, while the third line follows because the transisio
T, the likelihood that the users will change their intendegliest, are independent of the noisy dialog observations
Q. The functionV,,_; ; is a fixed value from the previous iteration and does not reqaieraging. Thus, to find the
optimal dialog policy given an uncertain user model, it iffisient to solve the POMDP with the expected values of
the model parameters.

Given a history of rewards, observations, and actions, ¢femtacan update its belief over models as described
in section 3. The updated belief provides it new expectedesty;[R(s,a)], Ex[T(s'|s,a)] and Ep[Q2(o]s', a)];
it can now choose actions based on new expected model. Taeuthdapolicy efficiently, we note that if the agent
updates each belief over models after each successfubditdainderstanding of the dialog model—and its estimate
of the average model—will not change greatly. Thus, we hheedialog manager refine its current value function
instead of solving an entirely new policy. The refinementasfgrmed via additional backups on our current value
function with the updated user model. Since the backup dperaf equation (4) is a contraction ([Gordon, 1995]),
the additional backups will always bring the original diglpolicy closer to the solution with the new user model.
Table 1 summarizes the passive learning algorithm.

A key question is how much refinement is required after eacthehgpdate—that is, how many backup operations
should be performed—after updating the user model. Peifigrenough backups so that value function fully con-
verges to a new value may require significant time. Espgaalily in learning process, when the agent has very little



PassIVE DIALOG MODEL LEARNING

1. Initialize a prior distribution over dialog models andetenine the policy of the mean
model by solving equation 7.

2. Interact with the user using the policy in (1) until theld@is complete, asking for
numerical feedback at each step.

3. Use the utterances from the user to update the prior ogdrahsition and observa
tion models.

4. Use the numerical reinforcement signal from the user watgthe prior over the
reward model.

5. Refine the policy based on the new mean model.

Table 1: Passive dialog model learning.

knowledge of the true dialog model, such effort may not béuls&ecause the updated average model may still be far
from the true model. We compare three approaches to detetimrhow much to replan after each successful dialog:

1. Replan to completion. After each completed dialog, wdagoer enough backups for the new value function
to converges. (In practice, we found that convergence sormastrequired many backups even after only small
changes in the parameters. To complete our simulations,apped the number of backups per update step
to 50.) This should lead to the best expected performan@ngtve uncertainty in the user model. However,
computing a POMDP policy to convergence can be also a slosegs leading to latencies in dialog manager
responses.

2. Replank times. Performk backups, regardless of how much the updated model estinifigesdrom the
previous estimate. This approach may prevent latencidseimialog manager performance, but does not give
the dialog manager time to compute better plans once it hafgdemce in the model.

3. Replan proportionally to model confidence. The sum of #réawnces on each parameter is a rough measure of
the overall uncertainty in the dialog model. If an updateumss the overall variance hi;,, the agent backups
|k * d,] times. The intuition is that the dialog manager should edpe most computational effort when it
has the most reliable knowledge. For simulation purposeslao capped the number of backups per update at
50.

4.1 Results

We used simulation to test the learning approach againsbakiground truth optimal policy. In our test scenario,
the dialog manager initially believed that its observadierere more accurate than they actually were and that the
consequences of going to the wrong place were not partigidavere (see table 2 for the model size and table 3 for
initial guesses and true values). We attributed our estigiattwo pseudo-observations per event per state-action pa
to indicate a relatively low confidence in the initial paraereestimates. Finally, to account for the fact that the #gen
estimate of the user model would be changing with time, weeg¢he belief set used to solve for the dialog policy
with common confusions (such as thinking two or three stateie equally likely) to improve the accuracy of our
approximate POMDP solver.

Parameter Simulation
States 7

Actions 12
Observationy 8

Table 2: Model Parameters for Simulation Tests.
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Median Reward per Iteration for Learner vs. Non-Learner
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Figure 5: Performance and computation graphs. The leautpedorms the non-learner (top graph), and all of the
replanning approaches have roughly the same increaseforipance (middle graph), but replanning proportionally
to the confidence of the model achieves that performance megstcomputation (and therefore faster response) than
replanning to convergence (bottom graph).

As seen in Figure 5, all approaches achieved similar reduitseplanning proportionally to the change in model
confidence achieved that result with almost as little comtpan as replanning once per update (see Table 4; note that
updates occuafter a dialog is completed, while the robot is performing the esjad task, and thus do not affect the
flow of the conversation.) The model confidence approachsedueplanning near the beginning of the trial when
parameters first become certain. Each point representsiaB0(except ‘convergence’—in the interests of time, we
completed only 37 trials).We note that thé:;, =0.01 approach completed fewer total backups than backiranae
per iteration, but the larger number of backups near theninégg of the learning process helped stabilize the solution

Initial | True
P(self-transition) .95 .95
P(correct obs if ask-which) 0.7 0.5
P(correct obs if confirm) | 0.9 0.7

R(complete task) 100 100
R(ask-which) -1 -10
R(correct confirm) -1 -1
R(incorrect confirm) -10 -2

R(incorrect destination) | -50 -500

Table 3: Initial and True Parameter Values for Simulatiost3eThe initial model parameters assume a higher speech
recognition higher accuracy and a user unforgiving of camdifon actions. This is an example of a very demanding
user relative to the initial model specification.

2These tests used an oracle that provided the dialog mandifethe user’s true request to estimate the user state foemugulating after the
dialog was completed. We present these results becausshbeya clearer picture of the algorithm’s performance. sTasing HMM-based state
estimation for model updating performed slightly but ngingficantly worse.
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Approach Time (sec)
Convergence 135.80
1-backup 13.91
0.10-var 42.55
0.01-var 18.99

Table 4: Mean update times for each of the four approachet® tat updates take place only after a dialog has been
completed; when the dialog policy does not require any wgsjahe dialog manager’s average response time is 0.019
seconds.

4.2 Discussion

The benefit of the simple approach presented in this secsidhat it requires very little computational effort; the
backups are fast enough that the dialog manager can learintenaict with the user in real time. However, it suffers
from several drawbacks. First, the user is forced to prowideinforcement after every interaction within a dialog.
The agent must also make mistakes to learn about a negatiferoement. Furthermore, by only considering a point
estimate of the dialog model when choosing actions, thetageot fully aware in the limitations of its understanding
of the dialog model. In the worst case scenario, this linttatan lead it to choose actions that will never allow it to
learn the true dialog model. For example, consider a sceiakvhich there are only two actionaskandconfirm
Suppose that under some prior belidfover reward parameters, we have the following relationbkipveen the true
rewards and their expected values under the prior:

Rask > Rconf = EM [Rconf] > E]W [Rask]a (8)

whereR, is the reward for asking a general query @id,, ¢ is the reward for asking a confirmation question. If
the dialog manager attempted actask it would discover that its belief aboudt,; was incorrect. However, if the
dialog manager only makes decisions based on the rewarggates to receiveln;[Reon ] aNd Ens[Rgsk], it will
never try the actiomsk Thus, the dialog manager will never discover the mistakisinnderstanding. This situation
will occur if the domain expert estimates the reward meaosriectly, even if the expert states that he is very unsure
about some of the values he chose. We remedy these issuesiaxtsection.

5 Active Learning for Natural Language I nteraction

In this section, we introduce a more sophisticated algorithat allows the dialog manager to use the fact that it is
unsure about the true dialog model more intelligently. Bpliextly taking its uncertainty into account, the dialog
manager behaves more robustly; even if the designer estntla¢ parameters incorrectly, the dialog manager will
still be able to correct itself over time. Additionally, theeta-queries allow the learner to predict and avoid paénti
failures, reducing the variance of the policy performangerd) convergence to the correct model and corresponding
optimal policy. However, we note that the full state spaceoistinuous and high dimensional; to generate policies
tractably, we assume that the parameters of the user modebtdchange over time, that is, the modelitself is
stationary. Our agent also assumes that while it may usei@ssafractions to satisfy a user’s request, only its next
action can potentially improve its knowledge of the dialogdal. This approximation simplifies planning under model
uncertainty because the agent only needs to think one segulafOf course, the next time it needs to select an action,
it will also think that it has one more chance to learn aboetithe dialog model.)

In figure 6, we show typical simulation results for the modetertainty POMDP for a variety of priors. In each
case, the overall performance is about the same, showingg(agpect) that the parameter POMDP approach is robust
to the initialization. What is most interesting, howeverthat if we start out with a conservative prior, that is, apri
that puts most of its weight on a “tough” set of rewards, th#ahpolicy still performs relatively close to the optimal
policy during the learning process. In this case, the systambust because it is very cautious of doing the wrong
thing, and the actions that allow it to actively learn abtet inodel are relatively low-cost.

Choosing actions based on model uncertainty remedies dahe dfawbacks of the previous approach, where the
dialog manager might not adapt successfully if the expérhased the system poorly. Recall that the passive learning
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Figure 6: The three different priors—a uniform prior, a emtrprior, and a conservative prior—converge to the same
steady-state performance, but choosing a conservatige a@liows us to do as well as if we had known the user’s
preference state initially. All solutions were backed upadovergence.

scheme also required numerical feedback after each iting@able 1, Step 2). Our new approach uses an alternative
form of feedback: the meta-query. The meta-query asks thetaselp the system by suggesting what action it should
take next. For example, suppose that the dialog managerramtmelchair is fairly certain that the user wishes to go
to the printer. Then it might ask:

“I think you definitely want me to go to the printer. Should | gothe printer?”
On the contrary, if the wheelchair thinks that the user magtw@go to the printer but is not very certain, it might ask:
“I think you may want me to go to the printer. Should | go to thimger?”

The choice of adverb gives the user an intuitive sense ofiddlegimanager’s uncertainty. Thus, the user can advise
the robotic wheelchair based on their internal preferenEes example, if the user is risk averse, they may respond
“yes” to the first question but “no” to the second questionth# user answers a question to the negative, the wheelchair
might follow up with further questions such as,

“In that case, | think | should confirm that you want to go tonper first. Is that correct?”

until it receives an affirmative response.

We note that the meta-queries provide more ambiguous fekdiegarding the dialog model than the explicit
reinforcement signal in the previous approach. For exapptee wheelchair scenario, the dialog manager may need
help because it does not know if the user’s previous utteraocresponded to the printer location (a confusion in
the observation model) or because it is simply not certaough that it heard the user correctly (a confusion in the
reward model). Fortunately, the source of the confusiors cha¢ matter greatly from the user’s perspective; regasdles
of why the dialog manager is confused, the user providesrimdtion about the type of desired behavior, and the
system determines what interaction models are consistéimtive user’s request. While meta-queries place a greater
computational burden on the system, we believe they cande@ more natural way for the human to instruct the
robot. The meta-query approach is also active in that tHeglimanager chooses when it needs help instead of asking
the user for feedback after each interaction.

3In our tests, we used an abbreviated form of the meta-quieniesmulation speed.
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Figure 7: Boxplot of dialog manager performance with a @diseset of four possible models. In this case, the user is
very intolerant to errors, but the learner does not inititthow this. Although the medians of the two policies are not
so different, the active learner (right) makes fewer mistathan the passive learner (left), leading to overall mess |
user-annoying behavior.

5.1 Solvingthe Model-Uncertainty POMDP directly

In general, the transition, observation, and reward par@mmare continuous-valued, with an infinite number of possi
ble models, leading to computational intractability foneentional solvers. In special situations, however, uiaiety

in the dialog model may be expressed as a small, discreté gessible models rather than a continuous distribution,
making the model-uncertainty POMDP much easier to solve.

For example, consider a scenario where we already haveaedvansition and observation models (say, from
some prior work with the voice recognition system), but a mer’s preference model is unknown. The user’s exact
preference model may not matter as long as the dialog mahageioughly the appropriate pattern of behavior. In
an extreme case, we may decide to only characterize thesusastration with an incorrect movement &gv or
high, and similarly characterize the user’s frustration withiragorrect confirmation akw or high. The user model
can be described by two variablg®/ rong M ove Penalty, WrongQuestion Penalty}. The two variabledVrong-
MovePenalty andWrongQuestionPenalty can each take either values lofgh or low, so that the model for a
particular user might bex = {WrongMovePenalty = high, WrongQuestionPenalty = low}. This particular
user would be conservative, with a preference to be askestiqne repeatedly rather than risk being taken to the
wrong location. With only four possible dialog models, thats space is still discrete and small, and we can now
solve the model-uncertainty POMDP using a standard alyarjPineau et al., 2003].

We show simulated results with this very simple scenariordy dour possible preference models in Figure 7.
The figure compares the performance of the policy withoutgisieta-queries (left column) to the performance of the
policy with meta-queries. As expected, the system which has the atoilagk meta-queries can use the questions to
gain information about the user’s internal preference rholtlés able to discern that the user is very sensitive about
incorrect movements, and therefore it asks more confirmati@stions before taking an action. The reduction in large
negative mistakes is substantial—which is particularlpamant in dialog management, where users will likely find a
system that regularly makes mistakes annoying. The palssiveer does converge to close to the optimal policy—the
difference in means between the two learners is not signifid@hatis significant is the variance of the passive learner
before convergence.

Unfortunately, our approach of representing the user masldiscrete values (such B&rongQuestion Penalty
= low) does not scale well. Experimentally we found that even aesbthcrease in the number of possible user
models from 4 to 48 meant that the model-uncertainty POMDI#dcoo longer be solved using standard solution
techniques. While it may be possible to group the possihtetinations of user preferences into a few representative
models (since the effects of small changes to the prefemondel may not be apparent to the user), discretizing other
parts of the user model such as vocabulary choices quickijymres an exponential number of states. For example, for
each keyword the user might utter, we have to consider haylikis to be heard in each goal location. We therefore
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DIALOG MODEL LEARNING WITH BAYES RISK

1. Sample POMDPs from a prior distribution over dialog madel
2. Interact with the user:

(a) Use the dialog model samples to compute the action wigbr¢ximately) min-
imum Bayes risk.

(b) If the risk is larger than a giver) perform a meta-query.

(c) Update each dialog model sample’s belief based on thereéison received
from the user.

3. Periodically resample from an updated prior over dialagleis and return to step 2.

Table 5: Dialog model learning approach using Bayes riskraath-queries.

turn to approximation techniques which will allow us to repent a larger class of models with continuous parameters.

5.2 Approximately Solving for a Dialog Policy

To simplify the problem of finding the dialog policy, we sept the problem into steps. In the first step, the dialog
manager establishes a representative set of dialog mddmdtidves are consistent with the user interactions it has
experienced. Next, it solves for the optimal policy in ea¢lthese models. Thus, after any user utterance, it has a
collection of actions—votes from each of the candidate rnesdéo take next. These votes can be used to compute
the risk of taking each action; if the safest action is tokyishe dialog manager will ask a meta-query. By providing
information about the best action to take, the meta-quéowalthe dialog manager to prune away inconsistent models
from its representative set. Table 5 outlines this approach

Minimum Risk Action Selection

Given a dialog modet, the dialog manager can compute the loss of taking a paatiegkiona compared to the best
actiona,p:. The loss is simply the differena@(b, a) — Q(b, aopt), Where thel-function denotes the value of taking
actiona in beliefb (equation 2). Given a belief over models, the Bayes risk ddtion is defined to be the loss the
dialog manager expects to incur on average by choosingactio

BR(a) = /M@m(bm,a) QO (s @) )t (), ©

where M is the space of all possible dialog modéls, is the current belief over possible user requests according
to dialog modelm, anda.p: ., is the optimal action for the current beligf, according to dialog modeth.. Let

a* = argmax,ec4 BR(a) be the action with the least risk. If the rigkR(a*) is less than fixed cost of a meta-query,
that is, if the least expected loss is still more than a cefaieshold, the dialog manager will ask the meta-query.
Intuitively, equation 9 computes the potential loss dueatdrtg action instead of the optimal actiom,,: according

to each possible dialog model and weights that loss by the probability of model When the agent is sufficiently
sure about the model, the risk will be low. When it is unsurewtthe model, the risk may be high but the series of
meta-queries will lead it to choose the correct action.

We cannot compute the Bayes risk in close form, so we turn toarmical techniques to find an approximation.
The agent’s belief over user states and dialog models dithe probability of each model(m); if it draws sample
models from this distribution, it will draw many samples egions wherex(m) is high and few samples from where
p(m) is low. The more samples it draws, the better the densitiegsesamples will represent the distribution from
which they were drawn. Thus, it can approximate equatiom({®) the sum:

BR(Q) = Z(Ql(bla a) - Qz(bu aopt,i))wi, (10)

%
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where(@; provides the value of taking actions from belief accordimglialog samplé. If model samples are drawn
from p(m), the weightw; of each model is simpl)f\—,, whereN is the number of samples.

The dialog manager’s belief over models will change as drentts with the user, so the initial set of samples may
not be representative of reasonable dialog models as th#'sagaowledge improves. However, for computational
reasons—since the dialog manager must solve every dialdgims it is sampled—it may be undesirable to resample
models every time new information is received. In this cdBe,original sample set of models can be re-used by
changing the weight of each model and representing thelligon p,...,(m) as a set of weighted samples. At each
time step, the weight of each model should be adjusted todygoptional to the ratio of the previous likelihood of the
sample and its likelihood given the new information. Whilesipossible to provide formal bounds on the number of
samples needed to approximate the Bayes risk to a specifiedelef accuracy, these bounds are loose and in practice
we found that fifteen samples sufficed for our dialog manageiaqgplication.

POM DP Resampling

For practical applications, we use only a small set of sagtgleepresent the agent’s belief over dialog models. Even
with reweighting, after some time, the initial sample sefyma longer accurately represent the true distribution over

models; it may occur that after several human-robot interas, the system may discover that none of the dialog

models it initially thought were representative are in fagtsonable. The need for resampling may also arise if one
model’'s weight becomes very close to one and the remainirdetadave weights close to zero, causing the risk to

appear small. While acceptable if the risk is truly small,deenot want the dialog manager to become over-confident
due to a poor set of candidate models.

We have two sources of information to update our sample séiatdg models. One source is the history of the
most recent dialog, which consists of action-observatairsg = {a,o0}. Another source is the set of meta-queries
Q = {(q,r, 1)}, whereh' is the history of the dialog from the initial belief to the queg is the query, and is the
user’s response to the query. Givieand(), the posterior probability |, o over models is:

parin,o(mlh, Q) = np(Q|m)p(hlm)par(m), (11)

wheren is a normalizing constant. Note thapif; is a Dirichlet distribution, then/p(h|m)pys (m) is also a Dirichlet
distribution since the likelihoog(h|m) is product of multinomials. Recall that updating the Ditahdistribution
corresponded to adding counts. We can use the approachtiors8¢o approximate how may counts to add to each
Dirichlet parameter without knowing the true state history

Incorporating meta-query information requires a diffémgoproach, since each specific meta-query response pro-
vides information about how the agent should behave, nadileg model parameters. We do not have a closed-form
expression fop .o, SO we must use sampling to draw dialog model samples thataargistent with all of the
meta-queries that have been asked so far. Each query inttiemevides a constraint on the feasible set of dialog
models)M . Dialog models are feasible if their policy is consistenthithe responses in the meta-query. Computing
this feasible set directly is intractable, however, givea $et?), we can check if a sampled dialog POMDP is consis-
tent with the previous meta-query responses storégl ilhus, to sample POMDPs, we first generate models from the
updated Dirichlet priors. Next, we solve for the optimalipglof each model and check if each dialog model’s policy
is consistent with the previous meta-query responsestioi@.

5.3 Results

We now present results for this approach from simulatedstridnich allow us to test against a ground truth model,
and also a small set of user studies.

Simulation

Figure 8 shows results from a simulated dialog manager forahot wheelchair control application. Both figures
show the difference between the learning policies and tbargt truth optimal policy over time. In figure 8(a), we
see the usefulness of the Bayes-risk approach (comparddciastic actions selection based on the weights of the
sampled models) when the reward model is known. In this ¢heeBayes risk action selection allows us to choose
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Figure 8: Dialog manager simulation results. (a) Resutimftearning only the observation model. (b) Benefits of
active learning when learning both the observation and reéwendel.

First half of interactions .79
Second half of interactions .48

Table 6: Proportion of dialogs with meta-queries by locatidhe decrease in the number of meta-queries from the
second to the third time the location was asked for is siedibf significant at they = 0.05 level.

non-risky actions. The usefulness of our approach is evere mimmatic when the reward prior is uninformative
(figure 8b). In this case, the dialog manager can improve advaeby passively updating its priors based on what
it has heard (solid gray line). However, simply listeningeat provide the dialog manager with information about
the user’s preferences. Moreover, since the active legsyatem asks the user for help whenever it is confused, this
system does not suffer from poor performance while the mestéhate converges. The meta-queries allow the active
learner to learn while avoiding mistakes, thus maintairirggh level of performance.

Robotic Wheelchair

We also validated our approach on a dialog manager for aimlvbeelchair with a simple user study. The underlying
POMDP, with 10 states, 38 observations, and 21 actions, kesgglords from a voice recognition system output as
observations. Initially, each state had one strongly mdmservation (such as ‘printer’ for the printer locatione
remaining observations received uniform initial prioreuFusers conducted 12-15 interactions (20-25 minutes$) wit
the system.

By asking meta-queries, the dialog manager was able to ssitidly complete all 57 interactions without ever try-
ing to drive the user to an incorrect location. Table 6 shdwasthe proportion of dialogs with meta-queries decreased
significantly from the user’s initial interactions to his loer final interactions with the system. The proportions are
relatively high because the users, being new with the sysasked for a variety of locations or experimented with
different vocabulary. In Table 7, we see that the systermadsked a meta-query the first or second time a user asked
to go to a particular location, but there was a significanpdrothe number of meta-queries after the third time the
user requested to go to the same place. We note that our-#edineng approach allowed our dialog manager to
automatically determine the length of its training phaser tals were too small to draw strong conclusions from
these results (especially since we were unable to accouthtd@ffect of the novelty factor in the interactions), but o
guantitative analysis does show statistically signifiadetreases in the number of meta-queries asked as the dialog
manager adapted to each user.

Next we present some sample dialogs to illustrate our systearning. Table 8 contains a sample dialog where
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How often place was requested First time Second time | Third Time
Total number of requests 29 15 8

Number of requests with meta-queries 22 11 2
Proportion of requests with meta-queries .76 .73 .25

Table 7: Proportion of dialogs with meta-queries. The daseein the proportion of queries is significant at the
p = 0.05 level.

the system used a meta-query to establish the meaning of oy In the initial dialog, the word ‘forecast’ is new
to the system, that is, it has no prior on what that word maymme&ae system determines that the Bayes risk is great
enough to warrant asking for a policy clarification. As a feduture dialogs are biased toward choosing POMDP
samples that satisfy the initial policy query request, \katiows later dialogs to avoid the same kind of training.

Early Conversation

RoBOT: How can | help you?
USER Give me the forecast.
RoBOT: I'm confused. What action should | take
now?
The system pops up a meta-query window, and user
indicates action “show weather” is correct.
RoBoOT: Showers.

Later Conversation (with the same user)
RoBOT: How can | help you?

UseER What's the forecast for today?
RoBoOT: Do you want the weather?

The system has partially the word “forecast” and con-
firms the correct state.
USER Yup.

RoBoOT: Showers.

Table 8: Learning a new word: The system learns the meaniagefv word through a meta-query.

In Table 9, the system adapts to a situation where two wocdffge’ and ‘copy’ are often mistaken for each other
in the voice recognition system. We stress that at the bagirof the dialog, the system was initialized to believe that
the word ‘coffee’ was most likely if the user wished to go te ttoffee machine, while the word ‘copy’ was most likely
if the user wished to go to the copy machine. The other key ssettea” and “kitchen”—-in this segment began with
uniform priors. During the first conversation, the dialognmager is confused by the many new words. Even after
asking a meta-query, it is confused by hearing the word “temce the user seems to want to go to the kitchen. After
several interactions, the dialog manager goes to the ddogation. We note that even in this tricky scenario, the use
of the meta-queries helped the dialog manager focus on tkititteen when the only word it recognized—-copy”—
seemed to indicate that the user wished to go to anotheidocan the later dialog, we see the effect of the learning:
upon hearing the words “kitchen” and “copy,” the dialog mgesacorrectly infers that the user wishes to drive to the
kitchen.

5.4 Discussion

The approach presented in this section builds upon priokwwoPOMDP learning has also considered incorporating
the parameters of the POMDP as additional hidden statesaitdoger model-uncertainty POMDP. Closest to our
work are the Bayesian approaches in the Medusa [Jaulmes 20@5b] and Beetle [Poupart et al., 2006] algorithms.
Applying observations from Dearden et. al. ([Dearden ¢t1&l99]), the Medusa algorithm uses a candidate set of
samples to represent a distribution over models. As in oprageh, the agent updates the weight it places on each
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Early Conversation

RoBoOT: How can | help you?

USER | want some tea from the kitchen.

RoBoOT: How can | help you?

USER The tea is in the kitchen near the coffee machine.
The system heard “copy” instead of “coffee” and is confused
about the new word “kitchen”

RoBoOT: How can | help you?

USER Go to the kitchen.

RoBOT: I'm confused. What action should | take now?
The user indicates “Confirm the coffee machine area” is the
correct action.

RoBoOT: Do you want to go to the coffee machine area?
USER Yup.

... The system asks a few more (hon-meta) questions before
re-confirming the coffee machine state.

RosoT: Do you want to go to the coffee machine area?
USER Yup.

RoBoOT: Going to the coffee machine area.

Later Conversation (with same user)

RoBoOT: How can | help you?

USER Take me to the kitchen.

The system hears a noisy combination of “nick” and
“kitchen” (mostly “kitchen”).
RosoT: How can | help you?
USER | want some coffee.
The system hears “copy” instead of “coffee,” but with ifs
learned observation model, it confirms correctly.
RosoT: Do you want to go to the coffee machine area?
USER: Yup.

RoBOT: Going to the coffee machine area.

Table 9: Learning about observation noise: the system $aaew words for a noisy pair of states.

sample as new information arrives and changes its knowlefitiee world. However, the Medusa algorithm chooses
actions stochastically based on the weights of the sampBlgshoosing actions to minimize Bayes risk, our dialog
manager can act robustly even with high uncertainty in taéodimodel.

The Beetle algorithm takes a decision-theoretic approasbliving MDPs with uncertain parameters. Much like
our model-uncertainty POMDP, Poupart et. al. treat the omknMDP parameters as hidden state in a larger POMDP
and derive an analytic solution (based on [Porta et al., BG66a policy that will trade optimally between learning
the MDP and maximizing reward. Unfortunately, these teghes do not extend tractably to the model-uncertainty
POMDP, which is continuous in both the POMDP parameterg (lie MDP) and the belief state (unlike the MDP).
While approximate, our Bayes risk action selection criterallows the dialog manager to function in this complex
space of dialog models.

We also note that there are also non-Bayesian approachastiiog in uncertain environments. Some, targeted at
industrial applications ([Nilim and Ghaoui, 2004],[Xu akthnnor, 2007]), aim to make the agent robust to (usually
small) variations in its environment. While they provideagantees for worst-case behavior, they do not describe how
the agent should act if it has the ability to adapt to some edehvariations through learning. Finally, a class of model-
free approaches attempt to bypass the issue of model umtettg directly learning a policy ([Littman et al., 1995],
[Even-Dar et al., 2005], citepsr). The model-free appresctequire a typically large amount of data to produce
reasonable behaviors, and, without a prior notion of pdsgiitfalls, they are likely to make many mistakes during the
learning process. Our Bayesian approach avoids this protWeallowing the system designer to provide an indication
of where potential pitfalls may be; by also letting the aggurery the human for help, we ensure that the agent’s policy
is robust from the start.
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While our active learning approach addresses many of thigalions in these previous works and resolves the
drawbacks of the passive learning approach in section 4e tie two key areas for improvement and future work.
First, the most computationally expensive part of this apph is finding dialog models consistent with the meta-query
information that the user has provided; better samplinatesjies will be required to allow the algorithm to scale to
more complex dialogs. Second, we still are seeking effeatigys for the user to aid the dialog management system
when it is confused; we believe that meta-queries are omyitht step toward more natural (and accurate) human-
robot feedback. Resolutions to these issues will lead to evare robust and effective human-robot interactions.

6 Conclusion

Many approaches have been developed for human-robotdtitara In our work, we focused on robustly learning
dialog models for effective human-robot interaction (kalifor example, trying to learn an explicit vocabulary as in
[Lopes and Teixeira, 2000, Lopes and Chauhan, 2007]. Maeyaantion systems provide the dialog manager with a
set of rules to follow given particular outputs from a voi@eognition system. For example, the Mercury system
[Seneff and Polifroni, 2000] builds a network in which a flighservation system keeps track of what information has
already been provided and for what the user needs to be pedmphese rules can also help the agent monitor the
quality of the interaction [Paek and Horvitz, 2004] and adamew users [Litman and Pan, 2002].

The drawback to rule-based systems is that they often héfieutty managing the many uncertainties that stem
from noisy speech recognition or linguistic ambiguitiefieTability to manage the trade-off between gathering addi-
tional information and servicing a user’s request have niB@MDP planners particularly useful in dialog manage-
ment; applications include a nursebot robot, designedtérant with the elderly in nursing homes[Roy et al., 2000],
a vision-based system that aids Alzheimer’s patients wétkicdbtasks such as hand-washing [Hoey et al., 2005], an
automated telephone operator ([Williams and Young, 20@5J)l a tourist information kiosk ([Litman et al., 2000]).

POMDP-based dialog systems are faced with two difficulti®he first is that simply solving a POMDP can
be quite computationally expensive. Fortunately, mucleassh has focused on finding tractable dialog manager
policies. For example, [Williams et al., 2005] derive mathdo incorporate an explicit confidence output from the
voice recognition system as an additional measurementyial) the agent to reason about the possibility of speech
recognition errors. In situations where only certain attiare relevant to certain states, the POMDP can be factored
into hierarchies that reduce the overall amount of comprtatquired [Pineau et al., 2001]. Certain dialogs also
contain symmetries that lend themselves to efficient apprations [Williams and Young, 2005].

Unfortunately, the POMDP solution approaches typicallsuase a reasonably accurate user model. In domains
where large amounts of data are available—for example naatted telephone operators—the user model may be
relatively easy to obtain. For human-robot interactionyéeer, collecting sufficient user data to learn a statifljica
accurate model is usually expensive: trials take a lot oEtinom human volunteers. We developed an approach
that allows the agent to leverage the benefits of POMDP-bdisddg managers while addressing the difficulty of
specifying the POMDP model parameters. An expert need quagify a prior belief describing his knowledge—and
uncertainty—regarding the dialog model, and the agentesfinis knowledge through interactions with the user.

To make the learning process robust, we introduced a risksavaction selection criterion that allowed our dialog
manager to behave robustly even when its knowledge of tieedialog model was uncertain. Instead of asking for
feedback after every interaction, as many traditionalfeeadement learning approaches require, our dialog manager
uses an active learning scheme to only ask for help whenl# fedoes not have enough information to make a safe
decision. Framed as meta-queries, or questions abounadtie dialog manager is thinking of taking, our active
learning scheme is also more intuitive than asking for nicaéfeedback. We demonstrated our approach both in
simulation and on a real a dialog manager for a robotic winesic
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