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Abstract

The objective of my doctoral research is bring together
two fields: partially-observable reinforcement learning
(PORL) and non-parametric Bayesian statistics (NPB)
to address issues of statistical modeling and decision-
making in complex, realworld domains.

Problem Addressed
The field of reinforcement learning (Sutton and Barto 1998)
addresses how an agent can learn to make good decisions
in new environments through an online, interactive process.
More formally, the agent chooses from a set of actions A
which may affect the (unobserved) state s of its environ-
ment. It then receives an observation o and a reward r from
the environment. The state transition, observation, and re-
ward models are initially unknown, and the agent’s goal is
to maximize long-term rewards. Especially when parts of
the environment are hidden—that is, the observation o does
not reliably provide complete information about the state
s—traditional reinforcement learning approaches typically
require the agent to gather a large amount of experience be-
fore it can start acting near-optimally. Despite the interest
in partially-observable reinforcement learning (Hutter et al.
2009), research has had limited success in scaling to real-
world domains.

The objective of this research is to apply nonparametric
Bayesian techniques to address issues of sample-complexity
and scalability in partially-observable reinforcement learn-
ing. We focus on partially-observable reinforcement learn-
ing problems with discrete sets of actions and discrete in-
ternal representations of state. In these settings, Bayesian
approaches to reinforcement learning (Poupart and Vlassis
2008; Jaulmes, Pineau, and Precup 2005; Ross, Chaib-draa,
and Pineau 2008; Doshi, Pineau, and Roy 2008) have al-
ready been shown to help an agent make better use of its
experience: priors guide the agent’s decisions when data is
scarce, allowing it to make reasonable decisions with limited
information. Bayesian approaches also allow the agent to
reason about its uncertainty about the world. However, for
large problems, reasoning about all sources of uncertainty
is computationally expensive. Nonparametric techniques
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promise an elegant solution to these computational issues
by reasoning only about parameters that the data suggest are
relevant. However, current inference methods for nonpara-
metric Bayesian models are not particularly well-suited for
the online settings found in reinforcement learning. Thus,
a key aspect of this research is developing new inference
methods more appropriate for reinforcement learning.

Proposed Plan of Research
We consider three nonparametric Bayesian approaches to re-
inforcement learning in partially observable domains:

• A model-based approach in which the agent’s internal
state representation corresponds to the “true” states in
the environment (assumed to be a partially observable
Markov decision process),

• A model-free approach in which the agent’s internal state
representation corresponds to nodes in a finite state con-
troller with an unknown number of nodes, and

• A structure-discovery approach for more complex envi-
ronments; specifically we consider a feature-discovery
setting in which part of the agent’s internal state corre-
sponds to what features may be relevant for a particular
decision.

The third approach will be applied to a healthcare applica-
tion for remotely monitoring chronically-ill patients.

Model-based learning: infinite POMDP. We extend
the nonparametric version of the standard hidden Markov
model, the infinite hidden Markov model (iHMM) (Beal,
Ghahramani, and Rasmussen 2002; Teh et al. 2006), to
an infinite POMDP model (Doshi-Velez 2009). Belief-
monitoring in the iPOMDP is accomplished by adapting the
beam sampler for the iHMM (van Gael et al. 2008) to draw
models from the iPOMDP posterior given the agent’s ex-
perience. A key aspect of this research is to develop an
online version of the beam-sampler. A second question
is that of action-selection. We have considered a variety
of approaches, including stochastic forward-search, for this
particle-based representation of the belief and hope to char-
acterize their properties.

Like the iHMM, our iPOMDP model is derived from
the hierarchical Dirichlet process (HDP). As with other
Bayesian techniques using Dirichlet-multinomial distribu-



tions, the agent infers its transition, observation, and re-
ward models based on counts of how often it believes it has
experienced those events. Thus, given a set of somewhat-
similar possible models, deep look-aheads—many counts—
are needed for the agent to differentiate these models and
realize the value of reducing model uncertainty.

We hypothesize that biasing the agent toward proposing
more radically different models and more confident learn-
ing can alleviate this problem. We are currently trying
two approaches: adjusting the concentration parameters on
the iHMM and developing a hierarchical Pitman-Yor (HPY-
HMM) model to induce even stronger model differentiation
and sparsity.

Model-free learning: infinite state controllers. We fo-
cus on learning policies that can be represented with stochas-
tic state controllers (e.g. (Hansen 1998)). When the un-
derlying state dynamics are complex, such policy-based ap-
proaches can provide more compact solutions; they are also
more amenable to certain types of expert input, such as
alarm-thresholds in the healthcare domain.

We are currently testing an approach that uses a Gaussian
process to place a distribution over the value of a policy.
Symmetries in the policy-encoding mean that many polices
produce similar behavior, so we wish to compare policies
based on the distributions of histories they produce (rather
than directly comparing their parameters). We use impor-
tance weighting techniques from (Shelton 2001) to compare
how likely a history produced by one policy is to be pro-
duced by another policy. By placing an optimistic mean
function as the prior on the Gaussian process, we bias the
agent to try new policies.

The above approach is principled but computationally ex-
pensive. In future work, we hope to leverage similarities
between the iPOMDP and the iSC: both build discrete inter-
nal state representations with stochastic transitions between
nodes that are conditioned on certain inputs (actions for the
iPOMDP, observations for the iSC) and produce stochastic
outputs (observations for the iPOMDP, actions for the iSC).
The key difference is that the iPOMDP overlays a belief over
its internal state, while the iSC “fully observes” its internal
state. A second thrust of our iSC work to apply inference for
the iPOMDP to learn policies instead of models.

Online structure-discovery. The first two approaches
don’t explicitly consider structure that may present in the en-
vironment. We focus on a very specific structure-discovery
problem relevant to our healthcare application, where we
wish to predict upcoming incidents (hospitalizations, ER
visits, etc.) based on a patient’s current history of vital signs,
basic statistics, and previous incidents. Here, both the pa-
tient’s true condition as well as what features are relevant to
predicting his or her true condition are initially unknown.
Combinations of the basic inputs can produce very high-
dimensional feature vectors.

Our goal is to simultaneously discover which features are
relevant for different subpopulations of patients and segment
patients into subpopulations based on their what features are
relevant for them. As a first step, we propose to use nested
combinations of Dirichlet and Indian Buffet processes to
model the population segmentations in a batch setting. Our

next goal is to be able to quickly classify a new patient soon
after enrollment, so that the approach can be applied to a real
healthcare setting.

Progress
My master’s theses separately studied Bayesian approaches
to PORL (Doshi, Pineau, and Roy 2008) and scalable in-
ference in the Indian Buffet Process, a discrete nonparamet-
ric Bayesian model. Last year, I began work on the infi-
nite POMDP model (Doshi-Velez 2009), and we have al-
ready observed that the iPOMDP approach results in faster
learning rates than using EM (tests using different priors
are currently underway). I am also in the process of test-
ing an initial implementation of the model-free infinite state
controller algorithm on some toy problems. Finally, I ob-
tained the healthcare-related data in February 2010 and am
in the process of exploratory data analysis and testing ini-
tial feature discovery algorithms. My plan for the rest of the
spring is to continue work on the model-free iSC approach
and structure-discovery work with the healthcare data. I will
also be writing my thesis proposal and forming my thesis
committee.
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