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Abstract

It is commonly stated that reinforcement learning (RL) algo-
rithms require more samples to learn than humans. In this
work, we investigate this claim using two standard problems
from the RL literature. We compare the performance of human
subjects to RL techniques. We find that context—the meaning-
fulness of the observations—plays a significant role in the rate
of human RL. Moreover, without contextual information, hu-
mans often fare much worse than classic algorithms. Compar-
ing the detailed responses of humans and RL algorithms, we
also find that humans appear to employ rather different strate-
gies from standard algorithms, even in cases where they had
indistinguishable performance to them.
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The ability of humans to make sequential decisions under
uncertainty has been widely studied in psychology and neu-
roscience. The field ofreinforcement learning(RL) studies
the theoretical formulation and algorithmic implementation
of artificial agents that make sequential decisions to maxi-
mize their expected reward (Sutton & Barto, 1998). While RL
algorithms often provide theoretical guarantees on the qual-
ity of the agent’s long-term behaviour, the common lore in
the RL community (Singh, 2009; Peters, Bagnell, & Schaal,
2006; Morimoto & Doya, 2005) is these approaches are
painfully slow, requiring thousands of trials to learn to act
in, what seem to humans, relatively simple domains.

While RL has been applied as a theoretical tool for un-
derstanding human decision making behaviour (Samejima &
Doya, 2007; Daw, O’Doherty, Dayan, Seymour, & Dolan,
2006; Kakade & Dayan, 2002; Daw, Courville, & Tourtezky,
2006; Yoshida & Ishii, 2003; Acũna & Schrater, 2008; Dayan
& Daw, 2008), the supposed “slowness” of RL methods has
not been experimentally tested against human learning per-
formance. Are these RL algorithms actually slower to learn
than humans? To what extent is this lore biased by the fact
that humans bring structural knowledge from previous expe-
riences to new problems? For example, when entering a new
building, a human will probably assume that he cannot walk
through its walls, whereas RL problems would typically have
to relearn this fact for each new location. Humans also tend to
assume near-deterministic worlds, whereas RL algorithms are
often initialized as believing all possible outcomes are equally
likely.

In this paper, we focus on the approaches humans take on
problems where aspects of the environment cannot be fully-
observed (formally partially observable Markov decision pro-
cesses (POMDPs)). POMDPs offer a more realistic scenario

for decision making under uncertainty than the simpler (fully-
observable) Markov decision processes, since they assume
that the state of the world is known, but inferred from noisy
observations. In this setting, we show that, surprisingly,when
put in an identical setup on standard decision making prob-
lems, RL methods often learn faster and achieve better solu-
tions than humans. Even more surprisingly, while human per-
formance does improve when subjects are given contextual
information about the problem, their average performance of-
ten still does not match RL methods. Our work has inter-
esting implications for our understanding of both human and
machine decision making. Without contextual information,
humans may require more experience than RL algorithms to
perform well even on simple problems. However, making use
of context is one of the important open problems for machine
learning.

Experiment
We tested two hypotheses: first, that human subjects would
perform significantly better if given contextual observations,
and second, that human subjects would outperform RL algo-
rithms. Performance was evaluated as the sum of rewards ob-
tained during the last tenth of a learning trial. We also exam-
ined which RL algorithms’ behaviour most closely matched
human behaviour.

Task Descriptions
The tasks consisted of two common problems in the RL lit-
erature, both formulated as POMDPs. Playing the role of
the agent, the human subject—who had no initial knowledge
about the structure of the problem—selected actions to take.
The problem returned an observation, displayed on a com-
puter screen, which depended on the underlying state of the
environment, and an immediate reward. The subject’s goal
was to maximize their cumulative rewards.

Each task could be presented to the subject in two differ-
ent versions. In thewith-contextversionC+, the domain’s
observations had meaning in the context of the task. In the
context-freeversionC−, observations had no meaning; the
C− version of the problem was meant to simulate what a RL
algorithm might “see,” as a computer system cannot attribute
meaning or significance to particular observations.

In the first problem, the tigerworld task (Kaelbling,
Littman, & Cassandra, 1995), players were confronted with
two doors (see figure?? for an illustration). Behind one door
was a tiger (reward =−100); behind the other was a prize
(reward =+10). At every iteration, players had three options:



they could open one of the two doors, or they could “listen”
for more information. Each listen attempt had an 85% chance
of being accurate and an associated reward of−1. In theC+
version, the observations were images of a tiger on the left
or the right of the image. In the without-context version, the
image of a tiger on the right was replaced with an image of
an apple, and the image of a tiger on the left was replaced by
an image of a banana. The text on the actions (“listen,” “open
left,” “open right”) was also replaced by numbers (“1,” “2,”
“3”). Opening either door reset the tiger and the prize to ran-
dom positions.1 Understanding that listening provided useful
but noisy information was the key learning challenge in the
tigerworld task.
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(a) Illustration of the
Tigerworld Problem

(b) SampleC+ Ob-
servation

(c) Sample C−
Observation

Figure 1: The tigerworld problem consisted of two doors. One door
had a tiger behind it, the other a prize. Players could open a door
or “listen” for the tiger’s location. The right two images show a
possible result of the “listen” action in theC+ andC− versions,
respectively.

The second problem, the gridworld task, players had to
navigate from a random starting place on a 4x3 grid (Russell
& Norvig, 2010) to reach the prize in the top-right cor-
ner (see figure 2 for the map). Reaching either the prize
(reward = 10) or the penalty (reward = -100) square reset
the player to an arbitrary position on the board. Unlike in
the tigerworld task, the observations in the gridworld task
were deterministic—players always saw the walls immedi-
ately around them. However, actions had stochastic effects:
80% of the time the action would execute as expected; 20%
of the time the player would find themselves moved in a per-
pendicular direction. Reaching the prize square while navi-
gating around the penalty square was the key learning chal-
lenge in the gridworld task. In the contextual version of the
problem, the subjects saw gridcells with walls and arrows as
observations (figure 2(b)) for normal cells and a happy or sad
emoticon for the two reward cells. Action buttons were la-
beled with the compass directions; subjects reported no trou-
ble making the association between the compass directions on
the action buttons and the arrows indicating free directions to
move in the observations. In theC− version, each unique ob-
servation was mapped to a specific fruit. The action buttons
were also numbered instead of labeled with compass direc-
tions. Rewards in both tasks were deterministic functions of
the underlying hidden state.

1Opening a door in the original version of tigerworld results in
a random observation. In pilot trials, subjects found this version
very hard to learn; therefore, we augmented tigerworld with a third
“reset” observation that always followed an open-door action.
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Gridworld Problem
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servation
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servation

Figure 2: The gridworld task rewarded players for reaching the top-
right corner of a 4x3 grid. The right images show the observation
for the bottom-right corner.

Methods
Procedure To test the first hypothesis, each subject played
every task-version pair (tigerworld, with and without con-
text; gridworld, with and without context). Subjects were in-
formed they were learning four different tasks. Each subject
played 500 iterations in tigerworld and 750 iterations in the
gridworld. The simpler tigerworld problem was always pre-
sented before gridworld. The length of the experiment and
the decision to present the simpler problem first were decided
from an initial pilot test.

The ordering of the two versions was counterbalanced be-
tween the subjects: half the subjects received theC+ tasks
first; half received theC− tasks first. Subjects playing theC+
versions first had slightly better overall performance thansub-
jects playing theC− version first (t(31) = 2.32, p< 0.05). To
check if subjects were using learned effects of actions from
one task version to the next, the labels associated with the ac-
tions in theC− tasks were either ordered identically as the
C+ versions or permuted. For example, if theC+ version
had buttons ‘left,’ ‘right,’ ‘listen,’ then the numbers ‘0,’ ‘1,’
‘2’ could either map to ‘left,’ ‘right,’ ‘listen’ (same order) or
‘right,’ ‘listen,’ ‘left’ (permuted order). Subjects weresplit
evenly between these two versions; we found that changing
the action mapping had no significant effect on performance
(t(31) = 0.88, p > 0.10).

After signing a consent form, subjects were shown the in-
terfaces and given a chance to familiarise themselves with it.
They were also told the following information:

• Each task was unique and unrelated to the other tasks.
• Actions could have stochastic effects, but there were no

adversarial effects.
• Past (especially recent) observations could be important.
• They could take notes or use a calculator if they wished.
• There was no time limit.
• The trials would be long enough that they should feel free

to spend time exploring.

After all trials were complete, subjects were interviewed on
how they approached the problem. They were encouraged
to explain any sketches or computations they had made. Fi-
nally, subjects were asked if they had realised that the tasks
were paired (3 of 16 subjects did). Each version took subjects



15-20 minutes to complete; the entire set of tasks took most
subjects 60-90 minutes. Subjects were allowed to take breaks
between tasks.

To test our second hypothesis, we collected a fresh group of
subjects. Each subject played one version (with/without con-
text) of tigerworld for 3000 iterations and one version of grid-
world for 2000 iterations. The trial lengths were chosen based
on pilots showing that human subjects varied greatly in their
of learning rates and “inspiration” moments. Half the subjects
played theC+ tigerworld scenario and theC− gridworld sce-
nario; the other half played theC− tigerworld scenario and
theC+ gridworld. Subjects were given the same instructions
as in the first experiment. These longer trials lasted 90-150
minutes; subjects were encouraged to take breaks whenever
they wished to avoid fatigue.

Aparatus The subjects participated in the study by using a
mouse to click buttons displayed on a computer screen. The
display had three elements. A large central pane showed the
current observation (updated after each action). Above the
observation pane was a panel that showed subjects their im-
mediate reward after each action (cumulative rewards were
not shown). Finally, a set of action-selection buttons were
located below the observation window.

Subjects could not access prior histories of actions, obser-
vations, or rewards; however, they were provided pen and pa-
per. Subjects could also use of a calculator (none did).

Participants To test the first hypothesis, that context had
a significant effect in human learning, 16 subjects (13 male,
3 female) were recruited from the University of Cambridge
Engineering Department. To test the second hypothesis,
eight additional subjects were recruited from the University
of Cambridge Engineering Department. Finally, three addi-
tional subjects (2 male, 1 female) participated in a pre-trial
pilot. Participants were compensated for their participation; a
prize was also offered for the highest score.

Results

Effect of Context

We had hypothesized that subjects would perform better in
C+ versions of each problem. Performance was evaluated
based on the sum of all immediate rewards received during
a trial. Subjects performed significantly better with context
than without, pairedt(31) = 2.99, p < 0.005, with a mean
benefit of 1,243 points in the final cumulative reward.

The total reward gained over time is shown in Fig. 3. The
trials are broken into blocks of 50 iterations, and the shaded
regions show the standard error of the mean. The upward
trends in all curves indicates learning occurred during the
course of the task. In the tigerworld problem, theC− case
started with a low initial reward, but by the end, the human
subjects were performing as well with context as without (al-
though still suboptimally). In contrast, the human subjects on
theC− version of gridworld never matched theC+ perfor-
mance: many subjects inferred the grid when given contex-

tual observations, but only one inferred the map when fruit
images were substituted for the wall images.
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Figure 3: Reward in each phase of the trial. Blocks consisted of 50
iterations for both problems. Shaded regions show the standard error
of the mean.

Comparison to Reinforcement Learning Algorithms

We next compared human performance to three approaches
from RL: RMAX (Brafman & Tennenholtz, 2002), u-
tree (McCallum, 1995), and iPOMDP (Doshi-Velez, 2009).
The first, RMAX, builds a model of the world’s dynamics,
choosing optimistic rewards for parts of the world it has not
seen, and then uses the model to make decisions. RMAX
is designed for fully-observable problems, that is, problems
with no hidden information. To apply RMAX to our domains,
we use a history of recent observations as a proxy for the state,
a technique often used for tackling partially-observable prob-
lems (Breslow, 1996; Lin & Mitchell, 1992).

Specifying how much past history to consider adds an ad-
ditional parameter to RMAX; the u-tree algorithm tries to dy-
namically learn the window size: it uses a series of statistical
tests to increase the number of past observations considered
if it enables the agent to improve its overall rewards. Like
RMAX, u-tree builds a model using each of these (now vari-
able length) past histories as states and solves the model to
select actions. Finally, iPOMDP also builds a model of the
world first, but it does not assume that the world is fully-
observable; indeed, it assumes that the number of hidden
states could be potentially unbounded. While iPOMDP cor-
rectly models the true partially-observable nature of the prob-
lems, it must search over a much larger class of models.

We had hypothesized that subjects would perform better
than the RL algorithms when given context and worse when
not given context. We tested both performance on the last
tenth of the data as well as compared the performance of
the subjects and the algorithms for each block of 50 inter-
actions during the trial. On the tigerworld problem, the al-
gorithms outperform the subjects without context both in the
last tenth of the trial,t(1602) =−4.82, p< 0.005 and in each
block of the learning process,t(59) = −12.79, p < 0.005.
More surprisingly, the algorithms also outperformed sub-
jects when they had contextboth in the last tenth of the
trial, t(3003) =−5.76, p< 0.005 and throughout the learning
process,t(59) = −10.92, p < 0.005. These results directly



contradict conventional wisdom that while an RL algorithm
might eventually produce a superior solution than a human,
they generally learn more slowly.

The left pane of Fig. 4 compares the performance of the
three RL algorithms to human subjects without context on
the tigerworld problem. As before, the shaded regions show
the standard error of the mean, and averages are computed for
blocks of 50 iterations; the expected optimal performance—
computed by applying value iteration to each domain—for
an agent that knew the domain is given by the dashed line
(note that the expected optimal performance is the average
performance an optimal agent would gain over many runs;
individual runs can exceed this value). What is striking is
how quickly RMAX and iPOMDP algorithms achieve near-
optimal performance; u-tree, testing variable window lengths,
learns slower but also ultimately bests the human subjects.

Recall that the key challenge in the tigerworld problem was
learning that the observations of where the tiger was located
were noisy: repeated measurements were needed to ascer-
tain the tiger’s location to a reasonable degree of accuracy.
The gridworld problem tested a different challenge: building
a map of a domain where actions sometimes “slipped” or had
unexpected results. As seen in the right pane of Fig. 4, the
difference in performance in the gridworld problem is much
less clear. We found no significant difference between the RL
algorithms and the human subjects: still, it is interestingto
note that even when given the context of the walls and corri-
dors, the human subjects did not outperform the algorithms,
which did not have access to this information. The difference
in the RMAX algorithm’s performance through the learning
process (again measured as the performance in each block
of 50 interactions) was significantly greater than the human
subjects’ performance,t(39) = −3.81, p < 0.005. Finally, it
is interesting to note that the iPOMDP algorithm performs the
most poorly in this domain. The extra complexity of having to
explicitly consider the partial observability in these relatively
simple domains results in a much slower learner.
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Figure 4: Reward for each trial block of 50 iterations. Shaded re-
gions show the standard error of the mean. For RMAX, the window
size was 2.

Recall that RMAX uses the most recent window of obser-
vations as a proxy for the hidden state. We tested the algo-
rithms with windows ranging from only the most recent ob-
servation to the last four observations. The results for RMAX

are shown in Fig. 5. In the tigerworld problem, the small
window sizes yield similar (suboptimal) performance levels
as the human subjects, but much more quickly. The longer
window sizes result in slower learning, but they eventually
out-perform the human subjectsregardless of whether the
subjects had context. RMAX’s learning rate is even more
striking in the gridworld problem (right panel of Fig. 5).
The longer window sizes, with a large number of parame-
ters (O(S2), whereS is the number of states), are very slow
to learn, but building a model reduces the need for long win-
dows: the small-window learners quickly surpass human per-
formance. In post-experiment interviews, most human sub-
jects also showed maps that they had built as they played.
What then distinguished RMAX? We hypothesize the crucial
difference was RMAX’s optimistic approach to filling in un-
known parts of the model, which lead it to explore all aspects
of the problem. In contrast, humans in post-experiment in-
terviews claimed they behaved much more cautiously after
discovering a−100 penalty.
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Figure 5: Comparison with RMAX over several window sizes. The
dip in the human performance curve in gridworld was due to a single
subject’s performance.

The previous analysis found that the RL algorithms of-
ten outperform average human performance, both with and
without context. When compared to the best human subject
(as measured by cumulative performance on the last tenth of
the trial), we find that the best subject outperformed the al-
gorithms on gridworld when given context: the best subject
scored 33 times more points in the last tenth of the trial than
RMAX, the best algorithm. However, the best human didnot
outperform the best algorithm in tigerworld—RMAX scored
6 times as many points as the best human. The plots of the
best human subject’s performance are shown alongside the
best algorithms in Fig. 6. Interestingly, the best human sub-
ject appears to learn a (suboptimal) solution the tigerworld
problem slightly faster than the algorithms, but the gridworld
problem takes longer to learn (though the performance is
near-optimal in the end).

Algorithms Matching Human Behaviour
Finally, we examined which RL methods most closely mod-
elled human behaviour. To evaluate how well these RL pro-
cedures predicted human subjects’ behaviour, we played each



0 500 1000 1500 2000 2500 3000
−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

Iteration

B
lo

ck
ed

 R
ew

ar
d

Tiger: Human, RL Comparison

 

 

0 200 400 600 800 1000 1200 1400 1600 1800 2000
−12

−10

−8

−6

−4

−2

0

2

Iteration
B

lo
ck

ed
 R

ew
ar

d

Gridworld: Human, RL Comparison

 

 

Human
Optimal
RMAX
UTREE
iPOMDP

Human
Optimal
RMAX
UTREE
iPOMDP

Figure 6: Performance of best human subject (with context). In both
domains, the subject learns a near-optimal solution.

subject’s history of actions and observations forward to the
RL agent. At each iteration, the RL algorithm updated its in-
ternal state given the current history of the human subject’s
actions. Based on this history, the algorithm decided which
action it would select next. Similarity between the algo-
rithm’s and the human subject’s behaviour was assessed along
two criteria: (1) whether the agent’s selected action matched
the subject’s selected action,2 and (2) the algorithm’sregret
given the human subject’s action choice. Formally, regret is
the value the agent thought the human subject lost by his or
her choice of action (as computed from the algorithm’s inter-
nal value function). Lower regrets imply a greater similarity
between the algorithms’ and the human subjects’ choices.

The results in Fig. 7 show that none of the algorithms
matched human behaviour very often, regardless of whether
the subjects had context. The algorithms matched the sub-
jects slightly better in the tigerworld domain than the grid-
world; the low-match rates—almost always below 50%—
suggest that the humans and the algorithms were employing
rather different strategies, even when they had indistinguish-
able performance (as in gridworld). As expected, the RMAX
learner had the highest regrets; its optimistic initialization
made it believe that humans often under-explored problems.
The u-tree algorithm had the lowest regrets, in part becauseit
tended to be less certain about the correct action at any time.

Finally, we note that the stochasticity of the problems (seen
in the individual problem traces in Fig. 6) resulted in high
reward variances and that different under-exploring policies
could also result in large reward variations (seen in the high
standard errors in Fig. 4. The analysis in this section shows
that there are differences in how humans and RL agents ex-
plore given these high variances.

Discussion
A significant advantage that RL algorithms have over humans
is that they do not get bored, fatigued, or disheartened. In a
long series of experiments in which subjects may accrue large
costs before ultimately learning a good strategy, these factors
often caused humans to settle for sub-optimal or reasonable

2The results evaluating action-selection similarity based on a
softmax action-selection criterion were nearly identical to action-
matching and are omitted for brevity.

solutions instead of seeking better solutions. In contrast, the
RL algorithms were more persistent; in general they not only
learned as quickly or quicker than human subjects, but they
also refined their solutions more than human subjects. Thus,
we find that contrary to conventional wisdom about these sim-
ple algorithms—that they learn slowly—these algorithms of-
ten learn significantly faster than human subjects.

The quantitative performance curves matched post-
experiment interviews in which the subject (like many oth-
ers) produced an accurate map of the gridworld—despite the
transition uncertainty and location ambiguity—but found it
very difficult to reason about the observation uncertainty in
tigerworld. The algorithms treated both of these forms of
uncertainty equivalently; thus they learned in proportionto
the overall level of uncertainty. We can conclude that either
humans require more experience to learn than supposed, RL
algorithms are faster learners, or both.

Our work is consistent with studies showing humans have
difficulty planning under uncertainty, though none directly
compare human and algorithm performance in multi-state
partially-observable domains. For example, handling loca-
tion ambiguity was found to be the primary bottleneck for hu-
mans trying to perform spatial navigation tasks (Stankiewicz,
McCabe, & Legge, 2004). Gureckis and Love (2009) found
slightly noisy rewards encouraged exploration, but humans
are generally poor at handling randomness, even in fully-
observable settings. Finally, Acuña and Schrater (2008)
hypothesised that humans may learn slowly on bandit-type
problems because they consider a wider set of underlying
structures, even when they are told that the problem has a
particular form. They showed that human learning rates on
a 1-state partially-observable problem are slower than an ap-
proach that leverages the structure of the problem (also given
to the human subjects) but similar to an approach that makes
fewer structural assumptions. Their results are similar to
the differences we observed between the RMAX algorithm—
which learned quickly due to its simple model assumptions—
and the iPOMDP or u-tree—which learned more slowly.

The findings in this work are based on two standard prob-
lems in RL, with relatively small state spaces. We conjecture
that without context, the advantage of RL methods over hu-
mans will persist for larger state spaces. For example, given
no context, a larger gridworld is even more baffling for the
human subject who was already—on average—confused by
a 4×3 grid. However, in largermore structuredstate spaces,
the human subject’s ability to generalise and make use of con-
text would probably give them significant advantages. For
example, human subjects may infer that “stacking” actions
put one object on top of another, while a simple agent may
have to learn the result of a “stack” for each pair of objects.
Similarly, humans may use patterns of grammar to analyse
dialogues, whereas an agent might have to learn each part
of a conversation separately. It remains an interesting open
question as to how the learning rates of human subjects and
RL agents compare on these more structured and hierarchi-
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Figure 7: Proportion of same actions and perceived regret of the yoked learners. A higher proportion of same actions indicates a greater
similarity between the human’s and agent’s decisions; likewise lower regrets indicate that the agent valued actions similarly to the human
subjects. Means are shown with 95% confidence intervals.

cal learning domains. The importance of context in human
learning also suggests that for work trying to build more data-
efficient artificial agents (Fei-Fei, Fergus, & Perona, 2006),
learning and leveraging contextual information may be key
factor to achieving better learning performance. An exciting
avenue for future work would be to better understand how
humans leverage context when learning a task, rather than fo-
cusing simply on their rates of learning.
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