
Reinforcement Learning with Limited Reinforcement:
Using Bayes Risk for Active Learning in POMDPs

Finale Doshi and Nicholas Roy and Joelle Pineau

Abstract

Partially Observable Markov Decision Processes (POMDPs)
have succeeded in many planning domains because they
can optimally trade between actions that increase an agent’s
knowledge and actions that increase an agent’s reward. Un-
fortunately, most real-world POMDPs are defined with a large
number of parameters which are difficult to specify from do-
main knowledge alone.
In this paper, we treat the POMDP model parameters as addi-
tional hidden state in a larger “model-uncertainty” POMDP,
and develop an approximate algorithm for planning in the
induced ‘model-uncertainty” POMDP. This approximation,
coupled with model-directed queries, allows the planner toac-
tively learn the true underlying POMDP and the accompany-
ing policy. We demonstrate our approach on several POMDP
problems.

1 Introduction
Partially Observable Markov Decision Processes (POMDPs)
have succeeded in many planning domains because they can
reason in the face of uncertainty, optimally trading between
actions that gather information and actions that achieve a
particular goal. This ability has made POMDPs attractive in
real-world problems, such as dialog management (Williams
& Young 2005), but such problems typically require a large
number of parameters that are difficult to specifya priori
from domain knowledge.

Traditional reinforcement learning approaches (Watkins
1989; Sutton 1988; Strehl, Li, & Littman 2006; Even-Dar,
Kakade, & Mansour 2005) to learning in MDP or POMDP
domains require an oracle to provide reinforcement feed-
back after each of the agent’s actions during a training pe-
riod. The feedback requirement may be immaterial if a
learning can be performed in simulation, but if learning must
occur through interaction with a human expert, the tradi-
tional approach may be undesirable. The traditional ap-
proach also does not provide robustness guarantees for the
agent’s performance during the training period. We identify
three undesirable properties of the traditional approach that
we will address in this work:

1. The time required to gather sufficient training data to learn
these parameters in a supervised manner may be pro-
hibitively expensive.

Copyright c© 2007, authors listed above. All rights reserved.

2. Most domains require that the agent experience large
penalties (i.e., make critical mistakes) to learn to avoid
a poor decision. While these mistakes result in efficient
learning, the mistakes also reduce the perception of good
performance and reliability.

3. Accurate numerical reward feedback is especially hard
to obtain from human users, and determining the reward
model without an explicit reinforcement signal (the in-
verse reinforcement learning problem) poses its own set
of challenges (Ng & Russell 2000).

Our objective is to propose a new framework for simultane-
ous learning and planning in POMDPs that overcomes the
above mentioned limitations, allowing us to build agents that
behave effectively in domains with inherent model uncer-
tainty.

We discuss how our approach addresses each of these
three issues. To address the issue of long training peri-
ods, we adopt a Bayesian reinforcement learning approach.
By incorporating expert domain knowledge into priors over
models, the system begins the learning process as a robust,
functional agent while retaining the ability to adapt online to
novel situations. This prior can also provide the agent with
a basic understanding of potential pitfalls.

To ensure robustness toward catastrophic mistakes, we
develop an active learning scheme that alerts the system
when additional information is necessary. If the agent deems
that the uncertainty in the model may cause it to take an un-
due risk, it queries an expert regarding what action it should
perform. In addition to limiting the amount of training re-
quired, these queries allow the agent to infer the potential
consequences of an action without executing it. Asking for
policy information, instead of a traditional reward signal,
also side-steps the issue of getting explicit reward feedback
from the user or expert.

We are still left with the inverse reinforcement learn-
ing problem, as the user’s response regarding correct ac-
tions provides only implicit information about the underly-
ing reward function. Bayesian reinforcement learning tradi-
tionally has succeeded best with learning observation and
transition distributions (Jaulmes, Pineau, & Precup 2005;
Poupartet al. 2006), where updates have convenient, ana-
lytic forms. However, information from policy space (the in-
formation usually provided by inverse reinforcement learn-
ing) has proven difficult to integrate into algorithms that
learn parametric decision-theoretic models. In our work,

we instead use a non-parametric approach to model distribu-
tions over possible POMDPs; coupled with a simple action-
selection strategy, we show that our approach works well on
several standard problems.

Our method retains the decision-theoretic properties of
other (PO)MDP learning approaches (Jaulmes, Pineau,
& Precup 2005; Poupartet al. 2006) and expresses
model-uncertainty as additional hidden state in a larger,
continuously-valued POMDP. Within this framework, we
describe two important practical contributions. First, we
propose an approximation algorithm based on minimiz-
ing the immediate Bayes risk for choosing actions in a
POMDP with uncertain transition and observation probabil-
ities and uncertain rewards. The Bayes risk objective func-
tion avoids the computational intractability of solving large,
continuously-valued POMDPs; we show that this approxi-
mation performs well in a variety of problems. Second, to
efficiently gather information about the model without as-
suming state observability, we introduce the notion ofmeta-
queries. By allowing the agent to request information, the
meta-queries enable the agent to behave robustly in the face
of model uncertainty. The meta-queries accelerate learning
and help the agent to infer the consequences of a potential
pitfall without experiencing its negative effects.

The remainder of the paper is structured as follows. Sec-
tions 2 and 3 provide an overview of the POMDP and our
approach for representing uncertainty in the POMDP param-
eters as a larger model-uncertainty POMDP. In Section 4,
we describe our approximation to the policy in this larger
model-uncertainty POMDP. We also present lower bounds
on the quality of our approximation, although we note that
these bounds are not tight and in practice our algorithm far
out-performs the bounds we provide. Section 5 contains the
results of our approach on several standard POMDP prob-
lems. We conclude with a discussion of our approach in the
context of prior work in Section 6.

2 The POMDP Model
Formally, a POMDP consists of the n-tuple
{S,A,O,T ,Ω,R,γ}. S, A, and O are sets of states, ac-
tions, and observations. The transition functionT (s′|s, a)
is a distribution over the states to which the agent may
transition after taking actiona from states. The observation
functionΩ(o|s, a) is a distribution over observationso that
may be seen in states after taking actiona. The reward
functionR(s, a) specifies the agent’s immediate reward for
each state-action pair. The discount factorγ ∈ [0, 1) relates
the importance of current and future rewards.

In the POMDP model, the agent must choose actions
based on past observations; the true state is hidden. The
belief, a probability distribution over states, is a sufficient
statistic for a history of actions and observations. The belief
at timet + 1 can be computed recursively from the previous
belief, bt, and most recent actiona and observationo, by
applying Bayes rule:

ba,o
t+1(s) =

Ω(o|s′, a)
∑

s∈S T (s′|s, a)bt(s)
∑

σ∈S Ω(o|σ, a)
∑

s∈S T (σ|s, a)bt(s)
(1)

The solution to a POMDP is a policy that maps beliefs to
actions. If the goal is to maximize the expected discounted

reward, then the optimal policy is given by:

Vt(b) = max
a∈A

Qt(b, a), (2)

Qt(b, a) = R(b, a) + γ
∑

o∈O

Ω(o|b, a)Vt(b
a,o), (3)

where the value functionV (b) is the expected discounted
reward that an agent will receive if its current belief isb and
Q(b, a) is the value of taking actiona in belief b. The exact
solution to equation 3 is PSPACE-hard, so we use a point-
based approximation (Pineau, Gordon, & Thrun 2003).

3 Modeling POMDP Uncertainty
We assume that the setsS, A, andO are fixed. The POMDP
learning problem is to determine the parameters inT , Ω, and
R that describe the dynamics and objective of the problem
domain. A Bayesian approach is attractive in many real-
world settings because we may have strong notions regard-
ing certain parameters, but the value of those parameters
may be difficult to specify exactly. We place a prior over
the model parameters to express our domain knowledge, and
improve upon this prior with experience.

Since the state, action, and observation sets are discrete,
T and Ω are collections of multinomial distributions. As
conjugates to the multinomial distribution, Dirichlet distri-
butions are a natural choice of prior forT andΩ. We use
a uniform prior over expert-specified ranges for the reward
functionR. Together these priors specify a distribution over
possible POMDP models. To build a POMDP that incorpo-
rates the model parameters into the hidden state, we consider
the joint state spaceS′ = S × M , whereM is the space of
models as described by all valid values for the model param-
eters. The new state space is continuous and high dimen-
sional, but the transition model forM is simple (assuming
the true model is static).

The formulation above makes the agent aware of the un-
certainty in the model parameters but does not give it ac-
tions to explicitly reduce model uncertainty. To allow for ac-
tive learning, we augment the action spaceA of our original
POMDP with a set of meta-queries{qm}. The meta-queries
attempt to confirm the actiona ∈ A that the system thinks is
most appropriate. For example, the agent might ask:

“I think you {may, probably, definitely} want me to do
actionai. Should I doai?”

The adverb gives the user a qualitative sense of the agent’s
uncertainty. If the user answers to the negative, the agent
follows up with further questions:

“In that case, I think I should take action{aj} instead.
Is that correct?”

until it receives an affirmative response (the observation
space should be augmented with yes/no keywords if not al-
ready present).1 We treat the costξ of querying the user to
be a fixed parameter of the problem.

Meta-queries may be applied to any situation where an ex-
pert is available to guide an uncertain agent. Unlike the or-
acle of Jaulmes, Pineau, & Precup (2005), the meta-queries

1In our tests, we used an abbreviated form of the meta-queries
for simulation speed.

Table 1: POMDP active learning approach.
ACTIVE LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution over
POMDPs (Section 4.2).

• Interact with the environment:

– Use the POMDP samples to compute the action with
(approximately) minimal Bayes risk (Section 4.1).

– If the risk is larger than a givenξ, perform a meta-
query (Section 4.1).

– Update each POMDP sample’s belief based on the
observation received (Section 4.2).

• Periodically resample from an updated prior over
POMDPs (Section 4.2).

Performance and termination bounds are in Sections 4.3
and 4.4.

ask for policy information, not state information. This as-
pect is important in applications where optimization proce-
dures make the state-space is unintuitive to the user (e. g.
(Williams & Young 2005)). Policy-related questions may be
more amenable to deployment in such applications because
humans find it natural to give advice.

4 Solution Techniques
Table 1 describes our overall approach to solve and apply
the model-uncertainty POMDP. The approach requires two
parts. First, given a history of actions and observations, we
must describe how to select the next action. Second, we
must describe how to perform a belief update in the joint
state-model spaceS′, that is, how to update our distribution
over model parameters given additional interactions with the
environment. In our continuous-valued POMDP, both steps
are computationally intractable via standard POMDP solu-
tion techniques. We present approximations and bounds for
each of these steps. Section 5 contains an empirical evalua-
tion of our approach.

4.1 Bayes-Risk Action Selection
To select actions, we follow the active learning framework
for classification (Cohn, Ghahramani, & Jordan 1996). Let
the lossL(a, a∗) of taking actiona in modelm beQ(b, a)−
Q(b, a∗), wherea∗ is the optimal action according to model
m. Given a beliefpM (m) over models, the expected loss
EM [L] is exactly the Bayes risk:

BR(a) =

∫

M

(Q(bm, a) − Q(bm, a∗
m))pM (m), (4)

whereM is the space of models,bm is the current belief
according to modelm, and a∗

m is the optimal action for
the current beliefbm according to modelm. Let a′ =
arg maxa∈A BR(a) be the action with the least risk. If our
agent is a passive learner using Bayes risk action selection,
it will simply performa′.

The pitfall of always performing the least-risky actiona′

is that the riskBR(a′) may still be quite large, and thus even
the best action may incur significant losses. We would like
our agent to be sensitive to absolute magnitude of the risks
that it takes. Unlike a passive learner, our active learner will
perform a meta-query ifBR(a′) is less than−ξ, that is, if

the least expected loss is still more than a certain threshold.
The series of meta-queries will lead us to choose the correct
action and thus accrue no risk.

Intuitively, the Bayes risk criterion selects the currently
least risky action, hoping that the uncertainty over models
will be resolved at the next time step. Indeed, we can rear-
range equation 4 to get:

BR(a) =

∫

M

Q(bm, a)pM (m) −

∫

M

Q(bm, a∗
m)pM (m).

(5)
Since the second term is independent of the choice of ac-
tion; to maximizeBR(a), one may simply maximize the
first term:

VBR = max

∫

M

Q(bm, a)pM (m). (6)

If we consider the distributionpM to be a belief over mod-
els, the Bayes risk criterion is similar to theQMDP heuristic
(Littman, Cassandra, & Kaelbling 1995), which uses the ap-
proximationV (b) = max

∑

s Q(s, a)b(s) to plan in known
POMDPs. In our case, the belief over statesb(s) is re-
placed by a belief over modelspM (m) and the action-value
function over statesQ(s, a) is replaced by an action-value
function over beliefsQ(bm, a). Recall that theQMDP ap-
proximation is derived by assuming that the uncertainty over
states will be resolved after the next time step. Our Bayes-
risk criterion may be viewed as similarly assuming that the
next action will resolve the agent’s uncertainty over models.

Although similar, the Bayes risk action selection criterion
does differ fromQMDP in two important ways. First, our
actions come from POMDP solutions and thus do fully con-
sider the uncertainty in the POMDP state. UnlikeQMDP ,
we do not act on the assumption that our state uncertainty
will be resolved after taking the next action; our approxi-
mation supposes that only the model uncertainty will be re-
solved. In many practical applications, the model stochas-
ticity is an important factor, and our approach will take ac-
tions to reduce state uncertainty. This observation is truere-
gardless of whether the agent is passive (does not ask meta-
queries) or active.

In the active learning setting, the second difference is the
meta-query. Without the meta-query, while the agent may
take actions to resolve state uncertainty, it will never take ac-
tions to reduce model uncertainty (since it believes that the
model uncertainty will soon disappear). However, the meta-
query ensures that the agent rarely (with probabilityδ) takes
a less thanξ-optimal action in expectation. These actions
both make the learning process robust from the start and pro-
vide the agent with information to resolve uncertainty in the
model.

Approximation and bounds: Since the integral in equa-
tion 4 is computationally intractable, we approximate it with
a sum over a sample of POMDPs from the space of models:

BR(a) ≈
∑

i

(Q(bi, a) − Q(bi, a
∗
i))pM (mi) (7)

There are two main sources of approximation that can lead
to error in our computation of the Bayes risk; fortunately we
can bound the error induced by each.

• Error due to the Monte Carlo approximation of the in-
tegral in equation 4: Note that the maximum value of
the Q(bi, a) − Q(bi, a

∗
i) is trivially upper bounded by

Rmax−min(Rmin,ξ)
1−γ and lower bounded by zero. Thus, a

standard application of the Hoeffding bound states that a
sampling errorǫs with confidenceδ will require

nm =
(Rmax − min(Rmin, ξ))

2

2(1 − γ)2ǫ2s
log

1

δ
(8)

samples.2

• Error due to the point-based approximation ofQ(bi, a):
The differenceQ(bi, a) − Q(bi, a

∗
i) may have an error of

up to ǫPB = 2(Rmax−Rmin)δB

(1−γ)2 , whereδB is the sampling
density of the belief points. This result is directly from
the error bound in (Pineau, Gordon, & Thrun 2003).

Combining these bounds, to obtain confidenceδ when
calculating if the Bayes risk is greater than−ξ, we set
ǫs = ξ − ǫPB, and compute the appropriate number of sam-
plesn from equation 8. We note that the Hoeffding bounds
used to derive this approximation are quite loose; in prac-
tice we found that we could often achieve good performance
with a set of 15 samples, whereas equation 8 would have
told us that over 800 samples were necessary to achieve that
same level of performance.

4.2 Updating the Model Distribution
As described in Section 4.1, we must sample POMDPs from
our belief over models to compute the Bayes risk of a par-
ticular action. Initially, we have some prior distributionover
the model that we can use to sample POMDPs. However,
as the agent gains information through interactions with the
environment and meta-queries, this distribution should be
updated (and the corresponding sample set should change)
to reflect our posterior belief over models. While this up-
date can theoretically be performed at any time, we will
see that, for episodic tasks, it will make most sense to re-
sample POMDPs at the end of each trial. The posterior
must be updated as a result of two sources of information—
interactions and meta-queries. While specific interactions
(action-observation sequences) allow us to maintain the pos-
terior in closed form, we will also see that the introduction
of meta-queries prevents us from representing the posterior
in closed form.

The first source of information is a historyh of action-
observation pairs since the last resampling. To use this in-
formation, we will also require the beliefs of the sampled
POMDPs at the time of the last resampling. In episodic
tasks, keeping track of the initial belief is especially simple,
since all sampled POMDPs begin with some task-specific
starting belief at the start of each episode. In non-episodic
tasks, we may need to store a longer history of actions
and observations in order to reconstruct the belief of each
POMDP at the time of the last resampling. We will formu-
late a closed-form update to the posterior given a historyh,

2An error ofǫ with confidenceδ means that the probability that
the difference between the estimated and true value is greater than
ǫ is less thanδ. Small values ofδ imply that our bound on the error
is more likely to hold.

so aside from the initial belief question, we only need to
store action-observation sequences until each resampling.

The second source of information is a recordQ =
{(q, r, h′)} of all the meta-queries it has asked. Here,q is
the query,r is the response, andh′ is the history of actions
and observations from the start of the episode containing
the query to when the query was asked. Unlike in the case
of storing histories, we must keep record of all the meta-
queries, not just the most recent, because we do not have
a closed-form update to the posterior over models that in-
corporates query information. As before, we note that if all
episodes start in the same belief, then we can useh′ to “play
forward” from some starting belief to the point at which the
query was asked. If the episodes start out in different beliefs,
then the record setQ must also contain the starting belief for
the episode in which the query was asked so we can “play
forward” to the point of the query in a similar manner.

Givenh andQ, the posteriorpM|h,Q over models is:

pM|h,Q(m|h, Q) = ηp(Q|m)p(h|m)pM (m), (9)

where p(Q|m) and p(h|m) are conditionally indepen-
dent givenm because they are both computed from the
model parameters. IfpM is a Dirichlet distribution, then
η′p(h|m)pM (m) also a Dirichlet distribution since the like-
lihoodp(h|m) is product of multinomials. The second like-
lihood p(Q|m) truncates the Dirichlet distribution and pre-
vents us from having a closed-form expression forpM|h,Q.
To sample frompM|h,Q, we use the updated Dirichlet
distribution—which incorporates information from the most
recent historyh—as our proposal distribution and then use
rejection sampling to discard samples that are inconsistent
with our set of queries and responsesQ. In this way, we are
able to draw samples from the posterior over models.

Action-Observation Histories: Dirichlet Update. Re-
call that we have placed Dirichlet priors over the observation
and transition parameters. These priors may be interpreted
as counts; for example, the Dirichlet parameter for the ob-
servation probabilityΩ(o|s, a) corresponds to the number of
times we have seen observationo after performing actiona
in states. Updating the prior simply involves adding counts
to the Dirichlet parameters corresponding to the transitions
(s′, s, a) and observations(o, s, a) the agent has experienced
during an episode.

Unfortunately, this simple update requires knowing the
underlying state for each step in the episode, and our agent
only has access to history of actions and observations. We
therefore update our parameters using an online extension
of the standard EM algorithm. In the E-step, we estimate
the distribution over the underlying state for each time step
during an episode. In the M-step, we use our distribution
over the underlying states to update counts on our Dirichlet
prior. The difference between the online EM algorithm and
the batch EM algorithm is that we receive additional data—a
new history—between iterations. Just as with the standard
EM algorithm, the online version will cause the parameters
to converge to a local optimum (Sato 1999).

For the E-step, we first must estimate the true state his-
tory in order to update our Dirichlet parameters. When
computing the distribution over states for some time step,
we have two sources of uncertainty: model stochasticity

and unknown model parameters. To compute the expecta-
tion with respect to model stochasticity, we use the conven-
tional HMM forward-backward algorithm (Rabiner 1989) to
obtain a distribution over states at each time-step for each
POMDP sample. Next, we combine the distributions for
each sample based on the sample’s weight. For example,
suppose there aren POMDP samples with weightswi, and
at some time-stept, each sample assigns a probabilitypi(s)
to being in states. Then the expected probabilitŷp(s) of
being in states is

p̂(s) =

n
∑

i

wi ∗ pi(s). (10)

Recall that our set of samples represents a continuous distri-
bution over POMDP models, so the summation above is an
approximation to an expectation over all models.

Next, we update our Dirichlet counts based on both the
probability that a POMDP assigns to a particular state and
the probability of that POMDP. Given an actiona and ob-
servationo corresponding to timet, we would update our
Dirichlet count forαo,s,a in the following manner with

αo,s,a = αo,s,a + p̂(s) (11)

for each states. Note that this update combines prior knowl-
edge about the parameters—the original value ofαo,s,a—
with new information from the current episode,p̂(s).

While convergence to a local optimum is guaranteed,
the global quality of the update procedure will depend on
the quality of the estimateŝp(s). In practice, most prob-
lems have natural break points such as “goal-reached states”
where backtracking in the forward-backward algorithm to
determine the prior state sequence becomes more accurate.
For example, consider a navigation scenario in a robot grid-
world. If the robot is simply lost in the maze, then trying to
estimate its position may be inaccurate. However, once the
robot reaches the end of the maze, it knows both its start and
end position, providing more information for it to recover
its position at some intermediate time-step. We update our
priors and resample POMDPs at these episode-termination
points3.

Policy-Query Histories: Rejection Sampling. Incorpo-
rating information about action-observation history was a
closed-form update to our Dirichlet prior, but unfortunately
incorporating meta-query information requires a different
approach because each meta-query response provides infor-
mation about the policy, not the parameters. Each compo-
nent ofQ provides a constraint on the feasible set of mod-
els. Models are feasible if their policy is consistent with all
meta-query responses. In particular,p(Q|m) is binary: ei-
ther the modelm is consistent with the set of meta-query
responses or it is not.

Thus, the true posteriorpM|h,Q is a truncated Dirichlet
distribution, wherepM|h,Q(m) = 0 if p(Q|m) = 0. Com-
puting the feasible set of models directly is intractable given
the setQ; however, we can check if a sampled POMDP is
consistent with the previous meta-query responses stored in

3In our simulations we also reset the problem if a maximum
number of steps was reached.

Q. To sample POMDPs from the true posterior, we first
sample POMDPs from the updated Dirichlet priors. Next,
we solve for the optimal policy of each model (which can be
done much faster than trying to solve the model-uncertainty
POMDP, since each sampled POMDP is discrete) and check
if each models’ policy is consistent with the previous meta-
query responses stored inQ. We reject inconsistent sam-
ples; the remaining samples are therefore distributed as if
they were drawn from the true posterior.

Practical Sampling Considerations. The approach out-
lined above rejects any POMDP that is inconsistent with any
of the previous queries-response pairs. While theoretically
sound, we find that it is nearly impossible to sample fully-
consistent POMDPs. One reason is that the approximation
techniques used to solve the sampled POMDPs introduces
significant noise in the solution, especially when dealing
with real-time systems. As the number of queries increases,
the feasible set of rewards also shrinks and leads to a high re-
jection rate. We note that we must solve a sampled POMDP
to evaluate its consistency withQ, and solving POMDPs is
computationally expensive (although still possible in near
real-time). The time required to solve a POMDP effectively
constrains the total number of POMDPs we can sample be-
fore the agent must again be ready to respond to the environ-
ment. Thus, high rejection rates can be quite problematic for
real applications.

Taking inspiration from importance sampling, we apply
the following heuristic to address the problem of noise in
the approximate POMDP solutions. Letk be the number
of meta-query responses with which a modelm is inconsis-
tent. Instead of rejecting POMDPs with a non-zero num-
ber of inconsistencies, we assign the sample a weight of
w = p(Q|m) = 1

1+ku(k′ − k), whereu is the unit step
function andk′ is a free parameter. This function is essen-
tially an ad-hoc model of the noise in our estimate of the
query responses. Samples with a few inconsistent responses
receive lower weights but are not ignored completely.4

The question remains of how to setk′. Given a current
set of samples, we set the parameterk′ with the following
heuristic: given our current set of POMDPs, letk− andk+

respectively be the minimum and maximum number of vi-
olated meta-query constraints in the set. We setk′ = k+,
thus, all of the current samples in our set have non-zero
weight. Then we sample POMDPs until alln POMDPs
havek ≤ k− violations (we have a “balanced sample set”)
or we reach a maximum number of sample attempts. Intu-
itively, our heuristic attempts to ensure that new samples are
at least as good as current samples. Essentially, this approx-
imation assumes that the high-weight samples will dominate
in the Bayes risk approximation; we therefore attempt to get
a small, representative set of high-weight samples by throw-
ing out POMDPs with low weight.

To farther reduce rejection rates when there are a large
number of constraints, we focus our sampling away from re-

4We experimented with several violation-tolerant weighting
functions, includinge−k andu(k′−k), and found that our function
seemed to strike a good balance between not penalizing violations
too heavily while still giving sufficiently higher weight toPOMDPs
with few violations.

gions where we have observed greater thank′ violations. We
do so by occasionally taking a random convex combination
of a new sample and a known good POMDP to produce a
hopefully better sample. This change means we are trying to
draw samples from something closer to the combined prior.
Formally, this change would require us to assign weights
wi/q(m) to the samples, whereq(m) was the probability of
m from this modified proposal distribution. However, since
our choice of noise function to assign importance weights
was already heuristic, we do not make any changes to the
weights. While not fully principled, we find that this ap-
proach allowed us to apply our algorithm to near real-time
applications in practice.

4.3 Performance Bounds
Let V be the value of the optimal policy. From our risk cri-
terion, the expected loss at each action is never more thanξ
(with confidenceδ). However, with probabilityδ the agent
may choose a bad action due to an error in the model esti-
mate, receiving a reward as small asRmin. Even worse, this
action may put the agent in an absorbing state in which it
receivesRmin forever.

To determine the expected discounted reward over the in-
finite horizon, consider a Markov chain with two states. The
first state is the “normal” state, in which the agent receivesa
reward ofR− ξ, whereR is the value the agent would have
received under the optimal policy. The second state is the
“bad” absorbing state, in which the agent receives a reward
of Rmin. The following equation describes the transitions in
this simple chain and the values of the states:

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

=

∣

∣

∣

∣

R − ξ
Rmin

∣

∣

∣

∣

+ γ

∣

∣

∣

∣

1 − δ δ
0 1

∣

∣

∣

∣

∣

∣

∣

∣

V1

V2

∣

∣

∣

∣

. (12)

Solving the linear set of equations gives us

V1 =
γδV2 + R − ξ

1 − γ(1 − δ)
(13)

V2 =
Rmin

1 − γ
, (14)

Finally, the agent’s first action puts it in state 1 with prob-
ability 1 − δ and state 2 with probabilityδ. Thus, a lower
bound on the expected discounted reward is

V ′ = (1 − δ)V1 + δV2 (15)

= η(Vopt −
ξ

1 − γ
) + (1 − η)

Rmin

1 − γ
, (16)

where

η =
(1 − δ)(1 − γ)

1 − γ(1 − δ)
(17)

andVopt is the value of the optimal policy.

4.4 Model Convergence
Given the algorithm in Table 1, we would like to know if the
learner will eventually stop asking meta-queries. We state
that the model isconvergedif BR(a′) > −ξ for all histo-
ries. Our convergence argument involves two steps. First,
let us ignore the reward model and consider only the obser-
vation and transition models. As long as standard reinforce-
ment learning conditions—periodic resets to a start state and

information about all states (via visits or meta-queries)—
hold, the prior will peak around some value (perhaps to a
local extremum) in a bounded number of interactions from
the properties of the online EM algorithm (Sato 1999). We
next argue that once the observation and transition param-
eters have converged, we can bound the number of meta-
queries required for the reward parameters to converge.

Observation and Transition Convergence. To discuss
the convergence of the observation and transition distribu-
tions, we apply a weaker sufficient condition than the con-
vergence of the EM algorithm. We note that the number
of interactions bounds the number of meta-queries, since
we ask at most one meta-query for each normal interac-
tion. We also note the counts on the Dirichlet priors in-
crease monotonically. Once the Dirichlet parameters are
sufficiently large, the variance in the sampled models will
be small enough that even if the mean of the Dirichlet distri-
bution is shifting with time, the agent will not ask additional
meta-queries.

The specific convergence rate of the active learning will
depend heavily upon the problem, which precludes a closed-
form expression for the convergence rate. However, we can
provide a procedure to determine ifr additional interactions
are sufficient such that the probability of asking a meta-
query ispq with confidenceδq. To do so, we will sample
random beliefs and test if less than apq-proportion have a
Bayes risk greater thanξ. For our test to be sufficiently pre-
cise, we must consider error due to the belief sampling and
our Bayes risk approximation.

1. Sampling a Sufficient Number of Beliefs. To test if r
interactions leads to a probabilitypq of additional meta-
queries with confidenceδq, we compute the Bayes risk
for nb beliefs sampled uniformly. If fewer thannq = pqnb

beliefs require meta-queries afterr interactions, we accept
the value ofr. We therefore sample from the posterior
Dirichlet givenr interactions and estimatêpq = nq/nb.
To determine how many beliefsnb are required to estimate
pq, we apply a Chernoff bound and check if the sampled
proportion is withinǫq of p′q = pq − ǫq with probability

δq. Using the Chernoff boundδq = e−nbp′

qǫ2q/3, we setǫq

to 2
3pq to minimize the samples required to

nb >
27

4(pq)3
log

1

δq
. (18)

2. Computing Bayes Risk from a Conservative Posterior.
We next compute the Bayes risk for each belief given a hy-
pothesized set ofr interactions. We do not knowa priori
the response to the interactions, so we use the maximum-
entropy Dirichlet posterior to compute the posterior Bayes
risk. To compute the maximum-entropy posterior Dirich-
let, we note that that each interaction represents a count of
some parameter in the model. Givenr counts, the max-
entropy posterior Dirichlet distribution assigns an equal
number of counts to each variable. Thus, we distribute
ther counts equally among our Dirichlet parameters. We
compute the Bayes risk of each belief from this posterior
and acceptr if p̂q < pq.

3. Correction for Approximate Bayes Risk. Recall that
we approximate the Bayes risk integral with a sum over

sampled POMDP models, and the number of modelsnm

required is given by equation 8. We must correct for the
error induced by this approximation. Section 4.1 tells us
if a beliefb has riskBR(a) < −ξ with confidenceδ. Sup-
pose we samplenb beliefs, and the true fraction of beliefs
in which meta-queries are asked ispq. Due to misclas-
sifications, however, the expected value we will observe
is only (1 − δ)pq. We can then apply a second Chernoff
bound to determine that with probabilityδ, no more than
2(1 − δ)nb beliefs will be misclassified.5 Let

p′′q = pq(1 − 2(1 − δ)), (19)

the minimum fraction of beliefs queries we expect to ob-
serve requiring meta-queries if the true fraction ispq.

Thus, to test ifr interactions lead to a probability ofpq

additional meta-queries with confidenceδq, we computep′′q
according to equation 19, samplenb beliefs uniformly ac-
cording to equation 18, update the Dirichlet posteriors to
be maximum-entropy posteriors, sample thenm models ac-
cording to equation 8 and compute the posterior Bayes risk
for each belief. If less than apq-proportion of beliefs require
meta-queries, thenr is an upper bound on the number of re-
maining meta-queries with probabilitypq and confidenceδq.
If we find thatr interactions are not sufficient, we can next
test if r′ = 2r interactions will be sufficient, et cetera. By
testing several values ofr, we can determine a bound on the
number of meta-queries for the desired values ofpq andδq.

Reward Convergence. The cost of a meta-query limits
the resolution to which we need to know the rewards. Sup-
pose that we know that a particular POMDPP has an opti-
mal policyπ with valueV . If we adjusted all the rewards by
some smallǫr, then the value of the same policyπ will dif-
fer fromV by at most ǫr

1−γ (since we will receive at worstǫr

less reward at each time step). This value is a lower-bound
on the optimal policy in the new POMDP. Thus, a POMDP
with all its rewards within(1 − γ)ξ of P will have a policy
of valueV ± ξ. In this way, the valueξ imposes a minimal
level of discretization over the reward space.

The rewards are bounded betweenRmin and Rmax. If
our reward space hasd dimensions, then our discretization
will yield at most(Rmax−Rmin

(1−γ)ξ)d POMDPs. In practice, the
discretization simply involves limiting the precision of the
sampled rewards. Finally, we note that each meta-query in-
validates at least one POMDP sample—otherwise we would
not have asked the question. Since there are a finite number
of samples, we must eventually stop asking meta-queries.

5 Results
In this section, we first present results in which we solve the
model-uncertainty POMDP directly. This method does not
scale, but we can use it to show the utility of meta-queries.
We next show results using meta-queries coupled with our
Bayes-risk action selection criterion for robust learningof
continuous-valued unknown POMDP parameters.

5This bound requiresnb >
3

δ
log 1

δ
, but we will find that our

final bound fornb is greater than this value.

5.1 Learning Discrete Parameters
In domains where model uncertainty is limited to a few, dis-
crete parameters, we may be able to solve for the complete
model-uncertainty POMDP using standard POMDP meth-
ods We used a simple POMDP-based dialog management
task with four possible reward levels as a test model. Fig-
ure 1 compares the performance of the optimal policywith
meta-queries (left column), an optimal policywithoutmeta-
queries (middle column), and our Bayes risk policywith
meta-queries (right column). While the difference in median
performance is small between the models, the reduction in
variance provided by the meta-queries is substantial. Note
also that the difference in performance in both median and
variance is negligible between the optimal policy and the
Bayes risk approximation.

Unfortunately, discretizing the model space does not
scale; increasing from 4 to 48 levels, we could no longer ob-
tain high-quality global solutions using standard techniques.
In the next section, we present results only using our Bayes-
risk action selection criterion as an approximation for acting
in a continuous-valued model uncertainty POMDP.

Figure 1: Boxplot of POMDP learning performance with a dis-
crete set of four possible models. Although the medians of the two
policies are not so different, the active learner (left) makes fewer
mistakes than the passive learner (center). The Bayes risk action
selection criterion (right) does not cause the performanceto suffer.

5.2 Learning Continuous Parameters
Table 2 shows our approach applied to several POMDP
problems6. In each case, we used 15 POMDP samples
and resampled at the completion of each trial. The non-
learner used the 15 samples from the initial prior to make
decisions using the Bayes-risk action selection criterion. Its
prior did not change based on the action-observation histo-
ries that it experienced, nor did it ask any meta-queries to
gain additional information. The passive learner resampled
its POMDP set after updating its prior over transitions and
observations using the forward-backwardalgorithm. The ac-
tive learner used both the action-observation histories and
meta-queries for learning. None of the systems received ex-
plicit reward information, but the active learner used meta-
queries to infer information about the reward model.

6Tiger-grid and hallway are directly from (Littman, Cassandra,
& Kaelbling 1995); the 5x5 gridworld is an extension of the 4x3
gridworld of (Littman, Cassandra, & Kaelbling 1995).

Table 2: Difference between optimal and accrued rewards for various problems (smaller = better).

Problem # States No Learning Passive Learning Active Learning

5x5 Gridworld 26 107.17 111.96 15.46
Tiger-Grid 36 5.83 17.89 0.72
Hallway 57 39.05 39.05 0.85

0 5 10 15 20 25 30 35 40 45 50
−45

−40

−35

−30

−25

−20

−15

−10

−5

trial number

m
ea

n
di

ffe
re

nc
e

in
 r

ew
ar

d

Hallway: Mean difference between optimal and system rewards
when learning both observation and reward spaces

no learning
passive learning
active learning

Figure 2: Performance of the non-learner, passive learner, and ac-
tive learner on the hallway problem. Performance curves forthe
tiger-grid and gridworld problems were very similar.

Figure 2 shows the performance of the non-learner, pas-
sive learner, and active learner on the hallway problem (all
problems had similar results). In each case, the agent began
with observation and transition priors with high variance but
peaked toward the correct value (that is, slightly better than
uniform). We created these priors by applying a diffusion
filter to the ground-truth transition and observation distribu-
tions and using the result as our initial Dirichlet parameters.
All reward priors were uniform between the minimum and
maximum reward values of the ground-truth model. The ac-
tive learner started (and remained) with near-optimal perfor-
mance because it used meta-queries when initially confused
about the model. Thus, its performance was robust from the
start.

6 Discussion and Conclusion
Prior work in MDP and POMDP learning has also consid-
ered sampling approaches to model a distribution over un-
certain models. Dearden et. al. (Dearden, Friedman, &
Andre 1999) discusses several approaches for representing
and updating priors over MDPs using sampling and value
function updates. Strens (Strens 2000) shows that in the
MDP case, randomly sampling only one model from a prior
over models, and using that model to make decisions, is still
guaranteed to converge to the optimal policy as long as one
resamples the MDP sufficiently frequently from an updated
prior over models. However, Strens’ approach does not con-
sider risk during the learning process, so the algorithm is not
robust to poor initial choices of prior.

One recent approach to MDP model learning, the Bee-

tle algorithm (Poupartet al. 2006), converts a discrete
MDP into a continuous POMDP with state variables for each
MDP parameter. As we saw in section 5.1, however, the
computationally-intensive solution techniques requiredfor
continuous POMDPs do not scale well enough to handle the
entire model as a hidden state in POMDPs. Also, since the
MDP is fully observable, Beetle can easily adjust its prior
over the MDP parameters as it acquires experience; in our
POMDP scenario, we needed to estimate the possible states
that the agent had visited.

Another recent approach targeting the problem of
Bayesian POMDP learning, is Medusa (Jaulmes, Pineau, &
Precup 2005). This approach also captures uncertainty in the
model by sampling POMDPs from a prior. Medusa avoids
the problem of knowing how to update the prior by occa-
sionally requesting the true state according to various heuris-
tics. Medusa guarantees convergence to the true model, but
the learning process may make several mistakes before con-
vergence occurs. Furthermore, a state oracle may be un-
achievable in many domains; we believe that meta-queries
are often a more intuitive form of feedback. Our conserva-
tive action-selection policy makes us robust to mistakes.

We developed a new approach for active learning in
POMDPs that robustly determines a near-optimal policy.
Meta-queries—questions about actions that the agent is
thinking of taking—and a risk-averse action selection cri-
terion allowed our agent to behave robustly even when its
knowledge of the POMDP model was uncertain. We pre-
sented general performance guarantees and demonstrated
our approach on several problems in the POMDP litera-
ture. In our future work, we hope to develop more efficient
POMDP sampling schemes to allow our approach to be de-
ployed on larger, real-time applications.

References

Cohn, D. A.; Ghahramani, Z.; and Jordan, M. I. 1996.
Active learning with statistical models.Journal of Artificial
Intelligence Research4:129–145.

Dearden, R.; Friedman, N.; and Andre, D. 1999. Model
based bayesian exploration. 150–159.

Even-Dar, E.; Kakade, S. M.; and Mansour, Y. 2005. Re-
inforcement learning in pomdps without resets. InIJCAI,
690–695.

Jaulmes, R.; Pineau, J.; and Precup, D. 2005. Learning in
non-stationary partially observable markov decision pro-
cesses. InECML Workshop.

Littman, M. L.; Cassandra, A. R.; and Kaelbling, L. P.
1995. Learning policies for partially observable environ-
ments: scaling up.ICML.

Ng, A., and Russell, S. 2000. Algorithms for inverse rein-
forcement learning. InProceedings of ICML.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for pomdps.IJCAI.
Poupart, P.; Vlassis, N.; Hoey, J.; and Regan, K. 2006. An
analytic solution to discrete bayesian reinforcement learn-
ing. In ICML, 697–704. New York, NY, USA: ACM Press.
Rabiner, L. R. 1989. A tutorial on hidden markov models
and selected applications in speech recognition.Proceed-
ings of the IEEE77(2):257–286.
Sato, M. 1999. Fast learning of on-line em algorithm.Tech-
nical Report, TR-H-281, ATR Human Information Process-
ing Research Laboratorie.
Strehl, A. L.; Li, L.; and Littman, M. L. 2006. Incremen-
tal model-based learners with formal learning-time guar-
antees. InProceedings of the 22nd Conference on Uncer-
tainty in Artificial Intelligence.
Strens, M. 2000. A bayesian framework for reinforcement
learning. InProc. of the 17th International Conf. on Ma-
chine Learning.
Sutton, R. 1988. Learning to predict by the methods of
temporal differences.Machine Learning3.
Watkins, C. 1989.Learning from Delayed Rewards. Ph.D.
Dissertation, Cambridge University.
Williams, J., and Young, S. 2005. Scaling up pomdps for
dialogue management: The ”summary pomdp” method. In
Proceedings of the IEEE ASRU Workshop.

