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Abstract

We consider reinforcement learning in partially observable domains where the
agent can query an expert for demonstrations. Our nonparametric Bayesian ap-
proach combines model knowledge, inferred from expert information and inde-
pendent exploration, with policy knowledge inferred from expert trajectories. We
introduce priors that bias the agent towards models with both simple representa-
tions and simple policies, resulting in improved policy andmodel learning.

1 Introduction

We address the reinforcement learning (RL) problem of finding a good policy in an unknown,
stochastic, and partially observable domain, given both data from independent exploration and ex-
pert demonstrations. The first type of data, from independent exploration, is typically used by
model-based RL algorithms [1, 2, 3, 4] to learn the world’s dynamics. These approaches build mod-
els to predict observation and reward data given an agent’s actions; the action choices themselves,
since they are made by the agent, convey no statistical information about the world. In contrast,
imitation and inverse reinforcement learning [5, 6] use expert trajectories to learn reward models.
These approaches typically assume that the world’s dynamics is known.

We consider cases where we have data from both independent exploration and expert trajecto-
ries. Data from independent observation gives direct information about the dynamics, while expert
demonstrations show outputs of good policies and thus provide indirect information about the un-
derlying model. Similarly, rewards observed during independent exploration provide indirect infor-
mation about good policies. Because dynamics and policies are linked through a complex, nonlinear
function, leveraging information about both these aspectsat once is challenging. However, we show
that using both data improves model-building and control performance.

We use a Bayesian model-based RL approach to take advantage of both forms of data, applying
Bayes rule to write a posterior over modelsM given dataD asp(M |D) ∝ p(D|M)p(M). In previ-
ous work [7, 8, 9, 10], the model priorp(M) was defined as a distribution directly on the dynamics
and rewards models, making it difficult to incorporate expert trajectories. Our main contribution is
a new approach to defining this prior: our prior uses the assumption that the expert knew something
about the world model when computing his optimal policy. Different forms of these priors lead us to
three different learning algorithms: (1) if we know the expert’s planning algorithm, we can sample
models fromp(M |D), invoke the planner, and weigh models given how likely it is the planner’s
policy generated the expert’s data; (2) if, instead of a planning algorithm, we have apolicy prior, we
can similarly weight world models according to how likely itis that probable policies produced the
expert’s data; and (3) we can search directly in the policy space guided by probable models.

We focus on reinforcement learning in discrete action and observation spaces. In this domain, one of
our key technical contributions is the insight that the Bayesian approach used for building models of
transition dynamics can also be used as policy priors, if we exchange the typical role of actions and

1



observations. For example, algorithms for learning partially observable Markov decision processes
(POMDPs) build models that output observations and take in actions as exogenous variables. If
we reverse their roles, the observations become the exogenous variables, and the model-learning
algorithm is exactly equivalent to learning a finite-state controller [11]. By using nonparametric
priors [12], our agent can scale the sophistication of its policies and world models based on the data.

Our framework has several appealing properties. First, ourchoices for the policy prior and a world
model prior can be viewed as a joint prior which introduces a bias for world models which are
both simple and easy to control. This bias is especially beneficial in the case of direct policy search,
where it is easier to search directly for good controllers than it is to first construct a complete POMDP
model and then plan with it. Our method can also be used with approximately optimal expert data; in
these cases the expert data can be used to bias which models are likely but not set hard constraints on
the model. For example, in Sec. 4 an application where we extract the essence of a good controller
from good—but not optimal—trajectories generated by a randomized planning algorithm.

2 Background

A partially observable Markov decision process (POMDP) model M is an n-tuple
{S,A,O,T ,Ω,R,γ}. S, A, andO are sets of states, actions, and observations. The state transi-
tion functionT (s′|s, a) defines the distribution over next-statess′ to which the agent may transition
after taking actiona from states. The observation functionΩ(o|s′, a) is a distribution over obser-
vationso that may occur in states′ after taking actiona. The reward functionR(s, a) specifies the
immediate reward for each state-action pair, whileγ ∈ [0, 1) is the discount factor. We focus on
learning discrete state, observation, and action spaces.

Bayesian RL In Bayesian RL, the agent starts with a prior distributionP (M) over possible
POMDP models. Given dataD from an unknown , the agent can compute a posterior over pos-
sible worldsP (M |D) ∝ P (D|M)P (M). The model prior can encode both vague notions, such as
“favor simpler models,” and strong structural assumptions, such as topological constraints among
states. Bayesian nonparametric approaches are well-suited for partially observable environments
because they can also infer the dimensionality of the underlying state space. For example, the re-
cent infinite POMDP (iPOMDP) [12] model, built from HDP-HMMs[13, 14], places prior over
POMDPs with infinite states but introduces a strong localitybias towards exploring only a few.

The decision-theoretic approach to acting in the Bayesian RL setting is to treat the modelM as
additional hidden state in a larger “model-uncertainty” POMDP and plan in the joint space of models
and states. Here,P (M) represents a belief over models. Computing a Bayes-optimalpolicy is
computationally intractable; methods approximate the optimal policy by sampling a single model
and following that model’s optimal policy for a fixed period of time [8]; by sampling multiple
models and choosing actions based on a vote or stochastic forward search [1, 4, 12, 2]; and by trying
to approximate the value function for the full model-uncertainty POMDP analytically [7]. Other
approaches [15, 16, 9] try to balance the off-line computation of a good policy (the computational
complexity) and the cost of getting data online (the sample complexity).

Finite State Controllers Another possibility for choosing actions—including in our partially-
observable reinforcement learning setting—is to consider aparametric family of policies, and at-
tempt to estimate the optimal policy parameters from data. This is the approach underlying, for
example, much work on policy gradients. In this work, we focus on the popular case of a finite-state
controller, or FSC [11]. An FSC consists of the n-tuple{N ,A,O,π,β}. N , A, andO are sets of
nodes, actions, and observations. The node transition function β(n′|n, o) defines the distribution
over next-nodesn′ to which the agent may transition after taking actiona from noden. The policy
functionπ(a|n) is a distribution over actions that the finite state controller may output in noden.
Nodes are discrete; we again focus on discrete observation and action spaces.

3 Nonparametric Bayesian Policy Priors

We now describe our framework for combining world models andexpert data. Recall that our key
assumption is that the expert used knowledge about the underlying world to derive his policy. Fig. 1
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Figure 1: Two graphical models of expert data generation. Left: the prior only addresses world
dynamics and rewards. Right: the prior addresses both worlddynamics and controllable policies.

shows the two graphical models that summarize our approaches. LetM denote the (unknown) world
model. Combined with the world modelM , the expert’s policyπe and agent’s policyπa produce the
expert’s and agent’s dataDe andDa. The data consist of a sequence ofhistories, where a historyht

is a sequence of actionsa1, · · · , at, observationso1, · · · , ot, and rewardsr1, · · · , rt. The agent has
access to all histories, but the true world model and optimalpolicy are hidden.

Both graphical models assume that a particular worldM is sampled from a prior over POMDPs,
gM (M). In what would be the standard application of Bayesian RL with expert data (Fig. 1(a)), the
prior gM (M) fully encapsulates our initial belief over world models. Anexpert, who knows the true
world modelM , executes a planning algorithmplan(M) to construct an optimal policyπe. The
expert then executes the policy to generate expert dataDe, distributed according top(De|M,πe),
whereπe = plan(M).

However, the graphical model in Fig. 1(a) does not easily allow us to encode a prior bias toward
more controllable world models. In Fig. 1(b), we introduce anew graphical model in which we
allow additional parameters in the distributionp(πe). In particular, if we choose a distribution of the
form

p(πe|M) ∝ fM (πe)gπ(πe) (1)

where we interpretgπ(πe) as aprior over policiesandfM (πe) as alikelihood of a policy given a
model. We can write the distribution over world models as

p(M) ∝

∫

πe

fM (πe)gπ(πe)gM (M) (2)

If fM (πe) is a delta function onplan(M), then the integral in Eq. 2 reduces to

p(M) ∝ gπ(πM
e )gM (M) (3)

whereπM
e = plan(M), and we see that we have a prior that provides input on both theworld’s

dynamics and the world’s controllability. For example, if the policy class is the set of finite state
controllers as discussed in Sec. 2, the policy priorgπ(πe) might encode preferences for a smaller
number of nodes used the policy, whilegM (M) might encode preferences for a smaller number of
visited states in the world. The functionfM (πe) can also be made more general to encode how
likely it is that the expert uses the policyπe given world modelM .

Finally, we note thatp(De|M,π) factors asp(Da
e |π)p(Do,r

e |M), whereDa
e are the actions in the

historiesDe andDo,r
e are the observations and rewards. Therefore, the conditional distribution over

world models given dataDe andDa is:

p(M |De,Da) ∝ p(Do,r
e ,Da|M)gM (M)

∫

πe

p(Da
e |πe)gπ(πe)fM (πe) (4)

The model in Fig. 1(a) corresponds to setting a uniform prioron gπ(πe). Similarly, the conditional
distribution over policies given dataDe andDa is

p(πe|De,Da) ∝ gπ(πe)p(Da
e |πe)

∫

M

fM (πe)p(Do,r
e ,Da|M)gM (M) (5)

We next describe three inference approaches for using Eqs. 4and 5 to learn.
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#1: Uniform Policy Priors (Bayesian RL with Expert Data). If fM (πe) = δ(plan(M)) and we
believe that all policies are equally likely (graphical model 1(a)), then we can leverage the expert’s
data by simply considering how well that world model’s policy plan(M) matches the expert’s
actions for a particular world modelM . Eq. 4 allows us to compute a posterior over world models
that accounts for the quality of this match. We can then use that posterior as part of a planner by
using it to evaluate candidate actions. The expected value of an action1 q(a) with respect to this
posterior is given by:

E [q(a)] =

∫

M

q(a|M)p(M |Do,r
e ,Da)

=

∫

M

q(a|M)p(Do,r
e ,Da|M)gM (M)p(Da

e |plan(M)) (6)

We assume that we can draw samples fromp(M |Do,r
e ,Da) ∝ p(Do,r

e ,Da|M)gM (M), a common
assumption in Bayesian RL [12, 9]; for our iPOMDP-based case, we can draw these samples using
the beam sampler of [17]. We then weight those samples byp(Da

e |πe), whereπe = plan(M), to
yield the importance-weighted estimator

E [q(a)] ≈
∑

i

q(a|Mi)p(Da
e |Mi, πe), Mi ∼ p(M |Do,r

e ,Da).

Finally, we can also sample values forq(a) by first sampling a world model given the importance-
weighted distribution above and recording theq(a) value associated with that model.

#2: Policy Priors with Model-based Inference. The uniform policy prior implied by standard
Bayesian RL does not allow us to encode prior biases about thepolicy. With a more general prior
(graphical model 1(b) in Fig. 1), the expectation in Eq. 6 becomes

E [q(a)] =

∫

M

q(a|M)p(Do,r
e ,Da|M)gM (M)gπ(plan(M))p(Da

e |plan(M)) (7)

where we still assume that the expert uses an optimal policy,that is,fM (πe) = δ(plan(M)). Using
Eq. 7 can result in somewhat brittle and computationally intensive inference, however, as we must
computeπe for each sampled world modelM . It also assumes that the expert used the optimal
policy, whereas a more realistic assumption might be that the expert uses a near-optimal policy.

We now discuss an alternative that relaxesfM (πe) = δ(plan(M)): let fM (πe) be a function that
prefers policies that achieve higher rewards in world modelM : fM (πe) ∝ exp {V (πe|M)}, where
V (πe|M) is the value of the policyπe on worldM ; indicating a belief that the expert tends to sample
policies that yield high value. Substituting thisfM (πe) into Eq. 4, the expected value of an action is

E [q(a)] =

∫

M,πe

q(a|M)p(Da
e |πe) exp {V (πe|M)} gπ(πe)p(Do,r

e ,Da|M)gM (M)

We again assume that we can draw samples fromp(M |Do,r
e ,Da) ∝ p(Do,r

e ,Da|M)gM (M), and
additionally assume that we can draw samples fromp(πe|D

a
e ) ∝ p(Da

e |πe)gπ(πe), yielding:

E [q(a)] ≈
∑

i

q(a|Mi)
∑

j

exp
{

V (πej |Mi)
}

, Mi ∼ p(M |Do,r
e ,Da), πej ∼ p(πe|D

a
e ) (8)

As in the case with standard Bayesian RL, we can also use our weighted world models to draw
samples fromq(a).

#3: Policy Priors with Joint Model-Policy Inference. While the model-based inference for pol-
icy priors is correct, using importance weights often suffers when the proposal distribution is not
near the true posterior. In particular, sampling world models and policies—both very high dimen-
sional objects—from distributions that ignore large parts of the evidence means that large numbers
of samples may be needed to get accurate estimates. We now describe an inference approach that
alternates sampling models and policies that both avoids importance sampling and can be used even

1We omit the belief over world statesb(s) from the equations that follow for clarity; all references toq(a|M)
areq(a|bM (s), M).
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in cases wherefM (πe) = δ(plan(M)). Once we have a set of sampled models we can compute the
expectationE[q(a)] simply as the average over the action valuesq(a|Mi) for each sampled model.

The inference proceeds in two alternating stages: first, we sample a new policy given a sampled
model. Given a world model, Eq. 5 becomes

p(πe|De,Da,M) ∝ gπ(πe)p(Da
e |πe)fM (πe) (9)

where makinggπ(πe) andp(Da
e |πe) conjugate is generally an easy design choice—for example,

in Sec. 3.1, we use the iPOMDP [12] as a conjugate prior over policies encoded as finite state
controllers. We then approximatefM (πe) with a function in the same conjugate family: in the case
of the iPOMDP prior and count dataDa

e , we also approximatefM with a set of Dirichlet counts
scaled by some temperature parametera. As a is increased, we recover the desiredfM (πe) =
δ(plan(M)); the initial approximation speeds up the inference and doesnot affect its correctness.

Next we sample a new world model given the policy. Given a policy, Eq. 4 reduces to

p(M |De,Da) ∝ p(Do,r
e ,Da|M)gM (M)fM (πe). (10)

We apply a Metropolis-Hastings (MH) step to sample new worldmodels, drawing a new modelM ′

from p(Do,r
e ,Da|M)gM (M) and accepting it with ratiofM′ (πe)

fM (πe)
. If fM (πe) is highly peaked, then

this ratio is likely to be ill-defined; as when sampling policies, we apply a tempering scheme in the
inference to smoothfM (πe). For example, if we desiredfM (πe) = δ(plan(M)), then we could use
smoothed version ˆfM (πe) ∝ exp(a·(V (πe|M)−V (πM

e |M))2), whereb is a temperature parameter
for the inference. While applying MH can suffer from the same issues as the importance sampling in
the model-based approach, Gibbs sampling new policies removes one set of proposal distributions
from the inference, resulting in better estimates with fewer samples.

3.1 Priors over State Controller Policies

We now turn to the definition of the policy priorp(πe). In theory, any policy prior can be used, but
there are some practical considerations. Mathematically,the policy prior serves as a regularizer to
avoid overfitting the expert data, so it should encode a preference toward simple policies. It should
also allow computationally tractable sampling from the posteriorp(πe|De) ∝ p(De|πe)p(πe).

In discrete domains, one choice for the policy prior (as wellas the model prior) is the iPOMDP [12].
To use the iPOMDP as a model prior (its intended use), we treatactions as inputs and observations
as outputs. The iPOMDP posits that there are an infinite number of statess but a few popular states
are visited most of the time; the beam sampler [17] can efficiently draw samples of state transition,
observation, and reward models for visited states. Joint inference over the model parametersT,Ω, R
and the state sequences allows us to infer the number of visited states from the data.

To use the iPOMDP as a policy prior, we simply reverse the roles of actions and observations,
treating the observations as inputs and the actions as outputs. Now, the iPOMDP posits that there is
a state controller with an infinite number of nodesn, but probable polices use only a small subset
of the nodes a majority of the time. We perform joint inference over the node transition and policy
parametersβ andπ as well as the visited nodesn. The ‘policy state’ representation learned is not
the world state, rather it is a summary of previous observations which is sufficient to predict actions.
Assuming that the training action sequences are drawn from the optimal policy, the learner will
learn just enough “policy state” to control the system optimally. As in the model prior application,
using the iPOMDP as a policy prior biases the agent towards simpler policies—those that visit fewer
nodes—but allows the number of nodes to grow as with new expertexperience.

3.2 Consistency and Correctness

In all three inference approaches, the sampled models and policies are an unbiased representation
of the true posterior and are consistent in that in the limit of infinite samples, we will recover the
true model and policy posteriors conditioned on their respective dataDa,D

o,r
e andDa

e . There are
some mild conditions on the world and policy priors to ensureconsistency: since the policy prior
and model prior are specified independently, we require thatthere exist models for which both the
policy prior and model prior are non-zero in the limit of data. Formally, we also require that the
expert provide optimal trajectories; in practice, we see that this assumption can be relaxed.
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Figure 2: Learning curves for the multicolored gridworld (left) and snake (right). Error bars are 95%
confidence intervals of the mean. On the far right is the snakerobot.

3.3 Planning with Distributions over Policies and Models

All the approaches in Sec. 3 output samples of models or policies to be used for planning. As
noted in Section 2, computing the Bayes optimal action is typically intractable. Following similar
work [4, 1, 2, 12], we interpret these samples as beliefs. In the model-based approaches, we first
solve each model (all of which are generally small) using standard POMDP planners. During the
testing phase, the internal belief state of the models (in the model-based approaches) or the internal
node state of the policies (in the policy-based approaches), is updated after each action-observation
pair. Models are also reweighted using standard importanceweights so that they continue to be an
unbiased approximation of the true belief. Actions are chosen by first selecting, depending on the
approach, a model or policy based on their weights, and then performing its most preferred action.
While this approach is clearly approximate (it considers state uncertainty but not model uncertainty),
we found empirically that this simple, fast approach to action selection produced nearly identical
results to the much slower (but asymptotically Bayes optimal) stochastic forward search in [12].2

4 Experiments

We first describe a pair of demonstrations that show two important properties of using policy priors:
(1) that policy priors can be useful even in the absence of expert data and (2) that our approach
works even when the expert trajectories are not optimal. We then compare policy priors with the
basic iPOMDP [12] and finite-state model learner trained with EM on several standard problems. In
all cases, the tasks were episodic. Since episodes could be of variable length—specifically, experts
generally completed the task in fewer iterations—we allowedeach approachN = 2500 iterations, or
interactions with the world, during each learning trial. The agent was provided with an expert tra-
jectory with probability.5 n

N
, wheren was the current amount of experience. No expert trajectories

were provided in the last quarter of the iterations. We ran each approach for 10 learning trials.

Models and policies were updated every 100 iterations, and each episode was capped at 50 iterations
(though it could be shorter, if the task was achieved in feweriterations). Following each update, we
ran 50 test episodes (not included in the agent’s experience) with the new models and policies to
empirically evaluate the current value of the agents’ policy. For all of the nonparametric approaches,
50 samples were collected, 10 iterations apart, after a burn-in of 500 iterations. Sampled models
were solved using 25 backups of PBVI [18] with 500 sampled beliefs. One iteration of bounded
policy iteration [19] was performed per sampled model. The finite-state learner was trained using
min(25, |S|), where|S| was the true number of underlying states. Both the nonparametric and
finite learners were trained from scratch during each update; we found empirically that starting from
random points made the learner more robust than starting it at potentially poor local optima.

Policy Priors with No Expert Data The combined policy and model prior can be used to encode
a prior bias towards models with simpler control policies. This interpretation of policy priors can

2We suspect that the reason the two planning approaches yield similar results is that the stochastic forward
search never goes deep enough to discover the value of learning the model and thus acts equivalently to our
sampling-based approach, which only considers the value of learning more about the underlying state.
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be useful even without expert data: the left pane of Fig. 2 shows the performance of the policy
prior-biased approaches and the standard iPOMDP on a gridworld problem in which observations
correspond to both the adjacent walls (relevant for planning) and the color of the square (not relevant
for planning). This domain has 26 states, 4 colors, standardNSEW actions, and an 80% chance of
a successful action. The optimal policy for this gridworld was simple: go east until the agent hits
a wall, then go south. However, the varied observations madethe iPOMDP infer many underlying
states, none of which it could train well, and these models also confused the policy-inference in
Approach 3. Without expert data, Approach 1 cannot do betterthan iPOMDP. By biasing the agent
towards worlds that admit simpler policies, the model-based inference with policy priors (Approach
2) creates a faster learner.

Policy Priors with Imperfect Experts While we focused on optimal expert data, in practice pol-
icy priors can be applied even if the expert is imperfect. Fig. 2(b) shows learning curves for a sim-
ulated snake manipulation problem with a 40-dimensional continuous state space, corresponding
to (x,y) positions and velocities of 10 body segments. Actions are 9-dimensional continuous vec-
tors, corresponding to desired joint angles between segments. The snake is rewarded based on the
distance it travels along a twisty linear “maze,” encouraging it to wiggle forward and turn corners.

We generated expert data by first deriving 16 motor primitives for the action space using a cluster-
ing technique on a near-optimal trajectory produced by a rapidly-exploring random tree (RRT). A
reasonable—but not optimal—controller was then designed using alternative policy-learning tech-
niques on the action space of motor primitives. Trajectories from this controller were treated as
expert data for our policy prior model. Although the trajectories and primitives are suboptimal,
Fig. 2(b) shows that knowledge of feasible solutions boostsperformance when using the policy-
based technique.

Tests on Standard Problems We also tested the approaches on ten problems: tiger [20] (2 states),
network [20] (7 states), shuttle [21] (8 states), an adaptedversion of gridworld [20] (26 states),
an adapted version of follow [2] (26 states) hallway [20] (57states), beach (100 states), rocksam-
ple(4,4) [22] (257 states), tag [18] (870 states), and image-search (16321 states). In the beach
problem, the agent needed to track a beach ball on a 2D grid. The image-search problem involved
identifying a unique pixel in an 8x8 grid with three type of filters with varying cost and scales.
We compared our inference approaches with two approaches that did not leverage the expert data:
expectation-maximization (EM) used to learn a finite world model of the correct size and the infinite
POMDP [12], which placed the same nonparametric prior over world models as we did.
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Figure 3: Performance on several standard problems, with 95% confidence intervals of the mean.
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Fig. 3 shows the learning curves for our policy priors approaches (problems ordered by state space
size); the cumulative rewards and final values are shown in Table 1. As expected, approaches that
leverage expert trajectories generally perform better than those that ignore the near-optimality of the
expert data. The policy-based approach is successful even among the larger problems. Here, even
though the inferred state spaces could grow large, policiesremained relatively simple. The opti-
mization used in the policy-based approach—recall we use thestochastic search to find a probable
policy—was also key to producing reasonable policies with limited computation.

Cumulative Reward Final Reward

iPOMDP App.
1

App.
2

App.
3

EM iPOMDP App. 1 App. 2 App. 3 EM

tiger -2.2e3 -1.4e3 -5.3e2 -2.2e2 -3.0e3 -2.0e1 -1.0e1 -2.3 1.6 -2.0e1

network -1.5e4 -6.3e3 -2.1e3 1.9e4 -2.6e3 -1.1e1 -1.2e1 -4.0e-1 1.1e1 -4.7

shuttle -5.3e1 7.9e1 1.5e2 5.1e1 0.0 1.7e-1 3.3e-1 6.5e-1 8.6e-1 0.0

follow -6.3e3 -2.3e3 -1.9e3 -1.6e3 -5.0e3 -5.9 -3.1 -1.4 -1.1 -5.0

gridworld -2.0e3 -6.2e2 -7.0e2 4.6e2 -3.7e3 -1.3 5.3e-1 1.8 2.3 -2.1

hallway 2.0e-1 1.4 1.6 6.6 0.0 8.6e-4 7.4e-3 1.4e-2 1.9e-2 0.0

beach 1.9e2 1.4e2 1.8e2 1.9e2 3.5e2 2.0e-1 1.1e-1 1.4e-1 2.7e-1 3.4e-1

rocksample -3.2e3 -1.7e3 -1.8e3 -1.0e3 -3.5e3 -1.6 -5.3e-1 -1.3 1.2 -2.0

tag -1.6e4 -6.9e3 -7.4e3 -3.5e3 - -9.4 -2.8 -4.1 -1.7 -9.1

image -7.8e3 -5.3e3 -6.1e3 -3.9e3 - -5.0 -3.6 -4.2 1.3e1 -5.0

Table 1: Cumulative and final rewards on several problems. Bold values highlight best performers.

5 Discussion and Related Work

Several Bayesian approaches have been developed for RL in partially observable domains. These
include [7], which uses a set of Gaussian approximations to allow for analytic value function updates
in the POMDP space; [2], which jointly reasons over the spaceof Dirichlet parameters and states
when planning in discrete POMDPs, and [12], which samples models from a nonparametric prior.

Both [1, 4] describe how expert data augment learning. The first [1] lets the agent to query a state
oracle during the learning process. The computational benefit of a state oracle is that the informa-
tion can be used to directly update a prior over models. However, in large or complex domains, the
agent’s state might be difficult to define. In contrast, [4] lets the agent query an expert for optimal ac-
tions. While policy information may be much easier to specify—incorporating the result of a single
query into the prior over models is challenging; the particle-filtering approach of [4] can be brittle
as model-spaces grow large. Our policy priors approach usesentire trajectories; by learning policies
rather than single actions, we can generalize better and evaluate models more holistically. By work-
ing with models and policies, rather than just models as in [4], we can also consider larger problems
which still have simple policies. Targeted criteria for asking for expert trajectories, especially one
with performance guarantees such as [4], would be an interesting extension to our approach.

6 Conclusion

We addressed a key gap in the learning-by-demonstration literature: learning from both expert and
agent data in a partially observable setting. Prior work used expert data in MDP and imitation-
learning cases, but less work exists for the general POMDP case. Our Bayesian approach combined
priors over the world models and policies, connecting information about world dynamics and expert
trajectories. Taken together, these priors are a new way to think about specifying priors over models:
instead of simply putting a prior over the dynamics, our prior provides a bias towards models with
simple dynamics and simple optimal policies. We show with our approach expert data never reduces
performance, and our extra bias towards controllability improves performance even without expert
data. Our policy priors over nonparametric finite state controllers were relatively simple; classes of
priors to address more problems is an interesting directionfor future work.

8



References

[1] R. Jaulmes, J. Pineau, and D. Precup. Learning in non-stationary partially observable Markov
decision processes. ECML Workshop, 2005.

[2] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayes-adaptive POMDPs. InNeural
Information Processing Systems (NIPS), 2008.

[3] Stephane Ross, Brahim Chaib-draa, and Joelle Pineau. Bayesian reinforcement learning in
continuous POMDPs with application to robot navigation. InICRA, 2008.

[4] Finale Doshi, Joelle Pineau, and Nicholas Roy. Reinforcement learning with limited rein-
forcement: Using Bayes risk for active learning in POMDPs. In International Conference on
Machine Learning, volume 25, 2008.

[5] Pieter Abbeel, Morgan Quigley, and Andrew Y. Ng. Using inaccurate models in reinforcement
learning. InIn International Conference on Machine Learning (ICML) Pittsburgh, pages 1–8.
ACM Press, 2006.

[6] Nathan Ratliff, Brian Ziebart, Kevin Peterson, J. Andrew Bagnell, Martial Hebert, Anind K.
Dey, and Siddhartha Srinivasa. Inverse optimal heuristic control for imitation learning. In
Proc. AISTATS, pages 424–431, 2009.

[7] P. Poupart and N. Vlassis. Model-based Bayesian reinforcement learning in partially observ-
able domains. InISAIM, 2008.

[8] M. Strens. A Bayesian framework for reinforcement learning. In ICML, 2000.

[9] John Asmuth, Lihong Li, Michael Littman, Ali Nouri, and David Wingate. A Bayesian sam-
pling approach to exploration in reinforcement learning. In Uncertainty in Artificial Intelli-
gence (UAI), 2009.

[10] R. Dearden, N. Friedman, and D. Andre. Model based Bayesian exploration. pages 150–159,
1999.

[11] E. J. Sondik.The Optimial Control of Partially Observable Markov Processes. PhD thesis,
Stanford University, 1971.

[12] Finale Doshi-Velez. The infinite partially observableMarkov decision process. In Y. Bengio,
D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors,Advances in Neural
Information Processing Systems 22, pages 477–485. 2009.

[13] Matthew J. Beal, Zoubin Ghahramani, and Carl E. Rasmussen. The infinite hidden Markov
model. InMachine Learning, pages 29–245. MIT Press, 2002.

[14] Yee Whye Teh, Michael I. Jordan, Matthew J. Beal, and David M. Blei. Hierarchical Dirichlet
processes.Journal of the American Statistical Association, 101:1566–1581, 2006.

[15] Tao Wang, Daniel Lizotte, Michael Bowling, and Dale Schuurmans. Bayesian sparse sampling
for on-line reward optimization. InInternational Conference on Machine Learning (ICML),
2005.

[16] J. Zico Kolter and Andrew Ng. Near-Bayesian exploration in polynomial time. InInternational
Conference on Machine Learning (ICML), 2009.

[17] J. van Gael, Y. Saatci, Y. W. Teh, and Z. Ghahramani. Beamsampling for the infinite hidden
Markov model. InICML, volume 25, 2008.

[18] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs.IJCAI, 2003.

[19] Pascal Poupart and Craig Boutilier. Bounded finite state controllers. InNeural Information
Processing Systems, 2003.

[20] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning policies for partially observable
environments: scaling up.ICML, 1995.

[21] Lonnie Chrisman. Reinforcement learning with perceptual aliasing: The perceptual distinc-
tions approach. InIn Proceedings of the Tenth National Conference on Artificial Intelligence,
pages 183–188. AAAI Press, 1992.

[22] T. Smith and R. Simmons. Heuristic search value iteration for POMDPs. InProc. of UAI 2004,
Banff, Alberta, 2004.

9


