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Abstract

We present a framework that is able to discover the latetdfathat parametrize
a family of related tasks from data. The resulting model is &dbrapidly identify
the dynamics of a new task instance, allowing an agent tabliesidapt to task
variations.

1 Introduction

In many real-world applications of learning for control,agent is expected to repeatedly encounter
tasks with dynamics that are similar, but never quite theesafror example, when learning to
manipulate glasses of water, an agent might encountereglagish different masses and different
amounts of liquid. Similarly, when learning to drive a vdbj@n agent will encounter many different
individual vehicles, each with (for example) brakes thdtdee slightly differently. Over the course
of learning to fly a plane, an agent will encounter may différ@anes, each with slightly different
handling characteristics, and carrying different loads.

In all of these scenarios, it makes little sense of the agesiirt learning afresh when it encounters
a new glass, a new vehicle, or a new plane. Indeed, one would that the more manipulation,
driving, or flying tasks the agent performed, the more quiekid reliably the agent could adapt to
new instances of the same type of tasks.

Tasks with these closely-related dynamics provide anésterg regime for transfer learning. Intu-
itively, these tasks seem to have some low-dimensionait&etors that parametrize the dynamics
in structured ways: for example, the amount of liquid in thp can be thought of a one-dimensional
latent parameter which causes smooth changes in the cupesrdgs. Furthermore, in many inter-
esting problems, either these latent parameters remaid fiotethe duration of the task (the state
of a car’s brakes will not change significantly during a sintylp), or the agent will know when a
change has occurred (the agent is driving a different car).

Given knowledge of the latent parametrization—in the forfna generative model of the task dy-
namics given the latent parameters—an agent could ragielytify the dynamics of a particular
task instance by updating its belief over the latent pararsetSuch an agent need not learn a new
control policy for each task instance; it could insteadegigynthesize a parametrized control policy
[7, 3] based on a point estimate of the latent parameter satudearn or plan in the belief space
over its parameters[9, 1, 11, 10, 16, 6].

This raises the question of how such latent parametrizatam be discovered from experience.
We present preliminary results for a framework that levesathe knowledge of when the latent
parameters may change to discover the number of latent péeesnand how they affect the task
dynamics. We show that our framework can both infer the tgp@anameterization for a version of

the cart pole problem where the length of the pole and its rmassvary between episodes, and
rapidly identify the dynamics of a new task instance.



2 Approach

We assume that the data consists of input-output paifsy?) wherex is a (possibly multi-
dimensional) real vectoy; is a real scala) € {1, ..., B} is thebatchfrom which the data came,
andn € {1, ..., N, } is the index of the data within the batch. For example, thatinf) might be the
agent’s current position, velocity, and a force, and th@ou®, might be the change in the agent's
current position and velocity. Each batemight represent a different mass that the agent had to
carry.

We propose that the dynamics equatign= g,(z%,w;) for any taskb can be parametrized by a
small set of latent factors,. In special cases, we may be able to derive analytic exjpress$or
how w affects the dynamics formulg (2%, wy): for example, in the manipulation task, we might
be able to derive the kinematic equations of how the cup wipond to a force given a certain
volume of liquid. However, in most situations, the simphtions required to derive these analytical
forms for the dynamics will be brittle at best.

We instead propose to learn the latent factorization froendthta itself. Specifically, we fit a model
of the form:

K
vho~ D wiefi(ah,0) + €
k

e~ N(0, U,QL),

where we can think of they, as the values associated with tRelatent factors and thg. as the
accompanying task-specific basis functions that descaobesthange in the latent factay,;, affects
the overall dynamics. The additivity assumption in our s@ariametric basis function regression
allows us to learn all the latent elements of this model: thmiber of factorg<, the weightswy,,
and the form of the basis functiorfs.

Model We model this data the sum of functiofis k& € 1...K
K
Yn ~ Zwkbfk(IZae) +e,
k

e~ N(0,02),

n

wherewy,, is a real scalar corresponding to the weight of functfgrior batchb. We setwq, = 1
for all batches$. We assume that the noisg comes from the same distribution for all batches, and
that the parametersare also the same for all functions.

We consider the following priors on the weightg;, and the functiongy:
fx ~ GP(9)
Wiy ~ N(O,O'?U) fork > 1
w1y = 11
whereGP is a Gaussian process. Hefigre the parameters of the GP kernel (most importantly the
length-scale) and is the concentration parameter. We assume that the totabeuoh functionsi’
is bounded but unknown. The combination of a parametrici{@eyl structure with nonparametric

basis functions results in the semi-parametric latenbfactodel, previously used by Teh, Seeger
and Jordan [15] to learn correlated output processes.

The likelihood for this prior can be expressed in a fairhagght-forward manner. Le¥V = ", N,
be the total number of observations. We concatenate aljtHato an N by 1 vectorY’, and let

K(X,X) be theN x N matrix of all K (z2, z¥,). Let W be theK x B matrix of wy,, elements.
Finally, we introduce aB x N indicator matrix4 such thatd (b, n) = 1 if the nth data-point came
from batchb and zero otherwise. The marginal likelihood of the modehéent

Pr(Y|W) = N(0,K(X,X)o (ATWTWA) + I02), 1)
where® is an element-wise or Hadamard product. The predicti6iase:
Y =K(X,X)o (ATWTWA)K (X, X))o (ATWTWA) + Io2)"'Y.



Inference The only variable in the likelihood in equation 1 are the ealofwy,. We learn these
through a straight-forward Metropolis-Hastings schemi wie proposal;,, = wp, + dks, Where
Sy ~ N(0,0%, ). Since the proposal is symmetric, the acceptance threghsichply

PY W) P(wj, [W_ps)

PY|W)P(wip|W-_pp) "

whereP (Y |W) is given by equation 1, anB(wkp|W_rs) = N (w},;0,02).

a = min(1,

In this work, we consider a scenario in which the agent isrgivéarge amount dbatchdata from
several different operational settings. These batch datased to fit the weightd” corresponding
to the latent factors. Then the agent encounters a few datadrnew scenario. We refer to these
few data as théraining data for that scenario. Given training data for a new batctve can learn
the weightswy, using the same MH procedure above, but holding the remaim@ights fixed.

3 Resultson Cartpole

We present initial results for cart pole, a standard retgarent-learning task [12]. The cartpole
task begins with a pole that is initially standing vertigadh top of a cart; the agent’s goal is to keep
the pole from falling over by moving the cart. The agent has awailable actions: apply a force
either to the left or to the right of the cart. The full stapase of the cartpole domain is the position
z and velocity: of the cart, as well as the angleand the angular velocitg of the pole. At each
time step, the system evolves according to the followingatiqus:

Zt41 = 2+ T2
Zii1= v-— mlf cos 0/M
011 = 0; + 76,
Opy1 =  thetay + 70,

wherev = w 0 = (gsind —vcosd)/(I(2 — mcos§?/M)), f is the applied forcey is
gravity, M is the mass of both the cart and the pole, andnd/ are the mass and length of the pole,
respectively. We considered scenarios in which we varieghd!.

Varying the Pole Mass We collected 750 sample transitions from the cartpole ta#k thie pole
length held fixed to 0.5 and pole masses of 0.1, 0.2, and 0.8séTbxperiences were gathered by
an agent learning to solve a specific task instance usinga@aid 2], and then subsampled for
coverage. Each iteration of experience provided us wittua-@imensional input® = {z,2,6,60}
and a four-dimensional outpyf = {Az, Az, A9, Aé} describing the change in those inputs at the
next time-step. We next used our approach to learn a lateatyrization and a set of Gaussian
process basis functions for each output.

Next, we collected 50 sample transitions for cart masseslof@.15, 0.2, 0.25, and 0.3. These data
represented a few trials on a new task where the agent didnoet the mass or length of the pole.
We used this new data to compute the weights associated ldithew task for each action. The
quality of the fit was assessed using 50 additional test pdiotn the same task; we compared our
approach to trying to generalize only from the 50 input ppentd also generalizing directly from
the 2250 batch data points as a single Gaussian processs(tlgatoring the structure in the batch
data).

Figure 1 shows a comparison of mean-squared error (MSE)Iféowua outputs for a single action
(left). We see that in all cases, learning the latent paranadion—which leverages both the small
amount of training data for each problem as well as the stradh the larger batch data, performs
better than using the training data alone or ignoring thecstre in the batch data. Examining the
output structures, we find that our approach only learnstiaaidil latent factors when predicting the
velocity outputs? and#, whereas no additional factors are learned for the posdgigputsz and

0. These results make sense: the mass of the pole, a singleflatwor, directly affects the change
in velocity (forces result in accelerations) but does noéctly affect the change in position. The
values for these factors change monotonically with the rofise pole, supporting the fact that the
discovered factor corresponds to the mass.
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Figure 1: Mean-squared error on predictions when varyiegiiss of the pole.

Varying the Pole Length  We performed a similar test where the agent initially hadgamfrom

a pole with mass 0.2 and batch data was collected for polétisg 0.4, 0.5, and 0.6. As before, we
collected separate training examples for pole lengths4f@®45, 0.5, 0.55, and 0.6. In figure 2, we
see again that our approach has the lowest mean-squaresl &kfioen varying the pole length, we
find that the only case where an additional feature is leawtezh predicting the angular velocity
Again, this makes sense from a physics perspective: thegeharangular velocity depends on the
torque, which is a function of the pole length. However, aiag the length of the pole (without
changing its mass) does not change the overall mass of ttensysd thus does not have a direct
affect on the velocity of the caiit. As before, the values associated with the latent paranatisn
vary monotonically with the pole-length. When predictimg tother outputs, the agent still does
better than just using the training data or modeling thetbdata as a single Gaussian process by
combining those two sources of information.

Varying the both Mass and Length Finallyy, we repeated the same experi-
ment in which the agent received received large batches db d#ssociated with
the seven (m,l) settings {(.1,.4),(.3,.4),(.15,.45),(.2,.55),(.25,.5),(.3,.4),(.3,.6)}
and was asked to predict the change in 2 6 , 6 on the ten settings
{(.1,.4),(.1,.45),(.1,.5), (.1,.55), (.1,.6), (.15, .4), (.15, .45), (.15, .5), (.15, .55), (.15, .6)}

(note that only three of the settings are in common).

During the batch training, our approach discovered a siadiditional feature for predicting the
change int—which makes sense, since only one latent factor, the polass, affects the change
in velocity. Three additional factors were discovered faadicting the change i6. While there are
only two latent factors in this system, the additive form af basis regression forces a factor to be
learned for the pole’s mass, the pole length, and nonlimaractions between the two factors. No
additional factors were learned for the change in positimr the change in anglé as described
previously, neither the pole’s mass nor the pole-lengtbcafihese outputs directly.
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Figure 2: Mean-squared error on predictions when varyiedehgth of the pole.

Figure 3 shows the mean-squared errors for each of the ten ke see that when predicting the
change in position: or the change in anglg using only the small amount of training data from that
setting results in large prediction errors. However, bseaaur approach has learned that there are
no latent factors, it is able to use all of the batch data asgesiGaussian process to get much lower
prediction errors (the errors associated with our appraaelhe same as the batch only). However,
when predicting: andd, the latent factors do play a role, and thus using a singles§lan process

is a poor approximation. Errors from the training data alaresstill often sizable because only a
few data are available. In almost every case, our approasioheer mean-squared errors because
we use the training data from a particular setting to leversgucture in the larger batch data set.

4 Discussion and Future Work

When applying machine learning to control, it is often assditihat the agent repeatedly experiences
exactly the same task. However, we argue that this assumigtianlikely to survive contact with
the real world. A more accurate model of repeated contréktésthat task instances vary, but in
limited and specific ways. Accounting for this varianceheatthan simply ignoring it, will prove
important for building flexible agents capable of adaptm¢hie real world.

One way to view our model is as a compromise between two stdmpaaadigms for control. In re-
inforcement learning [12], we typically assume that a madé¢he task we are facing is completely
unknown. In planning [8], we typically assume that we areegian exact (though perhaps stochas-
tic) model of our task in advance. The latent parametripatimdel allows us to think about tasks
where we know a great deal about ttlassof task we are facing, but where the variations present
in any specific instance still require us to perform learrongine.

There has been a great deal of research on transfer for reemfient learning systems [14], and the
most directly related type of transfer is representatiangfer [4, 13, 5]. Representation transfer
typically learns a set of basis functions sufficient for egamtation any value function defined in
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Figure 3: Mean-squared error on predictions when varyirtg tiee mass and length of the pole.



a specific state space, or on transfer between two diffeeresentations of the same task. By
contrast, our work focuses on modeling the dimensions aatian of a family of related tasks.

One way to view the resulting model is as a POMDP, where thddmictates have no dynamics,
and are chosen once per episode and then remain constastvidWi suggests that, once a good
parametrization and model has been obtained, we can apgMDIP planner to solve the control
problem for any specific task instance, either online [6]yplecomputing belief-space policies in
advance [16].

We expect that our model will be useful when the family of sske are interested in has a
parametrization that is small relative to its model, and rehienowing this parametrization can
make online system identification much more efficient. Mappli@ations fit this scenario—we ei-
ther know a lot about the dynamics, or can obtain data abeussk type in advance. For example,
a classical example of applied reinforcement learning isefevator dispatching [2]. One could
imagine a scenario where data from many different buildenmgscombined to infer the parameters
that describes how the users of individual buildings diffetheir behavior. Such a parametrization
would allow us to deploy an elevator dispatching contrahet is immediately good in expectation,
but also adapts to its own building’s specific needs by updats belief over the building’s latent
parameters as it gains experience. Here, the cost of obgearsignificant amount of data in advance
to infer the parametrization is easily justified by the réeglrapid improvement in deployed per-
formance. More generally, we may obtain benefits in any seemdnere an individual task instance
can be thought of as being an individual drawn from a parameetfamily of tasks.

In such cases, being able to generalize dynamics from ordwarfteractions with a new operating
regime (using data from many prior interactions with simaggstems) is a key step in building
controllers that exhibit robust and reliable decision mgkivhile gracefully adapt to new situations.
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