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Abstract

We present a framework that is able to discover the latent factors that parametrize
a family of related tasks from data. The resulting model is able to rapidly identify
the dynamics of a new task instance, allowing an agent to flexibly adapt to task
variations.

1 Introduction

In many real-world applications of learning for control, anagent is expected to repeatedly encounter
tasks with dynamics that are similar, but never quite the same. For example, when learning to
manipulate glasses of water, an agent might encounter glasses with different masses and different
amounts of liquid. Similarly, when learning to drive a vehicle, an agent will encounter many different
individual vehicles, each with (for example) brakes that behave slightly differently. Over the course
of learning to fly a plane, an agent will encounter may different planes, each with slightly different
handling characteristics, and carrying different loads.

In all of these scenarios, it makes little sense of the agent to start learning afresh when it encounters
a new glass, a new vehicle, or a new plane. Indeed, one would hope that the more manipulation,
driving, or flying tasks the agent performed, the more quickly and reliably the agent could adapt to
new instances of the same type of tasks.

Tasks with these closely-related dynamics provide an interesting regime for transfer learning. Intu-
itively, these tasks seem to have some low-dimensional latent factors that parametrize the dynamics
in structured ways: for example, the amount of liquid in the cup can be thought of a one-dimensional
latent parameter which causes smooth changes in the cup’s dynamics. Furthermore, in many inter-
esting problems, either these latent parameters remain fixed for the duration of the task (the state
of a car’s brakes will not change significantly during a single trip), or the agent will know when a
change has occurred (the agent is driving a different car).

Given knowledge of the latent parametrization—in the form of a generative model of the task dy-
namics given the latent parameters—an agent could rapidly identify the dynamics of a particular
task instance by updating its belief over the latent parameters. Such an agent need not learn a new
control policy for each task instance; it could instead either synthesize a parametrized control policy
[7, 3] based on a point estimate of the latent parameter values, or learn or plan in the belief space
over its parameters [9, 1, 11, 10, 16, 6].

This raises the question of how such latent parametrizations can be discovered from experience.
We present preliminary results for a framework that leverages the knowledge of when the latent
parameters may change to discover the number of latent parameters, and how they affect the task
dynamics. We show that our framework can both infer the latent parameterization for a version of
the cart pole problem where the length of the pole and its masscan vary between episodes, and
rapidly identify the dynamics of a new task instance.
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2 Approach

We assume that the data consists of input-output pairs(xb
n, y

b
n) wherex is a (possibly multi-

dimensional) real vector,y is a real scalar,b ∈ {1, ..., B} is thebatchfrom which the data came,
andn ∈ {1, ..., Nb} is the index of the data within the batch. For example, the inputxb

n might be the
agent’s current position, velocity, and a force, and the outputybn might be the change in the agent’s
current position and velocity. Each batchb might represent a different mass that the agent had to
carry.

We propose that the dynamics equationybn = gb(x
b
n, wb) for any taskb can be parametrized by a

small set of latent factorswb. In special cases, we may be able to derive analytic expressions for
howwb affects the dynamics formulagb(xb

n, wb): for example, in the manipulation task, we might
be able to derive the kinematic equations of how the cup will respond to a force given a certain
volume of liquid. However, in most situations, the simplifications required to derive these analytical
forms for the dynamics will be brittle at best.

We instead propose to learn the latent factorization from the data itself. Specifically, we fit a model
of the form:

ybn ∼

K∑

k

wkbfk(x
b
n, θ) + ǫbn

ǫbn ∼ N(0, σ2
n),

where we can think of thewkb as the values associated with theK latent factors and thefk as the
accompanying task-specific basis functions that describe how a change in the latent factorwkb affects
the overall dynamics. The additivity assumption in our semi-parametric basis function regression
allows us to learn all the latent elements of this model: the number of factorsK, the weightswkb,
and the form of the basis functionsfk.

Model We model this data the sum of functionsfk, k ∈ 1...K

ybn ∼

K∑

k

wkbfk(x
b
n, θ) + ǫbn

ǫbn ∼ N(0, σ2
n),

wherewkb is a real scalar corresponding to the weight of functionfk for batchb. We setw1b = 1
for all batchesb. We assume that the noiseǫbn comes from the same distribution for all batches, and
that the parametersθ are also the same for all functions.

We consider the following priors on the weightswkb and the functionsfk:

fk ∼ GP (θ)

wkb ∼ N(0, σ2
w) for k > 1

w1b = 1,

whereGP is a Gaussian process. Here,θ are the parameters of the GP kernel (most importantly the
length-scale) andα is the concentration parameter. We assume that the total number of functionsK
is bounded but unknown. The combination of a parametric (additive) structure with nonparametric
basis functions results in the semi-parametric latent factor model, previously used by Teh, Seeger
and Jordan [15] to learn correlated output processes.

The likelihood for this prior can be expressed in a fairly straight-forward manner. LetN =
∑

b Nb

be the total number of observations. We concatenate all theybn into anN by 1 vectorY , and let
K(X,X) be theN × N matrix of allK(xb

n, x
b′

n′). Let W be theK × B matrix ofwkb elements.
Finally, we introduce anB×N indicator matrixA such thatA(b, n) = 1 if thenth data-point came
from batchb and zero otherwise. The marginal likelihood of the model is then:

Pr(Y |W ) = N(0,K(X,X)⊙ (ATWTWA) + Iσ2
n), (1)

where⊙ is an element-wise or Hadamard product. The predictionsŶ are:

Ŷ = K(X,X)⊙ (ATWTWA)(K(X,X)⊙ (ATWTWA) + Iσ2
n)

−1Y.
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Inference The only variable in the likelihood in equation 1 are the values ofwkb. We learn these
through a straight-forward Metropolis-Hastings scheme with the proposalw′

kb = wkb + δkb, where
δkb ∼ N(0, σ2

MH). Since the proposal is symmetric, the acceptance thresholdis simply

a = min(1,
P (Y |W ′)P (w′

kb|W−kb)

P (Y |W )P (wkb|W−kb)
),

whereP (Y |W ) is given by equation 1, andP (wkb|W−kb) = N(w′

kb; 0, σ
2
w).

In this work, we consider a scenario in which the agent is given a large amount ofbatchdata from
several different operational settings. These batch data are used to fit the weightsW corresponding
to the latent factors. Then the agent encounters a few data from a new scenario. We refer to these
few data as thetraining data for that scenario. Given training data for a new batchb′, we can learn
the weightswkb′ using the same MH procedure above, but holding the remainingweights fixed.

3 Results on Cartpole

We present initial results for cart pole, a standard reinforcement-learning task [12]. The cartpole
task begins with a pole that is initially standing vertically on top of a cart; the agent’s goal is to keep
the pole from falling over by moving the cart. The agent has two available actions: apply a force
either to the left or to the right of the cart. The full state-space of the cartpole domain is the position
z and velocityż of the cart, as well as the angleθ and the angular velocitẏθ of the pole. At each
time step, the system evolves according to the following equations:

zt+1 = zt + τ żt

żt+1 = v −mlθ̈ cos θ/M

θt+1 = θt + τ θ̇t

θ̇t+1 = ˙thetat + τ θ̈,

wherev =
f+mlθ̇2

t
sin θ

M
, θ̈ = (g sin θ − v cos θ)/(l(4

3
− m cos θ2/M)), f is the applied force,g is

gravity,M is the mass of both the cart and the pole, andm andl are the mass and length of the pole,
respectively. We considered scenarios in which we variedm andl.

Varying the Pole Mass We collected 750 sample transitions from the cartpole task with the pole
length held fixed to 0.5 and pole masses of 0.1, 0.2, and 0.3. These experiences were gathered by
an agent learning to solve a specific task instance using Sarsa(λ) [12], and then subsampled for
coverage. Each iteration of experience provided us with a four-dimensional inputxb

n = {z, ż, θ, θ̇}

and a four-dimensional outputybn = {∆z,∆ż,∆θ,∆θ̇} describing the change in those inputs at the
next time-step. We next used our approach to learn a latent parametrization and a set of Gaussian
process basis functions for each output.

Next, we collected 50 sample transitions for cart masses of 0.1 , 0.15, 0.2, 0.25, and 0.3. These data
represented a few trials on a new task where the agent did not know the mass or length of the pole.
We used this new data to compute the weights associated with the new task for each action. The
quality of the fit was assessed using 50 additional test points from the same task; we compared our
approach to trying to generalize only from the 50 input points and also generalizing directly from
the 2250 batch data points as a single Gaussian process (thatis, ignoring the structure in the batch
data).

Figure 1 shows a comparison of mean-squared error (MSE) for all four outputs for a single action
(left). We see that in all cases, learning the latent parametrization—which leverages both the small
amount of training data for each problem as well as the structure in the larger batch data, performs
better than using the training data alone or ignoring the structure in the batch data. Examining the
output structures, we find that our approach only learns additional latent factors when predicting the
velocity outputsż and θ̇, whereas no additional factors are learned for the positionoutputsz and
θ. These results make sense: the mass of the pole, a single latent factor, directly affects the change
in velocity (forces result in accelerations) but does not directly affect the change in position. The
values for these factors change monotonically with the massof the pole, supporting the fact that the
discovered factor corresponds to the mass.
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Figure 1: Mean-squared error on predictions when varying the mass of the pole.

Varying the Pole Length We performed a similar test where the agent initially had samples from
a pole with mass 0.2 and batch data was collected for pole lengths of 0.4, 0.5, and 0.6. As before, we
collected separate training examples for pole lengths of 0.4, 0.45, 0.5, 0.55, and 0.6. In figure 2, we
see again that our approach has the lowest mean-squared errors. When varying the pole length, we
find that the only case where an additional feature is learnedwhen predicting the angular velocityθ̇.
Again, this makes sense from a physics perspective: the change in angular velocity depends on the
torque, which is a function of the pole length. However, changing the length of the pole (without
changing its mass) does not change the overall mass of the system and thus does not have a direct
affect on the velocity of the carṫx. As before, the values associated with the latent parametrization
vary monotonically with the pole-length. When predicting the other outputs, the agent still does
better than just using the training data or modeling the batch data as a single Gaussian process by
combining those two sources of information.

Varying the both Mass and Length Finally, we repeated the same experi-
ment in which the agent received received large batches of data associated with
the seven (m, l) settings {(.1, .4), (.3, .4), (.15, .45), (.2, .55), (.25, .5), (.3, .4), (.3, .6)}

and was asked to predict the change inz, ż, θ , θ̇ on the ten settings
{(.1, .4), (.1, .45), (.1, .5), (.1, .55), (.1, .6), (.15, .4), (.15, .45), (.15, .5), (.15, .55), (.15, .6)}
(note that only three of the settings are in common).

During the batch training, our approach discovered a singleadditional feature for predicting the
change inẋ—which makes sense, since only one latent factor, the pole’smass, affects the change
in velocity. Three additional factors were discovered for predicting the change iṅθ. While there are
only two latent factors in this system, the additive form of our basis regression forces a factor to be
learned for the pole’s mass, the pole length, and nonlinear interactions between the two factors. No
additional factors were learned for the change in positionx or the change in angleθ; as described
previously, neither the pole’s mass nor the pole-length affect these outputs directly.
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Figure 2: Mean-squared error on predictions when varying the length of the pole.

Figure 3 shows the mean-squared errors for each of the ten runs. We see that when predicting the
change in positionx or the change in angleθ, using only the small amount of training data from that
setting results in large prediction errors. However, because our approach has learned that there are
no latent factors, it is able to use all of the batch data as a single Gaussian process to get much lower
prediction errors (the errors associated with our approachare the same as the batch only). However,
when predictingẋ andθ̇, the latent factors do play a role, and thus using a single Gaussian process
is a poor approximation. Errors from the training data aloneare still often sizable because only a
few data are available. In almost every case, our approach has lower mean-squared errors because
we use the training data from a particular setting to leverage structure in the larger batch data set.

4 Discussion and Future Work

When applying machine learning to control, it is often assumed that the agent repeatedly experiences
exactly the same task. However, we argue that this assumption is unlikely to survive contact with
the real world. A more accurate model of repeated control tasks is that task instances vary, but in
limited and specific ways. Accounting for this variance, rather than simply ignoring it, will prove
important for building flexible agents capable of adapting to the real world.

One way to view our model is as a compromise between two standard paradigms for control. In re-
inforcement learning [12], we typically assume that a modelof the task we are facing is completely
unknown. In planning [8], we typically assume that we are given an exact (though perhaps stochas-
tic) model of our task in advance. The latent parametrization model allows us to think about tasks
where we know a great deal about theclassof task we are facing, but where the variations present
in any specific instance still require us to perform learningonline.

There has been a great deal of research on transfer for reinforcement learning systems [14], and the
most directly related type of transfer is representation transfer [4, 13, 5]. Representation transfer
typically learns a set of basis functions sufficient for representation any value function defined in
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Figure 3: Mean-squared error on predictions when varying both the mass and length of the pole.
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a specific state space, or on transfer between two different representations of the same task. By
contrast, our work focuses on modeling the dimensions of variation of a family of related tasks.

One way to view the resulting model is as a POMDP, where the hidden states have no dynamics,
and are chosen once per episode and then remain constant. This view suggests that, once a good
parametrization and model has been obtained, we can apply a POMDP planner to solve the control
problem for any specific task instance, either online [6] or by precomputing belief-space policies in
advance [16].

We expect that our model will be useful when the family of tasks we are interested in has a
parametrization that is small relative to its model, and where knowing this parametrization can
make online system identification much more efficient. Many applications fit this scenario—we ei-
ther know a lot about the dynamics, or can obtain data about the task type in advance. For example,
a classical example of applied reinforcement learning is for elevator dispatching [2]. One could
imagine a scenario where data from many different buildingsare combined to infer the parameters
that describes how the users of individual buildings differin their behavior. Such a parametrization
would allow us to deploy an elevator dispatching controllerthat is immediately good in expectation,
but also adapts to its own building’s specific needs by updating its belief over the building’s latent
parameters as it gains experience. Here, the cost of obtaining a significant amount of data in advance
to infer the parametrization is easily justified by the resulting rapid improvement in deployed per-
formance. More generally, we may obtain benefits in any scenario where an individual task instance
can be thought of as being an individual drawn from a parametrized family of tasks.

In such cases, being able to generalize dynamics from only a few interactions with a new operating
regime (using data from many prior interactions with similar systems) is a key step in building
controllers that exhibit robust and reliable decision making while gracefully adapt to new situations.
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