The Permutable POMDP: Fast Solutions to POMDPs for
Preference Elicitation

Finale Doshi
CSAIL MIT
32 Vassar Street
Cambridge, MA 02139

finale@mit.edu

ABSTRACT

The ability for an agent to reason under uncertainty is elucir
many planning applications, since an agent rarely has adeces
complete, error-free information about its environmenartially
Observable Markov Decision Processes (POMDPSs) are a bkesira
framework in these planning domains because the resultitig p
cies allow the agent to reason about its own uncertaintyoains
with hidden state and noisy observations, POMDPs optintadye
between actions that increase an agent’s knowledge amhadtiat
increase an agent’s reward.

Unfortunately, for many real world problems, even appratim
ing good POMDP solutions is computationally intractabléhout
leveraging structure in the problem domain. We show thastttue-
ture of many preference elicitation problems—in which tigerat
must discover some hidden preference or desire from an@tber
ally human) agent—allows the POMDP solution to be solvedhwit
exponentially fewer belief points than standard pointeloespprox-
imations while retaining the quality of the solution.

Categories and Subject Descriptors
G.3 [Probability and Statistics]: Markov Processes

General Terms
preference elicitation, planning, uncertainty

Keywords

decision-making under uncertainty

1. INTRODUCTION

In almost all real-world domains, automated agents must rea
son and plan with only incomplete, noisy information abdirt
environments. Partially Observable Markov Decision Psses
(POMDPs) are a desirable framework for many planning dosain
because POMDP policies allow agents to reason about their ow
uncertainty. In stochastic environments with hidden statknoisy
observations, POMDPs optimally trade between actions ithat
crease an agent's knowledge and actions that increase atisage
immediate reward. Applied to a variety of traditional Al ptems,
the POMDP framework has also found applications in cooperat
multi-agent domains such as preference elicitation aridgliaan-
agement. In these applications, POMDPs allow the agenad®tr

Cite as: The Permutable POMDP: Fast Solutions to POMDPs for Pref-
erence Elicitation , Finale Doshi, Nicholas RolProc. of 7th Int. Conf.

on Autonomous Agents and Multiagent Systems (AAMAS ,2008)

Padgham, Parkes, Miller and Parsons (eds.), May, 12-168, Zxstoril,
Portugal, pp. XXX-XXX.

Copyright (© 2008, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights resetve

Nicholas Roy
CSAIL MIT
32 Vassar Street
Cambridge, MA 02139

nickroy@mit.edu

between asking the user for information about his or heniraed
performing a useful action. Specific examples include:

e Determining a user’s desired flight number in an automated
telephone booking system (3-2000 slot values) [13].

e Determining reputations in electronic markets [7].

e Determining a user’s desired destination on a robotic wheel
chair (10 locations) [3].

One common feature of all these scenarios is that the agestt mu
discover some piece of hidden information through a sefigaes-
tions with potentially noisy or ambiguous answers. Oncdi-suf
ciently certain, the agent must “submit” its response talaerosys-
tem or authority. The agent is penalized for the number o$tioies
it asks—effectively, the time it takes to come to a decisi@me-for
submitting a state estimate that does not match the true stat

A POMDP solver finds the optimal policy through a deep search
through all of the scenarios that the agent may encountéeifue
ture and chooses an action that maximizes the reward it &xpec
to receive. Unfortunately, solving POMDPs is often difficat
best—even with approximate solution methods, POMDPs for re
alistic problems may take hours or days to solve, if they can b
solved at all. In some senses, such time requirements may-be i
material since executing a policy is fast once the solutias lbeen
computed [2], but long computation times inhibit the ageability
to tune its policy as more data is received

Several works have suggested heuristics for POMDPs that hav
the structure of preference elicitation and dialog managemrob-
lems. For example, Boutilier [2] uses quadratic approxarsaand
Gaussians to approximate a complicated POMDP’s valueifumct
Williams and Young [13] create a mini-POMDP from the larger
POMDP that contains only two states: the most likely statkan
state corresponding to all other possible options.

The work in Williams and Young [13] alludes to common fea-
ture of preference elicitation scenarios. In many casesagient’s
optimal actiontype does not depend on the true hidden state, but
only the agent’'s uncertainty in the true state. For examipla,
media-playing agent is only 60% sure of a user’'s media regues
the optimal action may be to ask the user for clarificatiothern
than potentially playing the wrong music. The clarificatetion
is also likely to be the optimal action in all scenarios in gfhthe
system is uncertain about the media, regardless of the tsek. i
However, the summary POMDP (and other similar approxinmatio
algorithms [8]) cannot take advantage of actions that gagpe-
cific information, such as disambiguating between pairsrofiar
states.

We present a principled approach for solving POMDP models

1We focus here on planning in a known domain rather than legrni
about new domains, but tractable planning is also a presiguor
most learning algorithms.

that have the structure typically found in preference <an prob-
lems. Our approach depends crucially on the fact that faairer
POMDRP structures, the agent’s optimal actigpe depends only
on its uncertainty over states and not about which partictites
the agent is confused. For example, it may not matter thatdghe
fusion is between “play CD” and “play TV” or between “make a
coffee” and “make a copy”; the optimal action may be to try-con
firming the more likely request with the user. Under these-con
ditions, we can modify existing solution algorithms for qoum-
ing the policy without adding approximation error. We foima
ize these conditions in the “Permutable POMDP” and show that
near-optimal point-based value function approximatianhé per-
mutable POMDP can be calculated using exponentially feweer b
lief points than standard POMDPs.

We detail the POMDP model and point-based approximate so-
lution techniques in Section 2. Section 3 describes theisized
structure present in many preference elicitation POMDPe fol
malize that structure and its implications to solve for tigera’s
optimal policy in Section 4. Section 5 presents our resuttsao
variety of problems. We present our conclusions in Section 6

2. POMDP OVERVIEW

In this section, we provide background on the POMDP model
and the point-based solution techniques that we will opténin
Section 4. A POMDP consists of the n-tupl8,4,0,7,Q,R,}.

value function is unique and satisfies the Bellman equation:

V() = maxQ(ba),
Qb,a) = R(ba)+v Y T b,a)V(b),
= R(ba)+7Y_ Q(olb,a)V(b3), ©)
0€eO

whereQ(b, a) represents the expected reward for starting in belief
b, performing actioru, and then acting optimally. The last line fol-
lows if we note that there are on}@)| beliefs that we can transition
to after taking actiom in beliefb (one for to each observation). The
beliefb;, is the belief that results from taking actiarand observing

o from beliefb (equation 1)£2(o|b, a) is the probability of obser-
vation o after taking actior in beliefb (5 _ o Q(ols, a)b(s)).

The Bellman equation may be solved iteratively. Suppose tha
we have a representation of the value function as a colleafo
vectorsI',, = {«;}. First, we generate intermediate sefs* and
"¢ for all action, observation pairs:

I**={ala(s) =R(s,a)} (©)

I °={a|a(s) :fyz T(s'|s,a)Q(o]s’,a)d (s")}, Yo'l (4)
s'eS

Next, we generate the set of Q-functidn$ which is a cross sum

S, A, andO are sets of states, actions, and observations. In the that includes a vector frofi®* a vector froml*®° for each obser-

preference elicitation context, the states represent@epipthat is
hidden from the agent. The observations are noisy measateme
of this property—either from instruments or queries to teeruFor
example, in the dialog management setting, observatioryscara
respond to noisy outputs from a voice recognition systemniofs
include queries to gather information and a final action tonsit
the most likely state estimate to another system. We redoae
the state, action, and observation sets are discrete atel fini

The remaining components of the POMDP tuple describe how
the world behaves. The transition functi@(s’|s,a) gives the
probability P(s’|s, a) of transitioning from state to s if taking
actiona. The observation functiof2(o|s, a) gives the probability
P(o|s,a) of seeing observation from states after taking action
a. The rewardR(s,a) specifies the immediate reward for taking
actiona in states. The reward function allows the system designer
to specify what the “right” actions are in different statewlahe
relatively penalties for information gathering actionsndly, the
discount factory € [0, 1] weighs how much the agent values future
rewards to current rewards.

Since the POMDP state is hidden, the agent cannot choose its a
tions based on knowing the true state. Instead, the agentbase
its actions on the sequence of interactions that it has hédtheé
user. Keeping an entire history of interactions can getegeuim-
bersome, but fortunately, a distribution over possible gtates—
known as a belief—is a sufficient statistic for the historyppose
that the agent takes actianwhile in beliefb and observes as a
result. It can then update its belief using Bayes rule:

bu(s) = nQols’,a) Y T(s'|s,a)bn—1(s)

sesS

@)

wheren is the normalizing constarf®(o|b, a). The agent's goal
is to find a policy mapping the set of belief$ to actionsA to
maximize the expected rewafe[y . ~"R(sn,an)|.

We use a value function to represent our policy. Let the value
function V: (b) represent the expected reward if we start with be-
lief b and act according to policy. The optimal value function is
known to be piecewise-linear and convex [11], so we reptegen
with the vectoral® = {«;}; V(b) = max;(c; - b). The optimal

vationo:

[=% @T% g% (5)

Finally, the new value function is the union of all the Q-ftinos:

=1 (6)

acA

Each iteration, obackup brings the value function closer to its
optimal value [4]. Once the value function has been computed
it is used to choose actions. After each observation, wetapda
the belief using equation 1 and then choose the next actiog us
arg maxqc 4 Q(b, a) with Q(b, a) given in equation 2.

The cross sum in the exact solution can cause the number of
a-vectors to grow exponentially in each backup iteratione ©p-
timal solution may consist of an infinite number @fvectors, so
even if we prune awaw-vectors completely dominated by other
a-vectors, we cannot prevent the computation of an everiggpw
number of cross sums as the number of backups increases.

Several algorithms sidestep the issue of an exponentradhgas-
ing number ofa-vectors by backing up the value function only at
select beliefs [6, 12, 10, 9]. Each belief can have only oseds
ateda-vector, so the the size of the value function is capped by the
number of beliefs that we wish to consider. We will descrilbe o
approach in the context of PBVI [6] because it is one of thepsst
point-based POMDP approximations; however, we stressotinat
approach—which can be thought of as exponentially reduttiag
size of the belief space—can be applied to any point-basks va
function approximation technique.

When using a point-based approach, Ife* andT"*° sets are
computed as before, but we only compute the Q-function fohea
belief in our belief set:

Iy =T"""+ Zargagllggfo(ah)
o€O

@)

Finally, we retain only the members of thg set that are maximal
for some belief in our set:

Fhp1 = argFC}I}faEA(Fif -b),Vb € B. (8)
pvVa

For later comparison, Table 1 summarizes the point-badeé va
iteration algorithm [6]. The quality of point-based approations
often depends on whether certain supporting beliefs arseptén
the belief set or depend on how densely we sample beliefsthiem
space of reachable beliefs. In some problems, we may be@ble t
represent near-optimal policies with only a few supportidjef
points. However, if we need a high quality approximation,ifor
the problem simply has a large number of states, actionspbnd
servations, we may require a large number of belief poinfintb
an adequate approximation. In these situations, even #&paged
approximation may be computationally intractable.

Table 1: Point-Based Value Iteration.

1. Sample a set of initial beliefs.
2. Begin point-based value iteration loop:

e Computel'* andI"'*° sets (equation 4).
e Computel'y sets (equation 7).
e Compute new value function (equation 8).

e Add beliefs to the belief set (based on variogus
heuristics or information criteria).

3. PREFERENCE ELICITATION POMDPS

In the context of preference elicitation—which we intetgyeo-
adly to mean identifying a user’s preference, intent, or w@mnd—
POMDPs tend to have a very specific structure. The hidder stat
often represents some property, such as a desired destirati
product, that does not change during the course of the oitera
The agent’s goal is to discover this hidden state and sulirtat i
another system that will satisfy the user’s desire ([13).[3

the POMDP model is “flat”: the correct type of action depends
not on the particular states in question, but only on theridist
tion over the states. For example, if the dialog managerd go
to determine what media to play, then the optimal policy miagh
to ask for clarification if unsure—regardless of what mediani
question—but submit the most likely location to the mediaypl
if that request is sufficiently more likely than any other.isTfiat-
ness assumption is clearly a simplification, since in rgadme
requests may be harder to recognize than others, and sore@pai
requests may be more likely to be confused with each other tha
other pairs. The user may also be more forgiving of mistakes i
some situations than others. However, since the optimadypid
often fairly robust to small model variations, the symneetriodel
may be a reasonable approximation in many real-world $isit

The key insight of our algorithm is that in a permutable POMDP
if some vectow is part of the value function, then all permutations
of a must also be part of the value function. This insight follows
from the observation that only the distribution over statesid not
the particular state—matters when choosing an action. lara p
ticular a-vector optimizes the value function for a particular belie
then a permutation of that-vector will optimize the value function
for a permutation of that belief. We will therefore realizensider-
able computational savings by representing (and backih@uiy
one permutation of each-vector.

To define the notion of a “permutation”, recall that in order t
express the value function and beliefs as vectors, an éxpliber-
ing on the state space always required: that is, some state is the
first field in the vector, some other state is the second fielthén
vector, etc. Given an explicit ordering on the state spfose de-
fine a permutation operatat, 7 : s — s’, that maps one ordering
of states to another. This permutation may be applied to ttiero
of probabilities in a belieb(s) — b= = b(w(s)) or the values in
ana-vectora(s) — ar = a(n(s)).

In general, we cannot blindly re-order states and expeqgbohe
icy to be unchanged. However, if the reward, action and ebser

In many cases, it may be reasonable to assume that the rewardgation spaces have certain properties, then the policy fadnin-

associated with the agent’s actions depend only on whetteer t
agent acts correctly with respect to the user’s desire ahdmthe
particular desire itself. For example, if the user wantsagent to
start to play some media, it may not matter if the true tasé start

the TV or play a CD; the user will be happy as long as the agent
starts the correct system. Likewise, it may be reasonatdedome
that the user will be just as upset if the agent starts the Fyead

of the CD as if the agent plays a CD instead of the TV.

Similarly, certain symmetries may also exist in the obsgonal
model. We assume that there exists some system that consgerts
input—Dbe it text, voice, or visual—into a prediction of whae
user desires and a confidence score. A reasonable modelcfor su
a recognition system is that the agent is most likely to recan
output that matches the user’s true desire: for examplégitiser

wants to hear some music, then the recognition system is most

likely to output an indicator for “CD” We can simplify furthend
assume that neither (1) hearing any other goal by mistaké2)or
the quality of the recognition depends on the goal state.

Next, we will show that if the preference elicitation POMD#&sh
or can be reasonably approximated to have, the qualitiesided
above, then its solution can be computed with exponentiallier
supporting belief points without any loss in the quality leé point-
based value approximation.

4. THE PERMUTABLE POMDP

The core concept exploited by the Permutable POMDP is that

preference elicitation states are often symmetric witlarégo the
transition, reward, and observation functions, and tloeesinter-
changeable with regard to the policy. This symmetry implies

variant to permutations, that i¥,(b(s)) = V(b(n(s)))Vn,b. For
example, suppose that the actioriStart TV” has reward- if the
user’s desire is1, watch TV. If we now re-order the states such that
s} corresponds to hear music, then we require there be some othe
actiona’ (in this case, “Start CD”) with the same reward Simi-

larly, if the observation “thank-you” is most likely to beesegiven

(s1, @), then it should also be the most likely observation givgn (
ya).

Intuitively, we can see that the preference elicitation eddcbm
section 3 has the necessary symmetries; we now formallyelefin
a broader set of sufficient conditions for the permutable BOM
First, letmr, o (0) to be a permutation on the observations, param-
eterized by an action and a state permutatior.

THEOREM 1. If, for every state permutations(s) and action
a, there exists an actiosa., and observation permutatiofy . (o)
such that

* R(s,a) = R(ms(s),ar,)
® Qols,a) = QUmr, a(0)|ms(s), an,)
o T(s'|s,a) = T(ws(s")|ms(5), an,),

then for every vectat in the value function, all permutations af
are also part of the value functidn.

ProoF Recall that for the exact POMDP solution, the value
function is the union over actions of thevectors in**. Given a

2We note that while similar, the requirements for the actiasses
developed here are more restrictive than in first-order MDIPs

set of vectord™;_1, each vector in the new sEf is equal to

ai(s) = R(s,a) + 7T([s,0)[>_ Qofs, a)ovi 1,0}
o€O

©)

for some set of vectors; 1 fromI';_;. (IndeedI'{ consists of all
vectorsa; that can be produced by various combinations of vectors
from the value function, given actian)

If we apply our sufficient conditions above to equation 9plt f
lows that

ai(ms(s))

R(ms(s), an,) +7T(|7s(s), an,) -
[> Qmr.a(01)lms(s), ar,)tior.o]

0cO

(10)

for a given state permutation,(s). Since our conditions must be
true for every state permutation, it follows thatdifis part of the
value function, then all permutations @fare also part of the value
function. O

We can now formally demonstrate how the preference elicita-
tion POMDP from section 3 satisfies the considtions abovest,Fi
consider a single “general query” actian,, e.g., “How can | help
you?”. In this case, let, = ar, for all 7. The cost of asking
a general query usually does not depend on the user’s dssire,
R(s,aq) = R(ms(s),aq) = Rask Satisfies the reward condition
of Theorem 1. Furthermore, let there be one observatjpthat
uniquely describes each task (i.e., “Turn on the TV."). If par-
mute the state, we can also permujesuch thatr., o = 7. We
satisfy the observation condition by lettifitfo,|s, a) equalp, if
oy = s andpz if o, # s, p1 > p2. Finally, we can satisfy the
transition condition by settin@'(s'|s,a) = 6(s" — s), whered()
is the Dirac delta function. These conditions essentialy that
general queries does not change the user’s desire are kegtth
result in an input that reflects the desired task.

Secondly, let us consider a “submit” action, in which thdalia
system sends a task to the media system. Let the action tatsubm
tunes to the system be,(s). We assume that there is one submit
action for each task. Then we canlets, a) equalr: if a = a4(s),
that is, if the agent submits the correct tune, andtherwise;r; >
ro. For the observation condition, let there be two obseruatio
ot ando™ that represent positive (the agent submitted the action
correctly) and negative (the agent submitted an incorretibra)
feedback from the user. #f = a4(s), then we expect to get some
positive feedback2(ols, a(s)) = ps if o = o+ andp, otherwise,
p3 > pa. If a # agq(s), we expect to get some negative feedback:
Q(o|s,a(s)) = psif o = 0o~ andpg otherwiseps > pg. To satisfy
the transition condition, I&F (s’ |s, a) be uniform ifa = a4(s) and
the identity otherwise. Finally, for some state permutatig, set
ar, = ms(a) andnr, «(0) = o and note that these settings will
ensure the symmetry conditions are met.

We are not restricted to these two classes of actions abawe. F
example, many dialog management systems will have a “cohfirm
type of action, in which the system will ask a question of thiaf
“Did you want to play a CD?” These actions will have a similar
form to the “submit” action. More complex actions, such assth
that attempt to disambiguate frequently confused terngs, (id
you want watch TV or play a CD?") are also possible as long as
every actiorz has, for every permutation, a corresponding action
a, satisfying the reward, transition and observation coadi

4.1 Solving the Permutable POMDP

We now show how to efficiently solve a permutable POMDP.
Recall that point-based POMDP solvers generally have twtspa
belief set selection and value iteration. We modify the firait
with an additional step to reduce the sampled beliefs to afset

representative beliefs. Since any permutation is valithovit loss

of generality, let us require the representative béliefhave values
sorted in descending order. We then slightly modify valeegition

to ensure that the updated step will behave as if we had thedful
of beliefs represented by our small set.

To generate the belief set, either initially or online, ohewd
use any belief sampling or expansion technique [6, 12, 16}
all the beliefs in the belief set in descending order, andoram
similar beliefs (we used an L1 metric, but again, one shohtibse
a similarity measure appropriate for the problénfregardless of
how the beliefs are chosen, the point is that we only needdens
one canonical ordering of the values in the belief. Once we tize
representative belief set, we are ready to compute the vahe
tion. We show below how to adapt the PBVI [6] algorithm to our
approach; however, the steps are nearly equivalent for #rer o
point-based approximation.

Recall that the first step in point-based value iteratioroisjgut-
ing theT’®* andI"*'° sets as described in equation 4:

r**~{ala(s) = R(s,a)} (11)

I °={ala(s) :fyz T(s'|s,a)Q(os’,a)a’ (s")}, Va'€l'n(12)
s'eS

These equations depend only on the previetectors and are un-
changed if we only use our sorted set of belief points. We tiae
our initial set ofa-vectorsI',, only contains vectors corresponding
to the sorted beliefs in our belief set. The numbernefectors is
bounded by the number of supporting beliefs, so the siz&%' ¢f
andI™*° will be relatively small and fast to compute.

The next step in the standard point-based value iteratigo- al
rithm combines th&** andI"*° sets into d"; set for each belief:

Iy =T%" + E arg max
a€ldo
0cO

(a-b) (13)

We must now recall that if a specificvector is explicitly inl",,, all
permutations ofv are also in",,. However, the vectors in odr**
andI"'*° sets were created with only thevectors corresponding
to our sorted beliefs. Thus, they represent only a smaltibmof
the vectors that should be present in ftfe* andI"*? sets if we
had a full representation df,, with all permutations ofv-vectors
explicitly represented. We must consider all permutatiamglicit
and explicit, when choosing the bestvectors for each belief.

Since the members of tHe"° set are made of linear combina-
tions of a-vectors inl",,, we can apply the observation and transi-
tion conditions from Section 4 to argue that if a veatiois explic-
itly represented if"*>°, then we could have constructed all permu-
tations ofa by using other (not explicitly represented) permutations
of vectors inl",,. Similarly, from the reward conditions, if a vector
ris in theI'™* set, all permutations of will also be in the set.
Thus, equation 13 should read:

Iy =T%" + Z arg
0€0

max
a€perm(I'@:9)

(a-), (14)

whereperm (I'*?) is the set containing all permutations of the vec-
tors explicitly represented in*-°.

Equation 14 may at first seem disheartening, because alihoug
we have a very small number of supporting belief points, #te s
perm(I'*°) is exponentially larger than our smaif-° set. How-
ever, recall that we are seeking vectors to maximize the atyzt

3sampling and removing similar beliefs was the slowest pastio
approach; depending on the designer’s knowledge of thegmgb
much time could be saved by “seeding” the initial belief s¢hw
beliefs that we know will be important, reducing the numbér o
trajectories required to ensure good coverage of the sgmte.

Table 2: Point-Based Value Iteration for Permuted POMDPs.

1. Sample a set of beliefs.

2. Sort beliefs in descending order and remove
nearby beliefs.

3. Begin point-based value iteration loop:

Computel’®* andI"®° sets (equation 4).

e Sort vectors inT'*° sets in descending order.
Computel'} sets (equation 15).

Compute new value function (equation 8).

«-b, and our sorted beliefs are in descending ordet.i$fa member
of I'*?, the maximally-rewarding permutation ofis the permu-
tation that sorts in the values af in descending order. Thus, we
do not need to consider all the permutationsxpbnly the “best”
permutation that has its values in descending order. Ouatiu
to computel'; becomes:

Iy =T%"+ Z arg
0€0

max
aesort(I'a°)

(a-0), (15)

wheresort(I'*°) is a set of the same (small) sizel&s® in which

Table 3: Action Selection for Permuted POMDPs.

1. Sort current belieb to bs; let 75 be the permutation
that takeds — b.

2. Determine the optimal actiom, for bs using thea-
vectors explicitly inl*,,.

3. Perform the action,, that corresponds to permutatig
7 and actioru.

=]

and determine which action would have been appropriatedo th
sorted version of the belief. Formally, the sort impliest tha ap-
plied a permutation to sort the current belief in descendirdgr.
Let actionas be the action with the highest expected value for the
sorted belief, and let, be the permutation that takes thertedbe-

lief to our current belief (note that sorting the currentiéils the
reverse ofr;). Recall from our symmetry conditions, for each state
permutationrs and actioru, there existed some permuted action
ap for which the conditions held. Now we havera and ana for

our sorted belief; the correct action to take in our curresiieh is

the corresponding,,. Table 3 summarizes this procedure.

While the action selection step may at first appear compgiat

its application in the simple preference elicitation cahis quite
intuitive. We use the action associated with the sortedebédi

eacha-vector has been sorted to have its values in descending or-getermine what type of action to perform (a general quergra ¢

der. Sorting the vectors in tH&"° set can be done efficiently with
available numerical tools.

The final step in the standard point based value iteration-alg
rithm involves retaining only the members of th¢ set that are
maximal for some belief in our set:

Tpy1 = arg rﬁ%ﬁA(Fg - b),Vb € sort(B). (16)
We produced the best possible vector in fHeset by using the
sorteda-vectors from thd** ¢ sets. Thus no more changes are re-
quired to the standard algorithm to compute the new valuetiom
Table 2 summarizes how one should apply point-based value it
eration to these special POMDPS; those steps specific toohur s
tion technique are highlighted in bold. The algorithm regsionly
small changes to an already implemented point-based vidue i
ation scheme, yet the computational benefits are subdtaintce
exponentially fewer belief points are needed.

4.2 Using the Permutable POMDP solution

Given a normal value functiow of vectorsl” and a current belief
b, the standard way to determine the next action to take is tb fin
the a-vector fromI" that maximizes the dot produet - b. From
equation 16, each vector has the action associated wiff{tfrem
which it came; this action is the best action for the agenake t

If we use only sorted beliefs to build our value function,rthoair
value function will explicitly only contain sorted-vectors (since
the sorted permutation of the-vectors will be the one that maxi-
mizes the dot produet - b). Given some arbitrary belief, we cannot
simply multiply our current belief with the: vectors explicitly in
our value function—we must identify which permutation oé th
vectors maximizes the expected reward of the bélieTo do so,
we permute the belief into the representative belief semntifly

firmation, or a submission). If the action is of a confirm ormith
type, we use the distribution of the current (unsorted)dbédi de-
termine what state should be confirmed or submitted. For pl@am
suppose there are two possible tasks, “play CD” and “play and

the current beliefis (.1, .9). If the value function stat@sthe sorted
belief (.9, .1), the correct action is to confirm that the usants

the music turned on, then we take the action type—confirm—and
attach it to the most likely state in our actual belief—the-F
determine that the correct action to take on our belief iottfiem

if the user wants to watch TV.

4.3 Extensions to more complex models
We describe extensions to more complex models.

Filling Multiple Slots.

In many dialog management scenarios, the goal of the system
may be to fill a number of “slots” in a knowledge base. For exam-
ple, if an agent is managing a user’s personal calendar,itmead
to discover the intended date and location for a meetingt fiifo
ing dialogs are also common in automated booking systenjsifiL3
which the agent must determine the caller’s origin, desiiestina-
tion, and travel date. In these cases, the agent usuallg@dsdy
filling one slot at a time; in the personal calendar exampleagent
might first determine the date of the user’'s meeting and theito:
cation. This approach can be shown to be optimal if the agent’
actions provide information about only one slot. While ntien
true—the user might also mention the meeting location wiskad
for the meeting time—it can be a useful approximation.

The state space in a slot-filling dialog is usually expredsed
vector of factors, such &= {s4, s;}, wheres, might represent a
meeting date and; represents a meeting location. If the slots are

the bestr-vector (and corresponding action equivalence class) and independent—that is, each action and observation onlgtaftee

then reverse the permutation to identify the true action.
To efficiently choose an action, we first sort our currentéddeli

belief about one slot—and the symmetry conditions hold &ahe
slot, we can get significant computational gains by notirag the

belief may be expressed as

b = kron(bg, by) a7

wherekron is the Kronecker tensor product ahgd andb; can be
updated independently. We compute permuted solutionsaich e
slot separately. If all the slots’ actions are “submit,"rihibe agent
should submit the information in its slots. Otherwise, ibskl
perform a non-submit action from any slots (to not annoy t&eru
it makes sense to fill one slot before continuing to the neg).on

Partially Permutable POMDPs.

In other scenarios, there may be parts of the model that téeno
completely expressed in the symmetric form we describedefo
ample, suppose that there exist two different observatiar eates,
depending on whether the agent is in a noisy or quiet area.ae c
still express the state as a vector of state featdres {s,, sn},
wheres, is the user’s goal state asg is the noise state. Here, we
may not be able to treat the noise and goal state indepepdéme!
value of the noise directly affects our state update, an@midipg
on its value, the optimal policy may require greater or feaan-
firmation questions before submitting a state. Instead, ote that
for a particular value of the noise, the ordering of the gdales
does not matter (since we posited that the user model satibfie
symmetry conditions). Thus, our value function will be syetrit
in blocks. Let there bé& noise states angh goal states, and we
write the belief in the following form:

b= [Pn1,g1,Pn1,92, --Pni,gm,Pn2,g1, ---Pnk,gm]. (18)
Let the vector
a = [Ani,g1,Gnl,g2, -Gnl,gm, An2,g1, --Onk,gm) (19)
be part of the value function; then all vectors
ap = [perm(ani,gi...Gni,gm), PErm(an2,g1...Gn2,gm), ---
, perm(Qnk, g1, ---Ank,gm)] (20)

will also be part of the value function. Such a value functian be
solved for by considering beliefs that have been sorted bykst

bs [SOTt(angl~-~pn1,gm)7 50Tt(pn2¢gl-~-pn2,gm)7

7807‘t(pnk’917 .npnk,gm)] (21)

and the only change required in the standard point-bases vial
eration algorithm is to sort thE*° sets also by blocks. Apply-
ing this approach to the scenario of trying to simultanepiesirn

a user’s preference (reward) model and goal, we found wedcoul
find reasonable approximate solutions in situations wheirggthe
standard algorithm was computationally intractable.

Approximately Permutable POMDPs.

Finally, in some cases, the true model may not be symmetric.
Since similar models have similar policy returns ([5], Lemg),
approximating the true model by a symmetric model may be rea-
sonable in certain situations. In other cases, dependipg ¢f
point-based value iteration used, one can speed up congutat
time by first computing the solution as symmetric model aridgus
the resulting vectors to initialize value iteration for ttnee model
(the solution will converge to the solution for the true miodéh
sufficient backups [4]).

5. RESULTS

We present simulation results on an abstract preferencitaeli
tion POMDP to demonstrate the computational savings from ou
approach. In this POMDP, the state space consistedpfssible

user goal state$si, ..., s» }. The observation space consisted of
n observationg oy, ..., o, } associated with each of thestates as
well as observations™ ando™ for positive and negative confirma-
tions, respectively. Finally, the agent could choose frorae types
of actions. A general query asked the user to state his goabnA
firmation question confirmed a specific goal with the user.tlizas
the agent could choose to submit a particular goal state.

For general queries and confirmation questions, the transit
model was mostly static: with probability 0.99, the usedskstate
did not change. With probability 0.01, the user changed b tp
another state chosen uniformly. If the agent submitted tngect
goal state, the goal state was reset uniformly. The ageptvest
a small negative reward for making various queries, witthaig
penalties for confirming an incorrect goal state and loweajiees
for confirming the true goal state. It received a large negatk-
ward for submitting an incorrect goal and a large positivearel
for submitting the correct goal (table 4).

Table 4 also lists the key parameters of the observation mode
If the agent made a general query when the user's goal stae wa
si, then it observed the associated observatiowith probability
0.5; otherwise it received a noisy observation uniformlyazdom
from the remaining observations. For confirmation questioh
the agent confirmed the true user goal state, it received iiveos
responsep™ with probability 0.8 and an arbitrary response with
probability 0.2. Similarly, if the agent confirmed an inceot state,
then it received a negative responsewith probability 0.8 and an
arbitrary response with probability 0.2.

Table 4: Parameters for Preference Elicitation POMDP.
Pr[hear correct state] from a general query 0.50
Pr[hear correct confirmation] from a confir-0.80
mation

Reward for a general query -2
Reward for a correct confirmation -1
Reward for an incorrect confirmation -5
Reward for a correct submission 100
Reward for an incorrect submission -200

In our experiments, we varied the number of goal states from
5 to 50 and measured the empirical simulation performaree, t
total computation time, and the total numbercafectors for our
technique as well as an optimized version of PBVI [6]. Iiiyighe
agent believed that all possible goal states were equkéiylio be
the user’s true goal state. Each simulated trial was run thi
agent submitted the true user goal state; then the userdssta
was resampled and the agent’s belief reset. Both impleriensa
were run in Matlab on a 1.6GHz computer with 2GB RAM.

Variable Number of Belief Vectors.

In the first set of experiments, we let the number of sampled be
lief points grow linearly with the size of state space; thenber of
beliefs was equal to fifty times the number of hidden statesher
strictly fair, this approach provided the Permutable POMREith
an advantage in that it could represent an exponentiallyiggset
of beliefs for each linear growth in the standard PBVI impéera-
tion. However, including an exponentially growing belief svould
have been computationally intractable, even for the radftismall
numbers of states in question. To speed up convergence &pach
proach performed 10 backups), we included “corner beligfiat
is, beliefs corresponding to each user goal, in the initgiet set.
Since all corner beliefs are permutations of each other,ate that
adding corner beliefs addgd| beliefs to the standard belief set

and one belief to the permuted belief set.

Computation Time, Variable Belief Set Size

=—©— Standard
= @ = Permuted

Log computation time, seconds

.)
5 10 15 20 25 30 35 40 45 50
Number of States

Figure 1: Computation time for solutions with beliefs growing
linearly with the number of states. Note the (natural) log sale
in the time axis of the figure.

Figure 1 shows that computation time required compute the PO
MDP solution as the state space grew. Note the (natural)daig s

on the time axis of the plot—the Permutable POMDP was orders

of magnitude faster than standard PBVI. The computatioe fion
our approach included the time required to sort and remoaebge
beliefs from the belief set used for the permuted solution.

Figure 2 showed that the time required to remove nearbyfbelie
almost doubled the total time required to compute the pexchut
solution. We used a naive algorithm that computed the distan
between all pairs of beliefs to remove near-duplicates; eerso-
phisticated algorithm would additionally speed up our apgh.

Time Required for Permuted Backups and Belief Processing

= @ - Permuted Backups
—6— Total Time

Computation Time, seconds
o
5

.)
10 15 20 25 30 35 40 45 50
Number of States

Figure 2: Total computation time for the permuted solution and
the permuted backups. Processing the beliefs almost doulsle
computation time.

Figure 3 shows the median reward from 500 trials with uppdr an
lower quartiles. Although there were small fluctuationshia me-

dian performance, PBVI and the Permutable POMDP were within

4If we did not remove nearby beliefs, our sorted belief setldiou

each other’s region of variatich.Even though the permuted so-
lution required much less computation, it had essentihiéysame
performance as the standard solution. Also, both appreaciain-
tained their level of performance as the number of stateseased
(we note that this level is near-optimal).

Simulation Performance, Variable Belief Set Size

Median Reward with IQR

—6&— Standard
55} = & = Permuted

5 10 15 20 25 30 35 40 45 50 56
Number of States

Figure 3: Performance of solutions with beliefs growing lin
early with the number of states.

Finally, figure 4 shows the number afvectors in each solution.
Note that the permuted solution required many fewer vedtas
the standard solution, and did not grow appreciably as tma-nu
ber of states increased. This effect fits our intuition tmathis
goal-discovery task, the complexity of the task should notéase
greatly as additional states are added: the optimal pofisgrtially

needs to determine when to make a general query, when to con-

firm the most likely state, and when to submit the most likehtes
These thresholds depend largely on the reward values; lowev
the standard approach was blind to the problem symmetryrarsd t
required beliefs for each option to determine an apprappaticy.

Number of Alpha Vectors, Variable Belief Set Size
2500
—6— Standard |0
= © = Permuted

2000

1500

1000

Number of Alpha Vectors

10 15 20 25 30 35 40 45 50
Number of States

Figure 4: Number of a-vectors in solutions with beliefs growing
linearly with the number of states.

Fixed Number of Belief Vectors.
In the second set of experiments, we capped the number of be-
liefs to 100 points, regardless of the size of the state spaoe

be the same size as the original belief set, and we would see nocomputed 15 backups for each technique. Figure 5 shows the am

gains in computational time. However, we would see a muctemor
accurate policy, since computing the permuted POMDP swiuti
on n beliefs is equivalent to computing the full solution oS!
beliefs). Simulations results demonstrating this effeeteromitted
for lack of space.

unt of computation time spent on the solution as the sizee$thte

5The solution techniques optimized the mean reward, asrislatd
in POMDPs, but the median and the inter-quartile rangesrensrs
to more accurately reflect the asymmetric spread in the data.

space increased. Since the number of beliefs was fixed, thesise
in time came only from handling larger matrices as the stadee
size increased. For larger state spaces, having fewer tapera
with large transition and observation matrices led to aificant
reduction in the computation time for the Permutable POM[2P,
another practical reason for using our approach.

Computation Time, Fixed Belief Set Size

=—©— Standard
= © = Permuted

Log computation time, seconds

.)
20 25 30 35 40 5
Number of States

Figure 5: Computation time for solutions with 100 belief cap

Figure 6 compares the performance of the resulting polid\ss
expected, the performance of the PBVI policy declined asitime-
ber of states increased. The standard approach suffenedtifre
belief cap because as the number of states increased, titasta
solver required beliefs that reflected confusion betwelgpoakible
states. The high variance in performance reflects the fattih
sufficient belief sampling led to policies that were effeetin some
parts of the belief space and not others.

Our approach was shown to be more robust to the limited num-
ber of beliefs since the actual policies were relativelygarand
the small belief set that we used actually represented aonexp
tial number of beliefs. The performance of the permutedt&miu
remained near-optimal for all the state space sizes. Wethat¢he
permuted approach required only 11 supporting belief pomten
with 100 possible goal states to achieve this policy peréorce.

Simulation Performance, Fixed Belief Set Size
-9 -8- 'T """"""""" h)

=—8— Standard
= 8 = Permuted

100

80

60

40

201

Median Reward with IQR
°

20 25 30 35 40 45 55
Number of States

0 5 10 15 50

Figure 6: Performance of solutions with 100 belief cap.

6. DISCUSSION AND CONCLUSION

POMDP that determines what type of action to take based on the
probability of the most likely state. In [13], the action &/fs com-
bined with the most likely state to determine the complete®ar
the dynamics of the summary POMDP must be determined through
sample trajectories in the larger POMDP. Our approachrdiffem
the summary POMDP method in that we do not approximate the
true POMDP with a smaller POMDP; we show that if a POMDP
has a particular structure, it can be solved efficientlydiye Al-
though we presented the permutable POMDP in a prefererze eli
itation context, we also note that it may apply in many sgtin
where an agent must identify a particular target.

Our approach is easily incorporated into most point-baged P
MDP solvers: the solver will then require exponentially &vbe-
lief points for a given desired solution quality. In emp#idests,
we showed that we can speed up computations by several afders
magnitude, allowing us to consider preference elicitaB@MDPs
for state spaces that might otherwise be too large for POMDR-t
nigues. The technique requires specific symmetries in tHd[P®
structure, but in many preference elicitation problemsnaty be
reasonable to approximate the model as having such a s&uctu
Extensions would include developing principled approxiorapro-
cedures based on the permutable POMDP, as well as finding more
compact encoding schemes for models that satisfy the pahieut
POMDP constraints.

7. REFERENCES

[1] C. Boutilier. Planning and programming with first-order

markov decision processes: insights and challenges. Morga

Kaufmann, 2001.

C. Boutilier. A pomdp formulation of preference elidiitan

problems Proceedings of the Eighteenth National

Conference on Atrtificial Intelligenc002.

F. Doshi and N. Roy. Efficient model learning for dialog

management. IRroceedings of Human-Robot Interaction

(HRI 2007) Washington, DC, March 2007.

G. J. Gordon. Stable function approximation in dynamic

programming. IrProceedings of the Twelfth International

Conference on Machine Learnin§an Francisco, CA, 1995.

Morgan Kaufmann.

M. Kearns and S. Singh. Near-optimal reinforcement

learning in polynomial timelCML, 1998.

[6] J. Pineau, G. Gordon, and S. Thrun. Point-based value

iteration: An anytime algorithm for pomdpkICAl, 2003.

K. Regan, R. Cohen, and P. Poupart. The advisor-pomdp: A

principled approach to trust through reputation in eleutro

markets.Conference on Privacy Security and Truad05.

N. Roy, J. Pineau, and S. Thrun. Spoken dialogue

management using probabilistic reasoningPceedings of

the 38th Annual Meeting of the ACHong Kong, 2000.

G. Shani, R. Brafman, and S. Shimony. Forward searchevalu

iteration for pomdpslJCAI, 2007.

T. Smith and R. Simmons. Heuristic search value iterati

for pomdps. InProc. of UAI 2004 Banff, Alberta, 2004.

E. Sondik.The Optimal Control of Partially Observable

Markov Decision ProcesseBhD thesis, Stanford University,

Stanford, California, 1971.

[12] M. T.J. Spaan and N. Vlassis. Perseus: Randomized
point-based value iteration for POMDR®urnal of Artificial
Intelligence Resear¢t24:195-220, 2005.

(2]

(3]

(4]

(5]

(7]

(8]

(9]
[10]

[11]

We presented the Permutable POMDP, an approach for quickly [13] J. Williams and S. Young. Scaling up pomdps for dialogue

and accurately solving POMDPs that commonly arise in prefer
ence elicitation frameworks. In some ways, our approacimis s
lar to that of Williams and Young [13], which creates a sumynar

management: The "summary pomdp" method. In
Proceedings of the IEEE ASRU Workshap05.

