Collision Detection in Legged Locomotion using Supervisedlearning

Finale Doshi, Emma Brunskill, Alexander Shkolnik, Thomaall&r, Khashayar Rohanimanesh,
Russ Tedrake, Nicholas Roy

Abstract— We propose a fast approach for detecting collision-
free swing-foot trajectories for legged locomotion over etxeme
terrains. Instead of simulating the swing trajectories and
checking for collisions along them, our approach uses mache
learning techniques to predict whether a swing trajectory &
collision-free. Using a set of local terrain features, we gy
supervised learning to train a classifier to predict collisons.
Both in simulation and on a real quadruped platform, our
results show that our classifiers can improve the accuracy of
collision detection compared to a real-time geometric apprach
without significantly increasing the computation time.

. INTRODUCTION

Legged locomotion over rough terrain introduces a host
of challenges beyond those typically addressed in the loco-
motion community. Unlike flat terrain—the focus of muchFig. 1. An example where the swing foot trajectory is caliisfree,
of the existing literature—achieving kinematically-fisls, ~Nowever other parts of the swing leg (in this case the elbow))be in

L . L .. . ' collision with the terrain during the swing.
collision-free foot trajectories is non-trivial when waig on

. o . In this paper we present a fast approach to trajectory
rough terrain. Some promising work on uneven terrain has . . . ! . . .
.Callision detection using learning. Instead of simulatamy

been developed based on intelligent hardware design usmgdating a geometric model of the robot during trajectory
compliant legs [1]. These approaches work well with elegarl#[

controllers over a variety of rough terrains, however thaym generation, we build classifiers to predict whether a trajec

. tary is collision-free. The classifier takes in a set of input
not perform as well on terrain where accurate foot placeme . . .
. . . . _data about the current terrain and robot configuration and
is crucial for successful and stable walking (e.g., walkin

along the edge of a cliff). %roduces a label of whether a collision is predicted. We $ocu

Our interests lie in quadruped locomotion over rougﬁpeuﬂcally on the problem of predicting collisions durithg

terrain. In such situations collisions with the terrain Ormotlon of a robot leg and foot during a stepping motion, and

- . . . - ... we refer to this motion as the “swing leg trajectory.” We show
self-collisions while executing leg motion are of signifita that our learnina aoproach produces a sianificant improve-
concern: these collisions can cause to the robot lose isyabil g app P 9 P

and fall, potentially damaging itself, or severely hindee t ment over a s_|mpl_e heuristic W'thOUt. Sl_Jbstant!a-IIy INCegs
, . . . the computation time used for predicting collisions.
robot’s speed in reaching a goal location.

o . i . . . The rest of the paper is organized as follows. Sections
The major issue with computing collision-free trajectsrie ;
is tractability. Testing for collisions between all moving” and Il discuss related work and present the overall
) .system. Sections IV-B and IV-C describe two different super

components (such as the stepping leg) and the terrain EEmw\r/ised learning techniques—AdaBoost and Support-Vector-

a I_arge number of demanding geometric tests. Le_g traJeR/l'achines (SVMs)—for solving the problem. In Section V
tories must also be tested for self-collisions and kinecnati

o . . . we present our empirical results in both simulation and a
feasibility. It is tempting to reduce the complexity of tees real quadruped platform. Finallv. we summarize the paper in
tests with approximations such as testing only for colfisio 9 ped platform. Y, A pap

: . . . Section VI and describe some future directions.
with the moving foot (instead of the full moving leg).
However_, Figure 1 shows a common _failure_ case of such Il. RELATED WORK
assumptions; here, the robot’s calf collides with an oldstac]]))
and prevents the foot from landing on the opposite side. We The graphics community has extensively studied the prob-
note that even if the full geometric was tractable, suctstestem of collision detection (e.g., [2], [3]). Drawing from
would require accurate kinematic and dynamic models of tHgis work, we implemented a baseline predictor that checks
robot that are hard to obtain as calibrations often shithwitthe entire step leg for collisions with every other part of
time. the terrain at some resolutioft for the entire trajectory.

A number of methods improve upon the basic algorithm,

F.Doshi, ~ E.Brunskill, A.Shkolnik, TKollar, ~K.Rohanimesh, |ooking for roots of functions over time of convex polyhedra
N.Roy and R.Tedrake are members of MIT's Computer Science an[4] or using space-timebounds to compute the time of
Artificial Intelligence Laboratory. (f i nal e, emmab, shkol ni k, using sp I u pu I

t kol | ar, khash, russt, ni ckroy) @i t. edu possible intersections [5]. Hubbard [5] also approximétes

surface with a tree of successively finer resolution balls. 2) Joint trajectory controller: Combines plan with a
In the area of legged locomotion, swing-trajectory colli- learned stability function to achieve the desired foot
sion detection typically uses spatial partitioning or bdun placements.

ing volumes hierarchies. For example, Kuffner [6] applies To choose the best foot and leg pose for the next step,
computational geometry to detecting collisions in humenoithe foot placement planner randomly samples hundreds of
robots. After surrounding objects with a ‘protective’ cemv candidate COB and foot placement pairs around the current
hull they bound the minimum separation distance betwegsbsition of the swing foot and scores them based on costs
objects using object velocities and apply a Voronoi algonit such as predicted foot slippage, violation of static sigbil

to find collisions. With clever pruning, a trajectory can beand whether the swing trajectory generated based on a
checked in 10-30 ms; however, this approach does not scalgmple foot placement leads to a collision. The best scoring
to checking many candidate swing trajectories in real timegandidate from the set is executed as the next foot step.

Rapidly-exploring Random Trees (RRTs) [7] has also been For real-time performance, we have a fast deterministic
a popular method for generating collision-free traje@syi algorithm for generating a swing-foot trajectory given the
however this approach requires a collision-detection aheacurrent and next foot-placement. Our algorithm first com-
intermediate point during the trajectory. Thus, RRTs foputes the convex hull of the terrain strip connecting the
generating swing foot trajectory may fail to find a smoottturrent and the next foot placement. The points in the convex
trajectory in real time [8] given the tight time constrants f hull set are translated based on a deflective forcefield on
achieving a desired locomotion speed, as it is required ihe terrain surface to compute a clearance distance. Finall
the littledog locomotion problem. Our approach checks thge take the new set of points and fit a cubic spline which
entire trajectory at once. guarantees a collision-free trajectory for the foot of thleat.

Little work exists on using machine learning for collisionAlthough the foot trajectory is collision-free, other pauf
detection. Quinlan et al. ([10], [9]) examined collisionshe the leg such as the knee or hip may collide with the terrain
AIBO RoboCup domain, where collisions primarily occurwhile following this trajectory.
between legs and between other robots. They first flaggedrFor comparison, we have also implemented a simple
outliers using statistics on successful and colliding tjoincollision detection system usiniine and cylinder models.
angles for a variety of scenarios[9]. They next reducetthe first method (the line model) models each link of the
memory requirements by training an SVM on the data [10kwing leg as a line tangent to the frontal surface of the swing
Using features such as leg joint angles and various gadg. The second method (the cylinder model) fits an axis
parameters, and parameter tuning, they produced a classitifigned bounding cylinder along each link of the swing leg.
with similar accuracy to the first approach. In contrast, werhe swing leg is in collision with terrain if any points of the
investigate this problem in extreme terrains where colfisi object modeling the swing leg penetrates the terrain. Tee li
primarily occur between the robot's legs and terrain rubblemodel is much faster to compute than the cylinder model,
1. QUADRUPED L OCOMOTION hpwever, it fails to detect_collisions that may happen to the

sides and back of the swing leg.

The DARPA Learning Locomotion project is focused Eyen the line model can be slow if we need to check many
on research on learning locomotion controllers to allow Points along the trajectory, and prior to this work, we used
quadruped robot (LittleDog) to traverse rough terrain (seg simple heuristic we title “Pre/Post.” Pre/Post is a simple
Figure 1). LittleDog weighs.0 kg with dimensionst.338 < ¢|assifier that checks whether the initial and final step leg
0.178 x0.142 meters, and total leg length 6f180 meters. A configuration intersect with any part of the terrain using th

high resolution motion capture system (MoCap), the Vicolne model. This heuristic is very fast to compute, but it
MX system, reports the accurate positions of the robot artg)mp|ete|y misses mid-trajectory failures.

the terrain. The average rock size on the terraihi x0.15
meters, and the largest obstacle)i85 x 0.18 meters. IV. LEARNING TO PREDICT COLLISIONS
Since hundreds of potential foot placement and COB pairs
are sampled for each foot step that is executed, any callisio
LittleDog contains 18 DOF, including six unactuated dechecking algorithm must be fast and scale well with the
grees specifying body position and orientation, a two DOlumber of potential foot step trajectories. The geometric
universal joint at each hip, and a hinge joint at each kne@pproaches discussed earlier are very accurate, but they
Each joint contains a position sensing encoder. To achieygquire a large computational cost and are not suitable for
a basic gait, we independently control the robot whole-bodysa| time planning. Our approach to alleviate this problem i
center of mass and the position of a foot, reducing the cbntrgy use machine learning techniques. We employ supervised
problem to six degrees of freedom for the center of mass.jearning to train classifiers that can predict in real time
We rely on a hierarchical decomposition of the controlyhether due to geometric constraints trajectories ardylike
problem consisting of two main components: to cause a collision.
1) Foot placement planner; Computes a center of body Supervised learning methods use a training set of (data,
(COB) trajectory to the goal; searches for the bedhbel) pairs to discover patterns that will allow the cléissi
possible foot placement for the next step. to predict the labels of new data. Here, the data is a vector

A. Control Architecture

TABLE |
THE BASICADABOOST ALGORITHM[11].

Maximum
Offset from ADABOOST

Start or
Finish « Initialize all sample weights to be uniform
e FOrm=1.M:
— Choose weak classifier with the minimum weighted etror
abort if the error is greater than 0.5.

! ! ! ! - Bm = ﬁ
v y v v y — Update the weight distribution. For sampté:
Start Finish % w; = w; if the weak classifier picked the wrong label,
* w; = Pw; if the weak classifier picked the correct label.

- 1

« Output the labek that maximizes th@mec log 5~

Initial N
SIV i

Sampled Terrain Heights
! I

Fig. 2. Cartoon of basic features: we sample terrain heigbteeen the
start and end foot positions using the motion capture systieese values
are used to compute more complex features.

of information about a trajectory, such as the terrain htsigh _.
) . i single feature (or even feature set) was strongly corrélate
and the relative position of the robot’s legs, and the label | . .
. . g .) with the collisions. However, several features were weak
whether that trajectory resulted in a collision with theaér.

To run in real-time, all the elements of input data (feat)xresmdlcators' for example, although the robot suffered from

. o - collisions on all kinds of terrain, more collisions occudre
given to the classifier must be efficient to compute.) o
. . “ N when the robot tried to go down a steep slope with its front
In simulation, the “ground truth” label of whether a U
. .) eg. Used individually, each of these features had an errors
collision occurred was determined by computing the ful : o
. ; o ! - of 30 to 40 percent, too high for any real application.
cylinder model of the robot’s leg; in live experiments with a AdaBoost 111 | lqorithm that bi lecti
real robot the labels were determined by a human watchin aBoost [. .] IS an algorithm that combines a coliection
weak classifiers—trained on different sets of features—

the robot's leg for collisions. Once the classifier was tedin ¢ bett dicti Table IV-B f ! ¢
using the label data, we tested the quality of the classifi get better prediction (see Ta € IV"b Tor an overview o
algorithm). The AdaBoost training process consists of

on a test set of data that the classifier had not encountered: | ds. At the beainni fthe traini «h
The classifier prediction based on the test data is compar%%lvera rounds. € beginning o the fraining processi ea

with a ground truth label to measure the classifier accurac&?mmg sample |s_aSS|gr_1ed a uniform w_e.|ght. Durmg gach
ound, AdaBoost first trains a weak classifier that minimizes

A. Feature Selection the weighted error using the current weights. The weights

A key question is what aspects of a step leg trajecto[?f correctly classified samples are then reduced:; |n each
are both fast to compute and provide information abo pture round, AdaBoos_t gene_rr?\tes a new weak cla53|f|gr th_at
whether the trajectory will collide—this is the question 0]cperfo.rms well on the misclassified sam.plles. We also mamtam
feature selection. Given an initial and final foot placemen® Weight on each selected weak classifier that describes how
we uniformly sample the terrain points on the line connegtinSuccessful it was on the training data. Once AdaBoost is
the foot placements and record the terrain heights in tHEined, each classifier votes for the label on new instances
robot's local coordinate frame (see Figure 2).Transfognint° be labeled proportionally to the weight of the classifier.
the terrain features into the robot's local coordinate fam The quality of the final prediction ultimately depends on
makes the classifier invariant to the global position and orfhe quality of the weak classifiers. We tested linear, logjist
entation of the robot on the terrain. Thus, we can generaliZd quadratic multivariate regression models before dhgos
across a large set of situations which share similar locg€cision trees. Among the weak classifiers, decision trees
terrain features and similar robot poses relative to thallochad the best performance because they were able to handle
terrain. We also include information about the robot's entr highly nonlinear and disconnected decision boundaries. Fo
and desired pose, the robot’s current position, and thditglen €xample, the relevance of many features depended on which
of the swing leg as basic features. of the robot’s legs was moving; decision trees handled these
The features discussed above are can be quickly extracgfations by branching on the front and back legs. Decision
from a planned trajectory. We can ease the burden on tH&eS could also robustly combine discrete and continuous
classifier by also providing features likely to be relevanfiata of different scales. We used a standard decision tree
to the problem. For example, the slope of the terrain dmplementation [12] to create the decision trees.
the height of an obstacle (both which can be computed Section IV-A described how we might create a large
efficiently from the vector of terrain heights), might bevector of basic and derived features as input data for the
strong indicators of whether the trajectory will collidehdse ~classifier. We chose additional features by plotting paaent
additional quantities, computed from the basic trajectorfeatures and visually searching for features that might pro
information, are used as additional features in our classifi vide predictive power. The learning algorithm will identif
Sections IV-B and IV-C will describe the derived featureghe relevant features from the large and potentially rednnd
used to train the respective classifiers. initial feature set, and therefore initially providing paotially
superfluous features will not harm performance. The feature
B. AdaBoost we used included the overall slope of the terrain, the height
In our initial exploration of what derived features wouldof any obstacle the robot was trying to step over (O if there
be strong indicators of a collision, we discovered that nwas no obstacle), and the initial and final slope of the terrai

TABLE I

linearly separable in the input spage, z2, but if the data is
FEATURE SETS USED STARRED SETS WERE MOST DISCRIMINATIVE

projected into a polynomial of the input space €2, z7...)

Set | Features (all sets included the step leg, Pre/Post value) then it becomes linearly separable. More formally, the data
1 overall slope is mapped into a new space using a kernel function and the
g ir:i’t'gl‘tsfgp‘;b“ac'e to be stepped over classifier is chosen which maximizes the margin: the digtanc
Z final slope between positive and negative examples in the feature space
5 initial joint angles A small modification to the optimization performed by SVMs
6_ | final joint angles . allows different weight to be placed on correctly classityi

; ?;f;’nﬁ?%g;ﬁ::%tgemcal terrain heights positive and negative examples, providing a tool to more
9 maximum terrain slope heavily penalize misclassifying colliding trajectories safe

10* | center of body, initial joint angles, initial slope than classifying safe trajectories as collisions.

11* | center of body, final joint angles, final slope We applied SVM classification to attempt to predict leg
12 max height - min height .. .

13| max(depth of dip, height of obstacle) to be stepped ovler COllisions. After exploring the feature space, we elected t
14 | step leg, Pre/Post only use a feature space consisting of the following features:

Each of the derived quantities weakly helped predict & y,z) coordinates of the 10 points marking the leg tra-
collision and was the basis for a weak classifier—a decisidgctory, whether the spline was considered kinematically
tree—that AdaBoost would later combine into a strondeasible to execute, which leg was stepping, the 6 cooreinat
classifier. All together, we used fourteen combinations diescribing the final center of the body, and the start and end
basic and derived features to train fourteen decision tages values for roll, pitch and yaw of the robot’s leg.
weak classifiers (training on the entire feature vectoteimd V. EMPIRICAL RESULTS
of parts of it, was too complicated for one decision tree to ’
handle). Each feature set consisted of a vector contaihingt We tested the classifiers both in simulation and on an
step leg (which was so important we included it in all of ou@ctual quadruped robot. The real world terrain was machined
tests), whether our Pre/Post heuristic predicted a cotijsi from the same specifications used in the simulation, so the
and some other derived data (for example, the initial slop&rrains in both experiments were nearly identical.
of the terrain or a vector of terrain heights). Thus, a decisi The best SVM classifier rarely predicted collisions as non-
tree might first split on the step leg (front or back) and thefgollisions (error rate 1.3%), but at the expense of highalver
split on particular values of the remaining elements of therror rate of 48%. Since the classifier was discarding a very
vectors. Table Il lists all of the feature sets we used. Thi@rge percentage of good samples (i.e., it had a very high
starred features turned out to be the most relevant decisifise positive rate), we elected to focus our attention @n th
trees (those picked first by AdaBoost). AdaBoost classifier which showed superior performance on

The collision detection problem is asymmetric; it is muctpur dataset. The results presented below are based on the
worse to classify a collision as safe than to classify a safddaBoost classifier unless otherwise noted.
tra]_ectory as a collision _(W9 can always sample more s'Fe’R Simulation Results
trajectories). Thus, we wish to bias the classifier to peeali
missed collisions more severely than missed safe trajestor ~AS an initial validation of our model, we first tested the
In order to do this, within the training loop, we both collision learning in simulation. This also allowed us to
reduced the weight of samples that were correctly classifi@$tablish a reliable “ground truth” for our collision detiea
and samples that were misclassified as false alarms. TR¥ using a cylinder model of the moving leg and foot to
missed collision samples (false negatives) remained \uih t determine if a collision would occur. Experience on the ftobo
highest weight, to force the learning to expend more effofiad shown that this geometric model was reliable but slow.
in classifying those training instances correctly in fetur Figure 3 shows how AdaBoost's performance (based on
iterations. Section V-A, we show that this bias significgntl 9-fold cross validation) varies with the number of training

reduced the rate of missed collisions. samples. Approximately 10,000 sample trajectories were
) collected. The error rate drops quickly even with a reldgive
C. Support Vector Machines small number of training samples.

In addition to AdaBoost there exist a wealth of other Figure 4 shows the response of the AdaBoost classifier
supervised classification techniques in the machine leardescribed in Section IV-B as we tuned it. The classifier does
ing literature. One particularly popular approach is Suppowell—false alarm rates of less than 10% and, importantly,
Vector Machines (SVMs). Both SVMs and AdaBoost arenissed collision rates of less than 5%—for many choices
well designed to handle binary classification tasks wheref the parameters. Within the weak classifiers, we found
the input space cannot be linearly separable into the twbat penalizing false-alarms at one-third of the penalty fo
desired classes. While AdaBoost collects weak classifiemsissed collisions produced the best performance. Withen th
tailored to particular examples, SVMs instead project th&daBoost classifier, we reduced the weights of correctly
input space to a higher dimensional space where the dateciassified samples and false-alarm samples equally.
more likely to be linearly separable. The simplest example o Table 1ll shows how long each classifier required on
the benefit of this approach is the XOR function which is nothe machine that was used to run the robot. The times

error as a function of training samples on un-optimized Matlab implementations of the collision

0.2 L .
detectors, and they could be reduced significantly by im-
0.18 false detection plementing them in a faster language.
0.16
014 TABLE Il
© ’ CLASSIFICATION TIME FOR COLLISION DETECTIONTECHNIQUES
g 0.12
S o1 Time for 800 samples (s
@ Pre/Post with Cylinder Model 3.82
0.08 Pre/Post with Line Model 0.15
0.06k AdaBoost 0.33
' SVM 6.89
0.04f
0.02 ‘ ‘ ‘ ‘ ‘ B. Results on the Real Robot
) 1000 2000 3000 4000 5000

number of training samples As a training data set for the physical robot, we hand-
labeled a data set of 341 stepdlo attempt was made to
avoid collisions as the robot crossed the rugged terraip. Th
same people labeled the collisions for consistency.

Fi

g. 3. AdaBoost error rate as the number of training sampkes varied.

L ROC curve over parameter search . Table IV shows errors from a 5-fold cross validation
s from the different classifiers. Since the robot was started i
2005 slightly different positions during each run, and the plkann
2) uses randomized heuristics, both the training and test sets
§ 0.9 contained some variability that suggests that the AdaBoost
9 classifier may generalize to other similar terrains.
§°'85’ As described above, we used the prediction from the
§ 08 Pre/Post heuristic as an additional input into the classifie
5 The resulting classifier was slower than using the Pre/Post
% 0.75¢ heuristic by itself, but as table IV shows, we were able to
P achieve more accurate collision predictions with the Rys{P
g 07 heuristic as input features. The most important predictors
0.65 were the initial and final slopes of the terrain (coupled with

0 005 01 015 02 025 03

9. - 9 the step leg), and the overall terrain trajectory.
rate of non—collisions classified as collisions

TABLE IV

Fig. 4. Operating characteristic as AdaBoost parameters waried.
PREDICTIVE PERFORMANCE OF VARIOUS CLASSIFIERS ON ROBOT DATA

are the average time required_for computing collisions of Missed Colision Detec False Collision
each step, averaged over 42 simulated steps. On each step, tion Detection
approximately 800 trajectories were sampled and evaIuate‘g(rjfﬂgost tog'yl -igij '2%3

.. aBoost Only . .
for collisions. The Pre/Post heuristic described in Sectib e s 1055 3%

was the baseline for our tests. Recall this heuristic ordietd
for collisions at the beginning and end of step and therefore To test the performance of the planner, we collected

often missed collisions that occurred in mid-trajectorg. & . . .
. e additional data in which the foot planner actually used
result, although it was not a very accurate collision detect .

: : . : input from a classifier when choosing what steps to take.

it was the fastest. Using the full geometric cylinder mode], ™ . . . -
. . e interleaved the trials using only the Pre/Post heuristic

was not an option for real-time performance.

Using AdaBoost with the Pre/Post heuristic as an inp with trials using the AdaBoost classifier to avoid bias from
: - Changi ti f th bot (e.g., d li ,
feature took three times as long as the Pre/Post heurlsg anging properties of the robot (e.g., encoder slippage

. . ﬁanging calibration parameters, etc.). In total, we ctdle
alon(.a—.thls roughly corres_pondgd to com.putlng the Pre/Pgég trials (626 steps) of performance data using the AdaBoost
heuristic and then spending twice that time to do the Ad-

aBoost computation. This was fast enough to use in recE\ss,lfler and 26 trials (679 steps) using only the Pre/Post

i The AdaBoost classifier itself ired onlv minuie tﬁ uristic. Table V shows statistics from these trials.iStias
ime. The Adaboost classiler et required only MINUES &g, 1, a5 where there was no collision prediction wereduse
train and cross-validate, even with close to 10,000 sampl

Th ble t Gimi del th h a fairl B train AdaBoost and are included for reference. We found
us, we were able 1o opimize a model through a 1aifly, o, \yith the AdaBoost classifier, we had about 3 fewer
large parameter search over the course of a few hours.

i collisions per run (unpooled t-tegt, = 0.0004) and more
Interestingly enough, the SVM ran slower than the fu”successful trials (2-proportion z-tegt— 0.03)

geometric model on our machine. Since it also took a long ’

t'_me tO. train, we did not test the_SYM further outside of 1Simulator results were not used to train the robot since Isitou

simulation. However, all of these timing numbers are basefllisions were qualitatively different from real world lisions.

TABLE V

significantly more often when using the new collision clas-
PERFORMANCE OF TRAINED CLASSIFIERS ON ACTUAL ROBOT

sifier. While our experimental results are fairly small doe t

Succes$ Mean Missed Mean the temporal expense of running trials on the real robot, the

Rate gg'r']'s"’”s’ g:ic“o” gtﬁs’ results demonstrate the promise and utility of this apgroac
No Avoidance 531 1650 NA 343 Future work should_e_xpand upon feature; and Iab_els are most
Pre/Post Only 0.65 | 5.88 0.18 319 useful to the classifier, and compare this machine learning
AdaBoost & Pre/Post| 0.87 | 3.15 0.11 30.9 approach to other geometry-based approaches.

For increased computational efficiency and robustness,

We collected the data described above in two Stageféj_ture work could also consider a sequential version of
Human-labeling of collisions is inherently subjective, sgdaboost, where a more complex classification scheme is
in the next set of trials we differentiated between serioudS€d only if a simpler classifier is unsure about the safety of
collisions (made a noise or did not allow the robot tcd foot trajectory. Altgrnatiyely, a simple class_ifier coudd
complete its desired step) from minor grazing of the terrai/Sed to separate trajectories into sub-categories sucif@s s
Table VI shows the same statistics for only major collisions/ith potentially beneficial collisions (that might stakgi the
This subset of the complete data set included 16 trials, 418P0f) and with potentially harmful collisions. We exhibit
steps for Pre/Post and 14 trials, 384 steps for AdaBoost. f?Me generalization because the robot walks over a differen

this subset the classifier missed even fewer collisions. ~ Part of the terrain in each trial, but we wish to explore how
the collision checking transfers to new terrain boards.

TABLE VI
PERFORMANCE ON ROBOTPENALIZING MAJOR COLLISIONS ONLY.

Success Mean Missed Mean
Rate Collisions/ | Detection Steps/
Run Rate Run
No Avoidance 0.31 6.50 NA 34.3
Pre/Post Only 0.69 3.63 0.11 30.6
AdaBoost & Pre/Post| 0.93 0.54 0.02 29.0
Anecdotally, the learned collision prediction

to lead to qualitatively different trajectories. The plann
appeared to pick trajectories that not only provided better
footholds, but also reduced the likelihood of a collision. [*]
Many times the robot appeared to take footsteps that were
further away from all obstacles than it would otherwise dol2]
compared to using the Pre/Post heuristic alone to predicgg]
collisions. The results in both the success rate and th
collision rate of the robot support this qualitative diffece.

VI. DISCUSSION AND CONCLUSION 4

We have demonstrated the use of applying a machinél
learning classification technique, AdaBoost, to increfse t
accuracy of predicting collision-free foot step trajeasrfor
robotic quadruped locomotion. By combining an AdaBoostI6]
classifier with a simple collision check at the initial and
desired foot locations, we significantly reduced the numbefz
of collisions that occurred during experiments run on a real
guadruped robot platform compared to only using the simplés]
start and end classifier. The resulting classifier only added
additional 0.0004s of overhead to evaluate each poteotil f
trajectory for a step, and is fast enough to be used as part &
a real time locomotion planner which samples thousands of
potential steps before selecting one to execute.

In contrast to previous machine learning work [10], ou 10
work focuses on detecting collisions over rough, varying
terrain. Detecting collisions in this domain is critical to
ensuring that the robot can successfully reach its goal.
also demonstrated that in addition to reducing the number
of collisions that occurred during a single terrain traaéte
a goal location, the robot also reached the goal statiktical

Finally, our approach is tailored to locomotion over rough
terrain, but it may apply to other robotic applications wher
a large number of checks must be computed quickly, such
as with multi-agent systems.

VIl. ACKNOWLEDGMENTS

The DARPA Learning Locomotion project (AFRL con-
tract #FA8650-05-C-7262) and the National Science Foun-
appearedation Graduate Fellowship provided financial support.

REFERENCES

R. Altendorfer, N. Moore, H. Komsuoglu, M. Buehler, H. Br.,

D. McMordie, U. Saranli, R. Full, and D. Koditschek, “RHex: A
biologically inspired hexapod runner,” 2001.

M. Lin and D. Manocha, “Collision and proximity queries hand-
book of discrete and computational geometry,” 2004.

M. Teschner, S. Kimmerle, B. Heidelberger, G. ZachmdnrRaghu-
pathi, A. Fuhrmann, M. Cani, F. Faure, N. Magnenat-Thalmann
W. Strasser, and P. Wolino, “Collision detection for defaiste ob-
jects,” 2004.

J. Canny, “Collision detection for moving polyhedraMIIT Artificial
Intelligence Laboratory Memano. 806, 1984.

P. M. Hubbard, “Collision detection for interactive @fscs
applications,” IEEE Transactions on Visualization and Computer
Graphics vol. 1, no. 3, pp. 218-230, 1995. [Online]. Available:
citeseer.ist.psu.edu/hubbard95collision.html

J. Kuffner, “Self-collision detection
for humanoid robots,” 2002. [Online].
seer.ist.psu.edu/kuffner02selfcollision.html

S. M. LaValle, Planning Algorithms Cambridge University Press,
U.K., Chapter 5, 2006.

H. Lee, Y. Shen, C. Yu, G. Singh, and A. Ng, “Quadruped itobo
obstacle negotiation via reinforcement learning,” Im Proceedings
of the IEEE International Conference on Robotics and Aut@mna
(ICRA), 2006.

and prevention
Available: cite-

] M. J. Quinlan, C. L. Murch, R. H. Middleton, and S. K. Chpju

“Traction monitoring for collision detection with leggedhbots.”

in RoboCup ser. Lecture Notes in Computer Science, D. Polani,
B. Browning, A. Bonarini, and K. Yoshida, Eds., vol. 3020. rigger,
2003, pp. 374-384.

M. Quinlan, S. Chalup, and R. Middleton, “Applicatior $VMs for
colour classification and collision detection with AIBO gib,” 2003.
[Online]. Available: citeseer.ist.psu.edu/quinlanO8&ation.html

] Y. Freund and R. E. Schapire, “A decision-theoretic egailization of

on-line learning and an application to boosting,’"Baropean Confer-
ence on Computational Learning Thep995, pp. 23-37. [Online].
Available: citeseer.ist.psu.edu/freund95decisiontdin html

[12] “Matlab r2006a,” 2006.

