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Abstract The most difficult—and often most essential—
aspect of many interception and tracking tasks is construct-
ing motion models of the targets. Experts rarely can provide
complete information about a target’s expected motion pat-
tern, and fitting parameters for complex motion patterns can
require large amounts of training data. Specifying how to
parameterize complex motion patterns is in itself a difficult
task.

In contrast, Bayesian nonparametric models of target mo-
tion are very flexible and generalize well with relatively little
training data. We propose modeling target motion patterns
as a mixture of Gaussian processes (GP) with a Dirichlet
process (DP) prior over mixture weights. The GP provides
an adaptive representation for each individual motion pat-
tern, while the DP prior allows us to represent an unknown
number of motion patterns. Both automatically adjust the
complexity of the motion model based on the available data.
Our approach outperforms several parametric models on a
helicopter-based car-tracking task on data collected fromthe
greater Boston area.
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1 Introduction

The success of interception and tracking tasks often hinges
on the quality of the motion models our agent has for pre-
dicting the target’s future locations. These predictions are
especially important when our agent’s sensor range is lim-
ited. Unfortunately, motion patterns of targets are often dif-
ficult to specify from expert knowledge alone. For example,
suppose that our agent is a helicopter that must intercept and
track a car or several cars in a large region such as a city. A
model of traffic patterns may be hard to specify. Even deter-
mining what parameters are important to model the target’s
behavior—and how they should interact—can be a challeng-
ing task.

A data-driven approach to learning the target’s motion
patterns avoids the need for an expert to fully specify the
model. Instead, the agent simply uses previously observed
trajectories of the target to predict the target’s future loca-
tions, where these predictions may depend on both the tar-
get’s current position and past position history. Using a data-
driven approach also side-steps the need to understand the
target’s motivations, which may appear irrational to an out-
side observer. For example, drivers rarely take the minimum-
time route to a location (Letchner et al, 2006); an expert
model that assumes that optimizing travel time is the driver’s
primary objective will likely make poor predictions about a
car’s future locations. Our approach focuses on the features
our own agent needs to make good predictions of where the
targets will be.

While a data-driven approach reduces the need for ex-
pert knowledge, we still need to specify the class of models
to which we expect the target’s motion patterns to belong.
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For example, we may choose to model the target’s motion
as a series of straight-line segments, higher-order splines, or
even cylindrical trajectories. When considering real-world
data, the correct class of motion models is not always obvi-
ous. One solution is to consider sophisticated model classes
with parameters governing the forms of all the motion pat-
terns we expect to occur. While such a flexible model class
may be able to model any observable motion pattern, large
amounts of data will be needed to train the many param-
eters. Collecting sufficient data to train a large number of
parameters may be prohibitively expensive.

In our previous work (Joseph et al, 2010), reviewed in
section 3, we showed that Bayesian nonparametric approaches
to modeling motion patterns are well-suited for poorly un-
derstood environments because they let the data determine
the sophistication of the model—we no longer need to spec-
ify which parameters are important. Moreover, the Bayesian
aspect helps the model generalize to unseen data and make
inferences from noisy data. Specifically, we can model a tar-
get’s motion patterns with a Dirichlet process mixture model
over Gaussian process target trajectories (DPGP). Using this
nonparametric model boosts learning rates by generalizing
quickly from small amounts of data but continuing to in-
crease in sophistication as more trajectories are observed.
We applied this DPGP model to applications tracking a sin-
gle target whose current position was always observed (imag-
ine having a GPS tracker on the target but not knowing where
the target will go).

In this paper we present two key extensions to that pre-
vious work. First, we no longer assume that the target’s po-
sition is available to the agent. Instead, we consider scenar-
ios in which the agent can only observe the target if it is
nearby; now the agent’s goal is to first intercept and then
track the target. Adapting our approach to make predictions
about unseen targets using only partial information is one
of our main contributions. Second, we also consider scenar-
ios where multiple targets must be intercepted and tracked.
Modeling multiple targets fits seamlessly into our DPGP
model, demonstrating both the quality and versatility of our
approach.

The remainder of this article is organized as follows: sec-
tion 2 has a detailed description our DPGP motion model.
The algorithmic approach to solving the model given data
depends on the whether the target’s position is fully observ-
able. Section 3 reviews the utility of using the DPGP ap-
proach for tracking a single agent whose current position
is always known. We present both the algorithm for model
inference (section 3.2) and results (section 3.3) for this for-
mulation. We then demonstrate our extensions in applying
our approach to multi-agent, partially-observable intercep-
tion and tracking scenarios in section 4. Similar to section
3, section 4 also presents the algorithm for inference (sec-
tion 4.2) and then results (section 4.3) for the multi-agent,

Fig. 1 A small set of the raw GPS data points (red) and a single trajec-
tory (green) used to learn our model.

partially-observable scenarios. Sections 5 and 6 discuss the
scenarios in which we expect the DPGP model to perform
well and place it in the context of prior tracking and inter-
ception literature.

2 Motion Model

We represent a target’s trajectoryti as a set ofxy-locations
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of trajectory ti. Depending on how the trajectory data is
collected, these locations may come at irregular intervals:
for example, the distance between(xi
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t) and(xi
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t+1)

may not be the same as the distance between(xi
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t+1)

and(xi
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i
t+2). Trajectories may also be of different lengths

both because some trajectories may be physically longer
than others and because some trajectories may have a larger
number of observed locations along the route.

Throughout the paper we use time-stamped GPS coordi-
nates of greater-Boston taxis from the CarTel project as our
motivating dataset.1 Figure 1 plots some of the trajectories
(red points) on a map of Boston2, emphasizing the discrete
nature of our observations. One sample trajectory is high-
lighted in green, showing how the discrete observations are
irregularly spaced along the trajectory. Working with these
types of trajectories is one of the challenges of this dataset,
which we address by using Gaussian processes to learn a
trajectory model.

The technical details of our motion model are described
in sections 2.1 and 2.2, but we first outline the two key ele-
ments of our motion model and describe how they are com-
bined. Specifically, each motion model is amixtureof mo-
tion patterns. A motion pattern represents a class of similar
trajectories. A mixture model over different motion patterns
defines the probability of each particular motion pattern.

1 CarTel project,http://cartel.csail.mit.edu. The data
was down-sampled to a rate of 1 reading per minute and pre-processed
into trajectories based on if the car had stayed in the same place for five
minutes to indicate the end of a trajectory.

2 http://maps.google.com
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Motion Pattern Many ways exist to describe a class of tra-
jectories: for example, one could use a set of piecewise lin-
ear segments or a spline. We define amotion patternas a
mapping from locations(x, y) to a distribution over trajec-
tory derivatives(∆x

∆t
, ∆y

∆t
) indicating the agent’s future mo-

tion.3 Thus, a motion pattern is a flow-field of trajectory
derivatives in x-y space. Modeling motion patterns as flow
fields rather than single paths allows us to group target tra-
jectories sharing key characteristics: for example, a single
motion pattern can capture all the paths that a target might
take from different starting points to a single ending loca-
tion. Using trajectory derivatives also makes the representa-
tion blind to the lengths and discretizations of the trajecto-
ries.

We use a Gaussian process (GP) to place a distribution
over trajectory derivatives at each location (details in sec-
tion 2.1). Given the target’s current position(xt, yt) and a
trajectory derivative(∆xt

∆t
, ∆yt

∆t
), its predicted next position

(xt+1, yt+1) is given by

xt+1 = xt +
∆xt

∆t
∆t, yt+1 = yt +

∆yt

∆t
∆t.

Thus, the trajectories are easily generated by integratingthe
trajectory derivatives.

Mixtures of Motion PatternsWe expect to encounter trajec-
tories with qualitatively different behaviors and using trajectory-
derivative flow fields as motion patterns helps group together
trajectories with certain characteristics. For example, differ-
ent trajectories may share some segments but then branch off
in different directions. Returning to the CarTel taxi dataset,
we see that scenarios with overlapping paths are common.
Figure 2 shows just one example of two routes that share
a common corridor, but the red trajectory travels east and
the green trajectory travels north. These motion patterns are
not well modeled by traditional techniques such as Markov
chain models that simply try to predict a target’s future lo-
cation based on its current position (and ignore its previ-
ous history), nor can they be modeled by a single trajectory-
derivative flow field. We address this issue by using mixture
models over motion patterns.

Formally, a finite mixture model withM motion pat-
terns{b1, b2, . . . , bM} first assigns a prior probability for
each pattern{p(b1), p(b2), . . . , p(bM )}. Given these prior
probabilities, the probability of theith observed trajectory
ti under the mixture model4 is

p(ti) =

M
∑

j

p(bj)p(ti|θj) (1)

3 The choice of∆t determines the scales we can expect to predict
the target’s next position well, making the trajectory derivative more
useful than instantaneous velocity.

4 Note that throughout the paper at with a superscript, such asti,
refers to a trajectory and at without a superscript is a time value.

Fig. 2 An example of two trajectories that share a road segment. The
red trajectory travels east and the green trajectory travels north. The
Markov model cannot distinguish the two trajectories once they cross,
but the DP model classifies them as two different paths.

whereθj contains the parameters for motion patternbj .
The primary complication with a simple finite mixture

model is thatM is not known in advance, and may need
to grow as more data is observed. In section 2.2, we detail
how we use a Dirichlet process (DP) mixture model to create
an infinite mixture of motion patterns. An important prop-
erty of the DP model is that it places a prior over an infinite
number of motion patterns such that the prior probabilities
{p(b1), p(b2), p(b3), . . .} still sum to one; the probability of
a trajectory is

p(ti) =

∞
∑

j

p(bj)p(ti|θj). (2)

These probabilitiesp(bj), and the number of different mo-
tion patterns in a given dataset, are determined during the
inference process.

Complete Motion ModelWe define themotion modelas a
mixture of weighted motion patterns. Each motion pattern
is weighted by its probability and is modeled as a pair of
Gaussian processes (GPs) mapping(x, y) locations to dis-
tributions over trajectory derivatives∆x

∆t
and ∆y

∆t
(see sec-

tion 2.1). We place a Dirichlet process prior over mixture
weights (section 2.2).5

Under our DPGP model, the prior probability of motion
patternbj is given by its DP mixture weightp(bj). The pos-
terior probability ofbj given a target trajectoryti is propor-

5 This model is similar to models described by Rasmussen and
Ghahramani (2002) and Meeds and Osindero (2006); however, un-
like these previous works, our goal is to cluster trajectories of varying
lengths, not just partition single points.
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tional top(bj) · l(bj; t
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i) describes the likeli-
hood of motion patternbj under trajectoryti:
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(3)

wherezk indicates the motion pattern to which trajectorytk

is assigned, andθGP
x,j andθGP

y,j are the hyperparameters of
the Gaussian process for motion patternbj. Equation 3 may
be applied to trajectories with differing numbers of obser-
vations or even trajectories that are only partially complete,
which is particularly important when we wish to determine
a target’s motion pattern given only a few observations.

2.1 Gaussian Process Motion Patterns

Observations from a target’s trajectory represent a continu-
ous path through space. The Gaussian process places a dis-
tribution over functions (Rasmussen and Williams, 2005),
serving as a non-parametric form of interpolation. Gaus-
sian process models are extremely robust to unaligned, noisy
measurements and are well-suited for modeling the continu-
ous paths underlying our non-uniformly sampled time-series
samples of the target’s locations.

The Gaussian process for a motion pattern that models a
trajectory’s derivative is specified by a set of mean and co-
variance functions. Specifically, given an input(x, y) loca-
tion, the GP model for the motion pattern predicts the trajec-
tory derivatives( ∆x

∆t,
, ∆y

∆t
) at that location. We describe the

mean trajectory-derivative functions asE[∆x
∆t

] = µx(x, y)

andE[∆y
∆t

] = µy(x, y), and implicitly set both of them to
initially be zero everywhere (for allx andy) by our choice
of parameterization of the covariance function. This encodes
the prior bias that, without any additional knowledge, we ex-
pect the target to stay in the same place. Zero-mean GP pri-
ors also simplify computations. The model assumes that tra-
jectory derivatives in the x-direction and y-direction arein-
dependent; while a more sophisticated model could be used
to model these trajectory derivatives jointly (Boyle and Frean,
2005), we found that our simple approach had good empiri-
cal performance and scaled well to larger datasets.

We denote the covariance function in thex-direction as
Kx(x, y, x′, y′), which describes the correlations between
trajectory derivatives at two points(x, y) and(x′, y′). Given
locations(x1, .., xk, y1, .., yk), the corresponding trajectory
derivatives(∆x1

∆t
, .., ∆xk

∆t
) are jointly distributed according

to a Gaussian with mean{µx(x1, y1), .., µx(xk, yk)} and
covarianceΣ, where theΣij = K(xi, yi, xj , yj). In this

work, we use the standard squared exponential covariance
function

Kx(x, y, x′, y′) = σ2
x exp

(

−
(x − x′)2

2wx
2

−
(y − y′)2

2wy
2

)

+ σ2
nδ(x, y, x′, y′) (4)

whereδ(x, y, x′, y′) = 1 if x = x′ andy = y′ and zero oth-
erwise. The exponential term above encodes that similar tra-
jectories should make similar predictions. The length-scale
parameterswx andwy normalize for the scale of the data.
Theσn-term represents within-point variation (e.g., due to
noisy measurements); the ratio ofσn and σx weights the
relative effects of noise and influences from nearby points.
We useθGP

x,j to refer to the set of hyperparametersσx, σn,
wx, andwy associated with motion patternbj (each motion
pattern has a separate set of hyperparameters).6

For a GP over trajectory derivatives trained with tuples
(xk, yk, ∆xk

∆t
), the predictive distribution over the trajectory

derivative∆x
∆t

∗

for a new point(x∗, y∗) is given by

µ∆x
∆t

∗ = Kx(x∗,y∗,X,Y)Kx(X,Y,X,Y )−1 ∆X

∆t
(5)

σ2
∆x
∆t

∗ = Kx(x∗,y∗,X,Y)Kx(X,Y,X,Y)−1Kx(X,Y,x∗,y∗)

where the expressionKx(X, Y, X, Y ) is shorthand for the
covariance matrixΣ with termsΣij = Kx(xi, yi, xj , yj).
The equations for∆y

∆t

∗

are equivalent to those above, using
the covarianceKy.

Estimating Future TrajectoriesAs summarized in equation 5,
our Gaussian process motion model places a Gaussian dis-
tribution over trajectory derivatives(∆x

∆t
, ∆y

∆t
) for every lo-

cation (x, y). If the target’s location is always known, we
only need to predict the target’s position one-step into the
future to track it: even if it goes in an unexpected direction,
we will know that a rare event has occurred and can plan
accordingly. However, if the target’s position is not always
known—for example, if it can only be observed within the
agent’s camera radius—then the agent must be able to infer
where the target might be multiple steps into the future to in-
tercept it again from knowledge about where the target was
located in the past.

In our prior work (Joseph et al, 2010), we used a sim-
ple approach to sample a target’s possible trajectory multiple
steps into the future: starting with the target’s current loca-
tion (x1, y1), we sampled a trajectory derivative(∆x1

∆t1
, ∆y1

∆t1
)

to get a next location(x2, y2). Then starting from(x2, y2),
we sampled a trajectory derivative(∆x2

∆t2
, ∆y2

∆t2
) to get a next

location(x3, y3). We repeated this process until we had sam-
pled a trajectory of lengthL. The entire sampling proce-
dure was repeated from the current location(x1, y1) multi-
ple times to get samples of the target’s future trajectories.

6 We described the kernel for two dimensions, but it can be easily
generalized to more.
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(c) MM Mean Velocity Field

Fig. 3 Velocity fields learned by a GP and a Markov model from three trajectories of an approximately linear motion pattern. The GP generalizes
quickly from the irregularly observed trajectories, whereas the discretization in the Markov model slows down generalization.

While samples drawn from this procedure are an accu-
rate representation of the posterior over trajectories, sam-
pling N trajectories of where the target may beL steps in
the future requiresNL queries to the Gaussian process. It
also does not take advantage of the unimodal, Gaussian dis-
tributions being used to model the trajectory derivatives.Key
to efficiently predicting future trajectories in this work is ap-
plying an approximation of Girard et al (2003) and Deisen-
roth et al (2009) that provides a fast, analytic approach of
approximating the output of a Gaussian process given a dis-
tribution over the input distribution. In our case, our Gaus-
sian process motion model over trajectory derivatives gives
us a Gaussian distribution over possible target next-locations
at each time step. The approximation of Girard et al (2003)
and Deisenroth et al (2009) allows us to string these distri-
butions together: we input a distribution of where the target
may be at timet and a distribution of trajectory derivatives to
get a distribution of where the target may be at timet+1. By
being able to estimate the target’s future trajectories analyti-
cally, we reduce the computations required—onlyL queries
to the Gaussian process are needed to predict the target’s
locationL steps into the future—and avoid the variance in-
troduced by sampling future trajectories.

Comparison with a Markov chain modelInstead of using a
Gaussian process—which defines a distribution over veloci-
ties in a continuous state space—we could imagine a model
that discretizes the state and velocity space into bins and
learns a transition model between state-velocity bins. We
call this alternative the “Markov model” because predictions
about the target’s next position depend only on the target’s
current position and velocity, not its past history.

A key question when trying to train such a Markov model
is the appropriate level of discretization for the state space.
In figure 3, we consider modeling a motion pattern that con-
sists of approximately linear trajectories observed at irregu-
lar intervals. By modeling the velocity field over the contin-
uous space, the GP is able to quickly generalize the velocity
field over region, whereas the Markov model has gaps in-

duced by its discretization. These gaps could be filled by a
coarser discretization; however, the modeling would also be
coarser. The GP automatically adjusts the generalization as
more data arrive.

2.2 Dirichlet Process Mixture Weights

Although a single Gaussian process can robustly model the
variation within many closely related trajectories, it is not
able to capture differences resulting from targets with dif-
ferent destinations or different preferred routes. To model
qualitatively different motion patterns, we can representthe
distribution over behaviors as a mixture of Gaussian pro-
cesses. However, we do not know ahead of time how many
behaviors are sufficient for the model. We use a Dirichlet
process to allow for new behaviors to be added as they are
observed.

The Dirichlet process is a distribution over discrete dis-
tributions in which the number of motion patterns is poten-
tially unbounded, but with the expectation that there are a
few patterns the target tends to follow most of the time.7 If
zi indicates the motion pattern to which trajectoryti is as-
signed, the prior probability that target trajectoryti belongs
to an existing motion patternbj is

p(zi =j|z−i,α)=
nj

N−1+α
, (6)

wherez−i refers to the motion pattern assignments for the
remaining trajectories,α is the concentration parameter of
the Dirichlet process,nj is the number of trajectories as-
signed to motion patternbj , andN is the total number of
observed trajectories. The probability that trajectoryti ex-
hibits a new motion pattern is

p(zi = M + 1|z−i, α) =
α

N − 1 + α
. (7)

whereM is the number of observed motion patterns.

7 See Teh (2007) for an overview of Dirichlet processes.
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Fig. 4 As expected, the number of motion patterns in the taxi dataset
increases as more trajectories are added.

Equation 7 implies that the number of motion patterns
can grow as more data is obtained. This property is key
to realistically modeling targets: the more interception and
tracking tasks we perform, the more varieties of target mo-
tion patterns we expect to encounter. Figure 4 shows how
the number of motion patterns grows (under our model) as
new trajectories are observed for the actual dataset of greater
Boston taxi routes (described in section 3). We show in sec-
tion 3 that we can efficiently plan even when the number
of actively observed motion patterns is unknown; moreover,
this flexibility yields significantly improved results in the
performance of the planner.

DP Trajectory Classifying ExampleJust as the Gaussian
process in section 2.1 allows us to model motion patterns
without specifying a discretization, the Dirichlet process mix-
ture model allows us to model mixtures of motion patterns
without specifying the number of motion patterns. One could,
of course, simply search over the number of motion patterns:
we could train models with different numbers of patterns,
examine how well each mixture model explains the data, and
finally choose the best one. However, as we see below, this
search requires much more computation time than using a
Dirichlet process to automatically determine the number of
patterns, with similar performance.

We compare the DPGP to a set of finite mixture models
that also use Gaussian processes to model motion patterns
(that is, the finite mixture model first described in equa-
tion 2). We consider the helicopter-based tracking scenario
for a data set of taxi trajectories. Each model was trained on
a batch of 200 trajectories using five different initializations.
We tested tracking performance on a set of 15 held-out test
trajectories. None of the models were updated during the
testing phase.

The results in figure 5 show that while the finite GP-
based models perform well overall, our DPGP model has
nearly the best performancewithout having to perform a
search over the finite model space. This last point is im-
portant, not only because a search over finite models would
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Fig. 5 Performance on 15 held-out test trajectories vs. model sizefor
a variety of finite models (black) and the DPGP (blue) trainedon 200
trajectories. The error bars represent the standard deviation of the re-
ward from five runs. Note the inferred DPGP model has model size
error bars also due to variation in the estimated model size for each
run.

require more computation but also because the search re-
quires us to choose a regularization criterion to avoid over-
fitting. Standard criteria, such as the Bayesian information
criterion (Raftery, 1986) cannot be applied in this context
because the GP contains an unbounded number of param-
eters; thus we must choose from various cross-validation
or bootstrap procedures. The DPGP provides a principled,
simple-to-use regularization criterion within its model.

Searching in the space of finite models is especially com-
putationally expensive when the data arrives online and the
number of clusters are expected to grow with time. (The DP
can update the number of clusters incrementally.) To gain
insight into the extra computation cost of this search pro-
cess we implemented EM where every 10 paths we search
over models sizes that are within five clusters of the current
model. Figure 6 shows run time as the number of training
paths increase for our DPGP model and this adaptive EM
technique. The running time grows exponentially longer for
EM with model search compared to the DPGP.

3 Application of Tracking with Full Information

We first consider the case in which our agent has access to
the target’s current position but needs to be able to predictits
future position to track it effectively. We call this the “full in-
formation” case because this scenario implies that the agent
has access to sensors covering the environment such that the
target’s current state is always known (up to time discretiza-
tion). For example, we may be given location information
from a dense sensor network. In this section, we formalize
the tracking problem and describe the process of training
a motion model for this full-information tracking task. We
next provide results for our tracking problem applied to two
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Fig. 6 Run time vs. number of paths for adaptive EM and our DPGP
model.

targets with completely different motion models, one syn-
thetic and one built from a real-world dataset. In Section
4, we will relax the assumption of a dense sensor network,
and show how to extend our approach to target interception
given information from a sparse sensor network.

3.1 Tracking Problem Formulation

Since the target’s current position is known at every time
step, we can formalize the scenario as a Markov decision
process (MDP), a common tool for autonomous decision
making. An MDP is defined by a set of states, a set of ac-
tions, a transition function, and a reward function. Here,
the state is the joint position of our agent and the target
(xa, ya, xtarget, ytarget). Given an action and our agent’s
current position(xa

t , ya
t ), we assume that our agent’s next

position (xa
t+1, y

a
t+1) is deterministic and known. In con-

trast, the target’s transitions are stochastic over the continu-
ous space; we can only place a distribution over the target’s
next position(xtarget

t+1 , y
target
t+1 ) based on our motion model.

At each step, our agent incurs some small cost for moving,
and receives a large positive reward each time it shares a grid
cell with the target. For this type of interception and tracking
scenario the policy is fairly insensitive to the reward values.
Given an MDP, we can find the optimal policy using stan-
dard forward search techniques (Puterman, 1994).

3.2 Model Inference

Given a set of target trajectories, we can train the DPGP
model from section 2 and use it to make predictions about
future trajectories. Since exact inference over the space of
DPs and GPs is intractable, we describe a process for draw-

Algorithm 1 Motion Model Inference
1: for sweep = 1 to # of sweepsdo
2: for each motion patternbj do
3: Draw the GP hyperparametersθGP

x,j , θGP
y,j

4: end for
5: Draw the DP hyperparameterα

6: for each trajectoryti do
7: Drawzi using equations 8 and 9
8: end for
9: end for

ing samples from the posterior over motion models. These
samples are then used by our agent for planning.8

3.2.1 Training the Model

Our model contains two sets of parameters—the DP mixture
weightsp(bj), the motion pattern assignmentszi, and the
DP hyperparameterα—the GP hyperparametersθGP

x,j , θGP
y,j

and the trajectories assigned to each motion pattern cluster.
Following the work of Rasmussen and Ghahramani (2002)
and Rasmussen (2000), learning the model involves Gibbs
sampling the parameters (see algorithm 1).

We first resample eachzi in turn, using the exchange-
ability properties of the DP and GP to model the target tra-
jectory ti as the most recently observed target. The proba-
bility that the trajectoryti will be assigned to an instantiated
motion pattern is

p(zi = j|ti, α, θGP
x,j , θGP

y,j ) ∝ l(bj; t
i)

(

nj

N − 1 + α

)

(8)

wherel(bj; t
i) is the likelihood of motion patternbj from

equation 3 andnj is the number of trajectories currently as-
signed to motion patternbj. The probability that the trajec-
tory ti belongs to a new motion pattern is given by

p(zi = M + 1|ti, α) ∝
∫

l(bM+1; t
i)dθGP

x,M+1dθGP
y,M+1

(

α

N − 1 + α

)

, (9)

and we use Monte Carlo integration (Bishop, 2006) to ap-
proximate the integral. The likelihood from equation 8 also
must be approximated for popular motion patterns, as the
computations in equation 5 are cubic in the cluster sizenj .
Similar to Rasmussen and Williams (2005), we approximate
the likelihood for these larger clusters using theNmax tra-
jectories that are closest to the trajectoryti.9

The DP concentration hyperparameterα is resampled
using standard Gibbs sampling techniques (Rasmussen, 2000).

8 The inference approach described here is taken from our previous
work (Joseph et al, 2010).

9 We tested the validity of this approximation by comparing approx-
imations in which only the nearest points to the true likelihood were
used and found no practical difference when discarding 75% of trajec-
tories for large clusters.
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The GP length-scale and variance hyperparameters are more
difficult to resample, so we leverage the fact that their pos-
teriors are extremely peaked and instead always set them
to their maximum likelihood values (using gradient ascent).
In applications where the posteriors are less peaked, hybrid
Monte Carlo techniques may be used (Duane et al, 1987).

3.2.2 Classification and Prediction with New Trajectories

The motion model from algorithm 1 can now be used to
predict a target’s future locations, given a partial trajectory
ti. We first apply equations 8 and 9 to compute the rela-
tive probability of it belonging to each motion patternbj .
Equation 3 is used to compute the likelihoods. Just as in sec-
tion 3.2.1 where we trained the model using complete target
trajectories, the partial trajectory may contain any number of
points. We can use the same equations 8 and 9 to determine
the most likely motion patterns for the partial trajectory.

For each likely patternbj, we first compute the expected
trajectory derivatives(∆x

∆t
, ∆y

∆t
)j conditioned on GP parame-

ters(θGP
x,j , θGP

y,j ) (equation 5). The expected trajectory deriva-
tive is a weighted average over all the conditional deriva-
tives

∑

j p(bj)(
∆x
∆t

, ∆y
∆t

)j .10 We apply this expected trajec-
tory derivative to the target’s most recent location to predict
where it will be in the future.

3.3 Results

In this section we describe our results on two example sce-
narios. The first is a synthetic single-trajectory scenariowhere
the agent must intercept and track 50 targets, one after the
other. The second scenario is a (simulated) helicopter-based
tracking scenario in which the targets are cars whose paths
are collected from a real dataset. In both cases, we tested
our models in an online fashion: initially our agent had no
experience with the target; after each episode, the target’s
full trajectory was incorporated into the motion model.

We compare our DPGP motion model to a Markov model
that projects positions and velocities to a discretized grid and
uses the trajectory data to learn target transition probabilities
between grid cells. The Markov model predicts a target’s
next grid cell using the transition probabilities stored atthe
grid cell closest to the target’s current position and veloc-
ity. In contrast to the Markov model, which ignores trajec-
tory history, the DPGP model considers the entire observed
portion of the trajectory when predicting both the target’s
motion pattern and future trajectory.

10 In practice, we found that the motion pattern likelihoods were
highly peaked. In this situation, it was sufficient to only consider the
maximum likelihood motion pattern when predicting the future loca-
tions in partial trajectories.
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Fig. 7 Several trajectory samples from the CORRIDORscenario, where
targets roughly following a straight line

3.3.1 Results on a Simple Synthetic Example

We first apply our approach to a simple example involving
a target following a straight line with occasional deviations
(for example, walking along a puddle-covered road). The
agent receives a reward of -10 for every time step until it in-
tercepts the target, whereupon it receives a reward of +100.
The agent’s task involved intercepting and tracking 50 tar-
gets one after the other. We call this the CORRIDOR sce-
nario. Figure 7 shows several trajectories from this example.

Figure 8 shows the results for five repetitions of this set
of tasks. For comparison, we plot the results of both the
Markov model and a naive pursuit approach that moves the
agent to the target’s most recent position. Overall, we see
that while the agent planning with the Markov models with
various initializations eventually reaches the same levelof
performance as the agent using the Gaussian process, the
Gaussian process motion model learns faster from the data.
Figure 9 shows an example planning sequence derived us-
ing the Gaussian process motion model in which the agent
intercepts the target.

While this is a simple and easy example, we note that the
DPGP still outperforms the other models. The DPGP learns
the model almost instantaneously, but the Markov model re-
quires approximately 50 trials before matching the perfor-
mance of the DPGP.

3.3.2 Results on a Helicopter-based Tracking Scenario

Next, we tested our approach on a helicopter-based target-
tracking scenario.11 To model the helicopter and its rewards,
we place a20×20 grid over a city (an area of approximately

11 Results in this section are also described in our previous
work (Joseph et al, 2010).
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(a) t = 2
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(b) t = 3
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(c) t = 9

Fig. 9 A planning episode for a single path in the CORRIDORscenario. Agent positions are shown in blue and untagged target positions are shown
in dashed red (before they are tagged) and dashed green (after they are tagged). The small blue circle around the agent signifies the tagging range.
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Fig. 8 Sliding window average of per-episode rewards achieved by dif-
ferent models on the CORRIDORscenario. Error bars show the 95%
confidence interval of the mean from five repeated runs.

10 square miles) and represent the helicopter’s state with the
closest grid cell. At each time step, the helicopter can stayin
place, move one cell, or move two cells. These actions result
in rewards of 0, -1, and -2, respectively. The helicopter also
receives a reward of 10 for each time step it shares a grid cell
with the target car. While a real “chase” scenario would have
many more complexities, this simplified tracking task allows
us to show empirically that our model, initially trained on
likelihood-based criteria, also performs well on a planning
problem based on real data.12

We tested both our DPGP and the Markov model on 500
trajectories taken from the CarTel dataset of time-stamped
GPS coordinates of greater Boston area taxis. Training tra-
jectories were randomly drawn from this set of 500 without
replacement until all 500 trajectories were incorporated.The
Markov model was initialized with a uniform prior, and its
transition probabilities were updated as new trajectoriesar-
rived. To assess the effect of discretization granularity on the
Markov model, we evaluated Markov models with differ-
ent position and velocity resolutions. Thex andy-positions

12 Likelihood-based methods try to explain the data well, while the
goal of the planning problem is to maximize rewards. A model that best
explains the data is not guaranteed to be the best model for planning.

were discretized on a20 × 20, 40 × 40, or a60 × 60 grid
(the helicopter’s discretization never changed). Velocity was
either discretized into four or eight states. The models with
finer discretizations were more expressive but require more
data to train effectively.

After each trajectory was completed, our DPGP driver
model was updated using algorithm 1. Each update was ini-
tialized with the most recently sampled model. Since a full
update required significant computation, new trajectorieswere
initially clustered with their most likely motion pattern (which
could have been a new pattern) using equations 8 and 9.

Every 10 new trajectories, a complete set of 5 Gibbs
sweeps (algorithm 1) were run to update the model parame-
ters and trajectory assignments (we found that samples gen-
erally stopped changing after the first 2 sweeps). The noise
parameterσn in equation 4 was fit from the current trajec-
tory set. While the DPGP model required more computation
than the Markov model (about 10 times slower), it could still
incorporate a new set of samples in minutes, an update rate
fast enough for a real scenario where the model may be up-
dated several times a day. The planning time was nearly in-
stantaneous for both the DPGP and the Markov driver mod-
els.

We first carried out a series of experiments to evalu-
ate the quality of our models. Example predictions of the
DPGP and Markov models are seen in figure 10. The solid
circles show a partial trajectory; the open circles show the
true continuation of the trajectory. The cyan, red, and blue
curves show the continuations predicted by the DPGP model
and two Markov models. With only 100 training trajecto-
ries, none of the models predict the full path, but the DPGP
is close while the other models are completely lost. As more
training data is added, the DPGP and the finer-grained Markov
model match the true trajectory, while the simpler Markov
model is not flexible enough to fit the data.

As the goal of our model is to predict the motion of mo-
bile agents within a planner, we compared the performance
of planners using the DPGP and Markov models, as well as
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(a) 100 paths
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(b) 300 paths
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(c) 500 paths

Fig. 10 Predictions given a partial path for the DPGP and two Markov models for various amounts of training data. Trajectories were drawn
randomly from the full dataset without replacement.

a naive pursuit approach that simply assumed the vehicle’s
position at timet+1 would be the same as its location at time
t. We also evaluated a simple k-nearest neighbor technique
that, given an(x, y) point, simply searched the training set
of trajectories for nearby(x, y) points and interpolated the
trajectory derivatives∆x

∆t
and∆y

∆t
from the trajectory deriva-

tives of nearby training points.13 Finally, we evaluated a GP
model that was fit to only the current trajectory and ignored
all past training data. This single GP model ensured that the
previous trajectories were important for making predictions
about the current trajectory, that is, the current trajectory
could not be well-predicted based on its own velocities.

Figure 11 shows the cumulativedifferenceof total re-
ward between all the approaches and naive pursuit method.
The k-nearest neighbor and simple GP rarely out-perform
pursuit. The Markov models initially do worse than pursuit
because they have many parameters (making them vulner-
able to over-fitting) and often make incorrect predictions
when the agent observes a trajectory in a sparse region of
their state space. In contrast, the DPGP starts out similar to
pursuit, since the zero-mean prior on trajectory derivatives
naturally encodes the bias that, in the absence of other data,
the car will likely stay still. The DPGP model quickly gener-
alizes from a few trajectories and thus attains the highest cu-
mulative rewards of the other methods. The Markov models
eventually also exhibit similar performance, but they never
make up for the initial lost reward.

4 Interception and Tracking with Partial Information

We now consider the case in which the agent does not al-
ways have access to the target’s current location. Instead,
we assume that the agent has a sensor that will provide a
perfect measurement of the target’s location if the target is

13 For reasonably dense data, Gaussian process and nearest neighbor
approximations are very close; thus, the k-nearest neighbor technique
also served as a close approximation of a solution trained ona single
GP for the entire dataset.
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Fig. 11 Cumulative difference in reward from the pursuit approach for
the DPGP model, various Markov models (MM), k-nearest neighbors
(KNN), and a GP fit to the current trajectory (GP) (higher values are
better).

within some observation radius of the agent, and no mea-
surement otherwise. The agent’s task is to first intercept the
target — maneuver to within some small interception radius
of the target for “inspection” — and then to keep the target
within its larger observation radius.

In many senses, this problem formulation is a more re-
alistic scenario in that we do not assume a sensor network
will always provide the target’s location. However, because
the agent can only observe the target when it is near it, it no
longer has full trajectories to cluster into motion patterns.
Thus, a key additional step in the partially observable case
is that the agent must now infer where the target when it was
not being observed. This information is needed both to de-
termine which motion pattern the target was exhibiting and
to update the characteristics of a motion pattern cluster from
partial trajectories.

We first formalize the model and detail the inference
procedure; we next show how our motion model helps the
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agent intercept and track targets in a synthetic domain (sec-
tion 4.3.1) and a helicopter-based search and tracking sce-
nario using the real-world taxi data (section 4.4).

4.1 Interception and Tracking Problem Formulation

Since the target’s current position is now potentially un-
known at every time step, we formalize the interception and
tracking scenario as a partially observable Markov decision
process (POMDP). In addition to the states, actions, tran-
sition function, and reward function present in an MDP, a
POMDP also includes a set of observations and an observa-
tion function.

As in the fully observable MDP case (section 3), the
state consists of the joint position of our agent and the target
(xa, ya, xtarget, ytarget). Given an action and our agent’s
current position(xa

t , ya
t ), we assume that our agent’s next

position(xa
t+1, y

a
t+1) is deterministic and known. However,

the target’s position(xtarget, ytarget) may no longer be ob-
served. Instead, our agent receives an (accurate) observation
of the target’s position if the target is within an observation
radiusrobs of our agent. Otherwise our agent receives no
information about the target’s position. Essentially, we are
relaxing the assumption of the previous section that the tar-
get is tracked by a dense sensor network.

Our agent gets target information at irregular intervals
from a sparse sensor network, and must model the target’s
behavior and plan trajectories to intercept the target given
imperfect information about the current target’s location. As
before, the target’s transitions are stochastic over the contin-
uous space; we can place a distribution over the target’s next
position(xtarget

t+1 , y
target
t+1 ) based on our motion model. The

agent receives a large one-time reward for being within a
small interception radius of the target (which is significantly
smaller than the observation radius and a small tracking re-
ward for every target within its observation radius.

The inference procedure for learning the target motion
models (algorithm 2) is described next in section 4.2; given
this model and the remaining problem parameters, the agent
chooses actions using a standard forward search (Ross et al,
2008).

4.2 Model Inference

Since our agent sees a target’s location only when the tar-
get is within a given observation radius, the target trajec-
tory that the agent observes will often be disjoint sectionsof
the target’s full trajectory. Fortunately, the Gaussian process
does not require continuous trajectories to be trained, and
the Dirichlet process mixture model can be used to classify
partial paths that contain gaps during which the vehicle was
not in sight. In this sense, the inference approach for the full

Algorithm 2 Partially Observable Motion Model Inference
1: for sweep = 1 to # of sweepsdo
2: for each trajectoryti do
3: for each time stepn do
4: if (xtarget

t , y
target
t ) was not observedthen

5: Draw(xtarget
t , y

target
t ) using equation 5

6: if (xtarget
t , y

target
t ) was within robs of (xa

t , ya
t )

then
7: Reject sample, go to 5
8: end if
9: end if

10: end for
11: end for
12: for each motion patternbj do
13: Draw the GP hyperparametersθGP

x,j , θGP
x,j

14: end for
15: Draw the DP hyperparameterα

16: for each trajectoryti do
17: Drawzi using equations 8 and 9
18: end for
19: end for

information case (section 3.2) also applies to the partial in-
formation case. However, using only the observed locations
ignores a key piece of information: whenever the agent does
not see the target, it knows that the target is not nearby. In
this way, the lack of observations actually provides (nega-
tive) information about the target’s location.

To leverage this information, we use Gibbs sampling to
sample the unobserved target locations as well as the trajec-
tory clusterings. Once the partially observed trajectories are
completed, inference proceeds exactly as in the full infor-
mation case. Specifically, we alternate resampling the clus-
ter parameters (section 3.2) with resampling the unobserved
parts of each target’s trajectory. Given all of the other tra-
jectories in an incomplete trajectory’s cluster, we can sam-
ple the missing sections using the prediction approach in
section 3.2.2; this approach also ensures that the filled in
trajectories connect to observed segments smoothly. If the
sampled trajectory crosses a region where the agent could
have observed it—but did not—then that sample is rejected,
and we sample a new trajectory completion. This rejection-
sampling approach ensures that we draw motion patterns
consistent with all of the available information (see algo-
rithm 2).

To predict future target positions, several of the sam-
pled trajectory completions are retained and averaged to pro-
duce a final prediction. Each trajectory completion suggests
a different Gaussian process motion model, and is weighted
using Bayesian model-averaging. Using the final velocity
prediction, computed as the weighted average of individ-
ual model predictions, we can then apply the prediction and
classification approach in section 3.2.2 for intercepting and
tracking new targets.
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4.3 Results

In this section, we apply our DPGP model to two partially
observable interception and tracking problems. The first isa
synthetic example designed to show the basic qualities of the
DPGP in the partially observable case. In the second prob-
lem, we return to a more challenging, partially observable
version of the taxi tracking scenario from section 3. As in
the fully observable case, we tested each model in an online
fashion: initially the agent had no experience with the tar-
get; after each episode, any information it received about the
target was incorporated into the motion model. Specifically,
if the agent only observed the target at certain times, only
those locations were used to update the motion model. The
agent does not receive any additional information about the
missed observations of a target’s trajectory after an episode.

In all of the scenarios, we compared our DPGP algo-
rithm to a pursuit forward search algorithm and a Markov
model. The pursuit algorithm goes to the target’s last ob-
served location but uses forward search to plan about how
best to intercept and track all three targets. The Markov mod-
els use a position discretization equal to the interceptionre-
gion with x andy velocity each discretized into two bins.
The transition matrix is initialized with a small probability
mass on self transitions to encode the bias that in the absence
of data the target will tend to stay in the same location. With-
out this bias the model performs extremely poorly initially
and would be an unfair comparison to our model which has a
similar prior bias (section 2.1). The Markov model also uses
forward search to plan for the helicopter. While we could
have used other Markov models with more bins, the results
from section 3.3 show us that these Markov models may
perform better in the limit of infinite data but with the small
data set here a Markov model with a small number of bins
will perform the best.

4.3.1 Results on a Synthetic Multi-Target Scenario

We first illustrate our approach on a synthetic interception
and tracking problem based on Roy and Earnest (2006). In
this problem, illustrated in figure 12, the agent starts nearthe
opening on the far right and must track three targets which
start from the right side of the region and simultaneously
move to three different target locations on the left wall. Tar-
gets have 0.75 probability of going above the central ob-
stacle and 0.25 probability of going below it. The agent re-
ceives a reward of -10 for every time step until it intercepts
the target, whereupon it receives a reward of +100. Addi-
tionally, it receives a reward of +1 for every target within its
observation radius. We call this the BLOCKS scenario.

Figure 13 shows the performance of each approach over
five runs, where each run consists of 100 episodes. The er-
ror bars show the 95% confidence interval of the mean from

Fig. 12 Search and tracking task in the synthetic BLOCKS scenario.
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Fig. 13 Sliding window average of per-episode rewards achieved by
different models on the BLOCKS scenario. Error bars show the 95%
confidence interval of the mean from five repeated runs.

the five runs. In the figure, not only are the means of the
DPGP approach higher than the other approaches, but in
practice it scores significantly better on each individual run.
The Markov models, despite requiring a fair amount of data
to start making relatively good predictions, do outperform
the simpler strategy. Figure 14 shows parts of a single plan-
ning episode, where the helicopter initially intercepts one
target going below the obstacle before pursuing the last two
above the obstacle.

Since this is a synthetic example, we can also compare
the motion patterns found to the true underlying patterns in
the model. The model has six patterns: the target can go ei-
ther above or below the obstacle to reach one of the three
final locations on the left wall. The number of clusters found
by our DPGP approach as a function of training paths is
shown in figure 15. In the beginning, when the agent has
seen relatively little data, it maintains a smaller number of
motion patterns. As the agent observes more trajectories, we
see that the number of motion patterns settles around the
true number (the error bars show 95% confidence intervals
of the mean). By the end of the 100 trials, if two trajecto-
ries belonged to the same true cluster, then our DPGP model
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(a) t = 3
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(b) t = 6
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(c) t = 9

Fig. 14 A planning episode in the BLOCKS scenario. Agent positions are shown in blue and target positions are shown in red before they are
intercepted and green after. The small blue circle and the large cyan circle around the agent signify the interception region and observation radius,
respectively. Target locations that were within the agent’s sensor range are marked by× symbols, and target locations beyond the agent’s sensor
range are marked with◦ symbols.
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Fig. 15 Number of discovered target motion patterns in the BLOCKS

scenario.

placed them in different clusters with probability 0.2625;if
two trajectories actually belonged to separate clusters, then
our DPGP model placed them in the same cluster with prob-
ability 0.1567. Some of this clustering error is due to our
agent being out of range of the target resulting in some tra-
jectories not containing the full location history. In fact, ap-
proximately 20% of the data points were not observed dur-
ing the trails. These statistics, consistent over five runs of the
100 episodes, strongly suggest that our DPGP model was
learning key clustering characteristics of the target motion
patterns.

4.4 Results on a Helicopter-based Multi-Target Scenario

We next applied our approach to a helicopter-based search
and tracking scenario that used the same taxi dataset de-
scribed in section 3.3. We assume that the agent was given
the targets’ true initial locations and velocities from a ground-

based alert network. After being given this initial piece of
information about the targets, the target states are no longer
directly accessible, and the helicopter receives information
about a target’s location only if the target is within about 1.5
miles (a quarter the map area) of the helicopter. The inter-
ception radius is 0.25 miles (a twenty-fifth the map area).
The reward function is identical to the one described in sec-
tion 4.3.1.

The results comparing our DPGP approach to the same
control strategies from section 4.3.1 are shown in figure 16
and figure 17, with the error bars showing the 95% confi-
dence interval of the mean for the five runs of 150 tasks.
Using our DPGP approach for modeling the targets results
in much better interception and tracking performance from
the start. Unlike the simpler BLOCKS scenario, the Markov
models do no better than simple pursuit after 150 episodes.
Figure 18 shows the number of clusters found by the DPGP
approach as a function of training paths. As expected from
a real-world dataset, the number of motion patterns grows
with the number of episodes as new motion patterns ob-
served in new trajectories. Finally, figure 19 shows an ex-
ample episode where the helicopter first intercepts each tar-
get and then finds a location where it can observe multiple
targets to keep them localized.

5 Discussion

Using our Bayesian nonparametric DPGP approach for mod-
eling target motion patterns improved our agent’s ability to
predict a target’s future locations from relatively few exam-
ples. A key advantage of the DPGP model is that it provides
a way of scaling the sophistication of its predictions given
the complexity of the observed target trajectories: we could
model motion patterns directly over a continuous space with-
out needing to specify discretization levels or expected curves.
In contrast, the Markov models suffered because even at a
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Fig. 16 Sliding window average of per-episode rewards achieved by
different models on the taxi multi-target interception andtracking task.
Error bars show the 95% confidence interval of the mean from five
repeated runs.
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Fig. 17 Results from the taxi multi-target interception and tracking
task showing cumulative reward achieved by different models on the
BLOCKS scenario. Error bars show the 95% confidence interval of the
mean from five repeated runs.
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Fig. 18 Number of discovered motion patterns for the taxi dataset
search and tracking task.

“reasonable” discretization, these models needed to trainthe
motion model for every grid cell—which required observing
many more trajectories.

One way to think about the DPGP is as a type of hidden
Markov model (HMM), where the future trajectories of the
agent are Markov conditioned on some hidden (instead of
observed) state. Indeed, introducing a hidden variable to de-

scribe a trajectory type or movement mode is a standard way
to avoid issues such as the Markov model’s confusion over
crossing paths (figure 2). However, standard HMM-based
approaches would still typically need to define the number
of trajectory typesa priori and commit to a level of dis-
cretization. The DPGP can be viewed as an HMM model in
a continuous space with an unknown number of trajectory
types.

While we focused on the motion patterns of taxis in the
Boston area, as seen in our synthetic example, the DPGP
approach is not limited to modeling motion patterns of cars.
It is meant as a far more general mobile agent model, which
models a wide variety of trajectories over a continuous space
as long as the targets motions obey local smoothness and
continuity constraints—as seen in section 4.4, paths and tra-
jectory types can be inferred from even sparsely observed
targets if the smoothness assumptions imposed by the GP
model are true. We would expect the DPGP model to have
difficulty modeling trajectories where smoothness assump-
tions about the trajectory derivatives could not be charac-
terized by the single distance parameter in the GP covari-
ance kernel: for example, if trajectories tended to have tight
curves or kinks. Nonstationary GPs could be used in these
situations (Meiring et al, 1997; Paciorek and Schervish, 2000).
In environments where movement in x and y directions is
tightly coupled, GP models with multiple outputs may be
more appropriate (Boyle and Frean, 2005).

The stationary, single-valued aspects of the GP motion
model also make it in appropriate for modeling trajectories
that loop onto themselves—that is, do different things at the
same location based on some other context—and for adver-
sarial situations. In these cases, additional information, such
as the agent’s location relative to the target, would need to
be incorporated into the GP inputs. Thus, the DPGP model
is best suited for situations where complex, non-overlapping
dynamics and clusterings must be learned from relatively lit-
tle data—as we saw in the results sections, the Markov mod-
els do catch up in performance once sufficient data is avail-
able; however, the DPGP makes significantly better predic-
tions from only a few trajectories. In situations where the
number of trajectory types is known and large batches of
data exist, the DPGP will likely add little over a finite HMM-
based model trained on the same large dataset. The Bayesian
nature of our approach does allow available expert knowl-
edge about target motion patterns to be given in the form of
additional example trajectories without any need to adjust
the rest of the inference process.

Finally, it is well-known that standard GPs requireO(N3)

computation to perform inference, whereN is the number
of data points. In our work, we were still able to process
all of the data using the approximations described in sec-
tion 3.2.1; for larger datasets, there are fairly standard ap-
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(a) t = 3 (b) t = 7

(c) t = 11 (d) t = 13

Fig. 19 A planning episode from the taxi data set. Helicopter positions are shown in blue. Car positions are shown in red before interception
and green after. The small blue circle and the large cyan circle around the helicopter signify the tagging and observation range, respectively. Car
locations are marked with a× symbol when observed by the helicopter, and a◦ symbol when beyond the helicopter’s sensor range.

proximation algorithms withO(N) running times (Csat and
Opper, 2001; Snelson and Ghahramani, 2006).

6 Related Work

Much of the past work in modeling mobile agents has fo-
cused on two problems: expert systems (which require spe-

cialized data) and modeling a single agent (requiring data
generated by the single agent). Letchner et al (2006) built a
model that predicted trajectories based on the optimal path
between two locations (given factors such as the time of day)
and the amount of “wasted time” a driver was willing to ac-
cept. Dia (2002) used a survey to classify drivers into differ-
ent profiles to enable better prediction. Both of these works
note that it is difficult to specify a model for human motion



16 Joshua Joseph et al.

patterns based on logical reasoning. For example, Letchner
et al (2006) note only 34.5% of drivers choose the fastest
route between two locations.

Whether these statistics are a result of driver ignorance
or another factor (e.g., avoiding a stressful route) is highly
debatable and difficult to incorporate into expert models of
human motion patterns. Without access to similar data for
the greater Boston area or having similar time-stamped GPS
data for their models, we were unable to compare them to
our approach; however, it would be interesting to see if in-
corporating expert features related to human psychology into
the priors of our model could improve predictions.

Another body of literature has trained Markov models
(generally using data from only one person) in which each
road segment is a state and transition probabilities encode
the probabilities of moving from one segment to another. For
example, Patterson et al (2003) treated the true driver state
as hidden by GPS sensor noise and a hidden driver mode.
Ashbrook and Starner (2003) model the end position and
transition probabilities explicitly, but doing so prevents the
method from updating the probabilities based on a partially
observed trajectory. Using a hierarchy of Markov models,
Liao et al (2007) were able to make both local and destina-
tion predictions but still had difficulty in regions of sparse
training data. Taking a machine learning approach, Ziebart
et al (2008) used inverse reinforcement learning with good
results when the target’s destination is known in advance.

Recently, Gaussian processes have been successfully ap-
plied to modeling and prediction in robotics tasks. Tay and
Laugier (2007) used a finite mixture of Gaussian processes
to model multiple moving targets in a small simulation en-
vironment. In the context of controlling a single vehicle, Ko
and Fox (2009) demonstrated that Gaussian processes im-
proved the model of a vehicle’s dynamics.

Fox et al (2007) took a related approach to ours and
modeled the number of motion patterns with a Dirichlet pro-
cess prior, with each motion pattern governed by a linear-
Gaussian state space model. Unlike our approach, agents
could switch between motion patterns using an underlying
hidden Markov model. In our specific dataset and applica-
tion, the agents usually know their start and end destina-
tions from the very beginning; not allowing motion pattern
changes helped predict a car’s path on roadways that were
common to many motion patterns. However, our framework
could certainly be extended to allow agents to change mo-
tion patterns. Future work could also incorporate additional
information—such as inputs of the road network—to further
constrain the trajectories.

The target-tracking problem under partial observability
conditions has a natural formulation as a POMDP, since the
agent must make decisions with incomplete knowledge of
the targets. Pineau et al (2003) first applied the PBVI point-
based solver to a small target-tracking problem, and more

recent approximate point-based techniques, for example by
Hsu et al (2008) and Kurniawati et al (2009), have expanded
the applicability of general POMDP solvers to the target-
tracking domain by rapidly exploring the reachable and high-
value regions of the belief space.

Despite these advances, point-based POMDP methods
still have limited utility in this domain. These methods typ-
ically discretize the agent and target state spaces to obtain
a finite-dimensional belief space, and are unable to adapt to
changing motion patterns due to substantial offline require-
ments.

One approach to avoiding state space discretization is to
represent beliefs using Gaussian distributions, as applied by
Miller et al (2009) to target tracking, or by He et al (2010)
with Gaussian mixture models. An advantage of these rep-
resentations is the ability to analytically and exactly manip-
ulate the belief state. However, these approaches focus on
planning with accurate models, and do not address model
learning or acquisition.

7 Conclusion

Accurate agent modeling in large domains often breaks down
from over-fitting or under-fitting the training data. We used
a Bayesian nonparametric approach to motion-pattern mod-
eling to circumvent these issues. This approach allows us
to build flexible models that generalize sensibly with sparse
data and add structure as more data is added. The reward
models, the dynamics model of the agent, and the form of
the agent’s planner can all be adapted to the task at hand
with few adjustments to the DPGP model or inference pro-
cedure.

We demonstrated our motion model on a set of helicopter-
based interception and tracking tasks trained and tested on
a real dataset of complex car trajectories. The results sug-
gest that our approach will be useful in a variety of agent-
modeling situations. Since the underlying structure of our
model is based on a Gaussian process framework, our ap-
proach could easily be applied to beyond car domains to
generic metric spaces. Finally, although we focused our ap-
proach on a set of interception and tracking tasks, we note
that the DPGP motion model can be applied to any task
where predictions about a target’s future location are needed.
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