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Abstract The most difficult—and often most essential— Keywords Bayesian nonparametric modeling/larkov

aspect of many interception and tracking tasks is constructiecision processinterception and tracking

ing motion models of the targets. Experts rarely can provide

complete information about a target’s expected motion pat-

tern, and fitting parameters for complex motion patterns can |ntroduction

require large amounts of training data. Specifying how to

parameterize complex motion patterns is in itself a difficul The success of interception and tracking tasks often hinges
task. on the quality of the motion models our agent has for pre-

In contrast, Bayesian nonparametric models of target m&licting the target's future locations. These predictiores a
tion are very flexible and generalize well with relativelié ~ €SPecially important when our agent's sensor range is lim-
training data. We propose modeling target motion patternged- Unfortupately, motion patterns of targets are oftén d
as a mixture of Gaussian processes (GP) with a Dirichlgicult to specify from expert knowledge alone. For example,
process (DP) prior over mixture weights. The GP provideSUPPOSe that our agentis qhellcopterthz_it must mtercept an
an adaptive representation for each individual motion patlfck @ car or several cars in a large region such as a city. A
tern, while the DP prior allows us to represent an unknowrn@del of traffic patterns may be hard to specify. Even deter-
number of motion patterns. Both automatically adjust theMinNiNg what parameters are important to model the target's
complexity of the motion model based on the available datd?€havior—and how they should interact—can be a challeng-
Our approach outperforms several parametric models oni89 tsk.

helicopter-based car-tracking task on data collected frem A data-driven approach to learning the target's motion
greater Boston area. patterns avoids the need for an expert to fully specify the

model. Instead, the agent simply uses previously observed
trajectories of the target to predict the target’s futurealo
tions, where these predictions may depend on both the tar-
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While a data-driven approach reduces the need for ex-
pert knowledge, we still need to specify the class of models
to which we expect the target’s motion patterns to belong.
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For example, we may choose to model the target’s motio
as a series of straight-line segments, higher-order splore
even cylindrical trajectories. When considering realdaor !
data, the correct class of motion models is not always obv
ous. One solution is to consider sophisticated model cdass
with parameters governing the forms of all the motion pa
terns we expect to occur. While such a flexible model cla
may be able to model any observable motion pattern, larggs
amounts of data will be needed to train the many paramp=&
eters. Collecting sufficient data to train a large number ofg
parameters may be prohibitively expensive. . ) .

In our previous work (Joseph et al, 2010), reviewed inFig. 1 A small set of the raw GPS data points (red) and a single trajec
section 3, we showed that Bayesian nonparametric apprsaéﬂré( (green) used to leam our model.
to modeling motion patterns are well-suited for poorly un-
derstood environments because they let the data determipartially-observable scenarios. Sections 5 and 6 distigss t
the sophistication of the model—we no longer need to specscenarios in which we expect the DPGP model to perform
ify which parameters are important. Moreover, the Bayesiamvell and place it in the context of prior tracking and inter-
aspect helps the model generalize to unseen data and mateption literature.
inferences from noisy data. Specifically, we can model a tar-
get’'s motion patterns with a Dirichlet process mixture mode

over Gaussian process target trajectories (DPGP). Usisg th? Motion Model

nonparametric model boosts learning rates by generalizin\% represent a taraet's trajectds t ofu-location
quickly from small amounts of data but continuing to in- ei epi esez_ ai argets iajec;'_: aryas a se ?. y-locations
3, 91), (@, yn), -+ (20, 95:) ), whereL! is the length

crease in sophistication as more trajectories are observe X . . . .

Wi . . A . . of trajectoryt’. Depending on how the trajectory data is

e applied this DPGP model to applications tracking a sin- . . .
ollected, these locations may come at irregular intervals

le target whose current position was always observed @ma; . A : )
J J P Y y r example, the distance betwegt}, y;) and(x}, ,y7, 1)

ine having a GPS tracker on the target but not knowing where t be th the dist bet :
the target will go). may not be the same as the distance betwegn,, y;, ;)

d(z},,,vi,.). Trajectories may also be of differentlengths

. ) an
In this paper we present two key extensions to that P"®0th because some trajectories may be physically longer

vious yvork. -F|rst, we no longer assume that the 'Fargets POhan others and because some trajectories may have a larger
sition is available to the agent. Instead, we consider seen

05 in which th I ob h i 'dumber of observed locations along the route.
los in which the agent can only observe the target i it Is Throughout the paper we use time-stamped GPS coordi-

hearby; now the agen_ts goal is to first intercept a”‘?' t_herﬁates of greater-Boston taxis from the CarTel project as our
track the target. Adapting our approach to make IoreciICtIOnPnotivating dataset.Figure 1 plots some of the trajectories
about unseen targets using only partial information is OHE

o

red points) on a map of Bostdnemphasizing the discrete

of our main contributions. Second, we also consider scena ature of our observations. One sample trajectory is high-

ios where multiple targets must be intercepted and traCkeﬂghted in green, showing how the discrete observations are

Moge:m dg multiple .targtt)a tshf':]s searplesslz Into O,li'_r DO?GPirregularly spaced along the trajectory. Working with thes
model, demonstrating both the quality and versatility af ou types of trajectories is one of the challenges of this datase

approach. _ o _ which we address by using Gaussian processes to learn a
The remainder of this article is organized as follows: seCyrajectory model.

tion 2 has a detailed description our DPGP motion model. The technical details of our motion model are described
The algorithmic approach to solving the model given datgn, sections 2.1 and 2.2, but we first outline the two key ele-
depends on the whether the target’s position is fully observients of our motion model and describe how they are com-
able. Section 3 reviews the utility of using the DPGP ap+ineq. Specifically, each motion model isréxture of mo-
proach for tracking a single agent whose current positioRion patterns A motion pattern represents a class of similar
is always known. We present both the algorithm for modejjectories. A mixture model over different motion patier
inference (section 3.2) and results (section 3.3) for this f  gefines the probability of each particular motion pattern.
mulation. We then demonstrate our extensions in applying
our approach to multi-agent, partially-observable iregrc 1 CarTel projecthtt p: // cartel . csai |l . nmit. edu. The data

. . . . - . _was down-sampled to a rate of 1 reading per minute and peegsed
tion and tracking scenarios in section 4. Similar to S’ectlor?nto trajectories based on if the car had stayed in the saawe fibr five

3, section 4 also presents the algorithm for inference (segninutes to indicate the end of a trajectory.
tion 4.2) and then results (section 4.3) for the multi-agent 2 http:// maps. googl e. com
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Motion Pattern Many ways exist to describe a class of tra- >
jectories: for example, one could use a set of piecewise lin-=L: o |
ear segments or a spline. We definenation patternas a o
mapping from locations$z, y) to a distribution over trajec- UL
tory derivatives 42, 4% indicating the agent's future mo- " -7 TN T
tion3 Thus, a motion pattern is a flow-field of trajectory -
derivatives in x-y space. Modeling motion patterns as flow-_.:
fields rather than single paths allows us to group target tre ,‘ s
jectories sharing key characteristics: for example, alsing -; -,
motion pattern can capture all the paths that a target migf—""'*' A
take from different starting points to a single ending loca- v’.;‘\ T
tion. Using trajectory derivatives also makes the reprizsen -\ .. -
tion blind to the lengths and discretizations of the traject
ries. S
We use a Gaussian process (GP) to place a distributio -

over trajectory derivatives at each location (details io-se _. . . .
. . , N Fig. 2 An example of two trajectories that share a road segment. The
tion 2.1). Given the target's current positi@n;, y:) and @  red trajectory travels east and the green trajectory tsanefth. The

{, .

trajectory derivative ﬂf’? , AAyt" ), its predicted next position Markov model cannot distinguish the two trajectories orheg/tcross,
(z¢41,Y:11) iS given by but the DP model classifies them as two different paths.
=xt+ Az, L AL, + = LAt
T =T Ay Jert =T Ny whered; contains the parameters for motion patteyn
Thus, the trajectories are easily generated by integrétiag The primary complication with a simple finite mixture
trajectory derivatives. model is thatM is not known in advance, and may need

to grow as more data is observed. In section 2.2, we detalil
Mixtures of Motion Patternd/Ve expect to encounter trajec- how we use a Dirichlet process (DP) mixture model to create
tories with qualitatively different behaviors and usingjéctory-an infinite mixture of motion patterns. An important prop-
derivative flow fields as motion patterns helps group togetheerty of the DP model is that it places a prior over an infinite
trajectories with certain characteristics. For exampifigd ~ number of motion patterns such that the prior probabilities
ent trajectories may share some segments but then branch ¢ff(b1), p(b2), p(bs), . . .} still sum to one; the probability of
in different directions. Returning to the CarTel taxi datas @ trajectory is
we see that scenarios with overlapping paths are common.
Figure 2 shows just one example of two routes that share Zp p(t'16,). 2)
a common corridor, but the red trajectory travels east and
the green trajectory travels north. These motion pattems a
not well modeled by traditional techniques such as Markovrhese probabilitieg(b;), and the number of different mo-

chain models that simply try to predict a target's future lo-tion patterns in a given dataset, are determined during the
cation based on its current position (and ignore its previinference process.

ous history), nor can they be modeled by a single trajectory-

derivative flow field. We address this issue by using mixture | delVe define th deh
models over motion patterns, Complete Motion ModellVe define thanotion modehs a

Formally, a finite mixture model with// motion pat- mixture of weighted motion patterns. Each motion pattern
terns {b1, b, ..., bas) first assigns a prior probability for is weighted by its probability and is modele.d as a peir of
each patter{p(b1), p(bs), - . ., p(bar)}. Given these prior Gaussian processes (GPs) mappingy) locations to dis-

. . . . . A
probabilities, the probability of thé" observed trajectory tributions over trajectory _de”"at've% and_?? (see sec-
# under the mixture modéls tion 2.1). We place a Dirichlet process prior over mixture

weights (section 2.25.
i Under our DPGP model, the prior probability of motion
Z p(b;)p(t']0;) (1) e : : :
patternb; is given by its DP mixture weighi(b;). The pos-
terior probability ofb; given a target trajectors/ is propor-
3 The choice ofAt determines the scales we can expect to predict

the target's next position well, making the trajectory dative more 5 This model is similar to models described by Rasmussen and
useful than instantaneous velocity. Ghahramani (2002) and Meeds and Osindero (2006); howewer, u
4 Note that throughout the paper avith a superscript, such as, like these previous works, our goal is to cluster trajee®of varying

refers to a trajectory andtawithout a superscript is a time value. lengths, not just partition single points.
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tional top(b;) - 1(b;; t*), wherel(b;; t*) describes the likeli- work, we use the standard squared exponential covariance

hood of motion patterh; under trajectory: function
_ 12 _ 22
» Kx(m,y,x’,y/)zaiexp _(‘T ‘T) _ (y y)
Li A 2,2 2w,?
T AN t 7 7 k. . GP
55 = 11w (S| heovho 8550 = .07 + o26(e,y, 7 y) @

Li whered(z,y,2’,y") = 1if z = 2’ andy = y’ and zero oth-
) Hp <ﬂ 2ty (% 2, = 1, 9GP> 3) erwise. The exponential term above encodes that similar tra
; At | o jectories should make similar predictions. The lengtHesca
parametersv,, andw, normalize for the scale of the data.
wherez,, indicates the motion pattern to which trajectofy ~ The o,,-term represents within-point variation (e.g., due to
is assigned, andﬁf and Gif are the hyperparameters of noisy measurements); the ratio ®f ando, weights the
the Gaussian process for motion patternEquation 3 may relative effects of noise and influences from nearby points.
be applied to trajectories with differing numbers of obser-We use@fj to refer to the set of hyperparametets o,,,
vations or even trajectories that are only partially cortegle w., andw, associated with motion pattebn (each motion
which is particularly important when we wish to determinepattern has a separate set of hyperparamefters).

a target’s motion pattern given only a few observations. For a GP over trajectory derivatives trained with tuples
(Tk, Yk %);the predictive distribution over the trajectory
derivativeﬁ—f for a new pointz*, y*) is given by

2.1 Gaussian Process Motion Patterns AX
,U/%* = Kw(m*7y*aX7§/)KI(X7KXaY)_1E (5)

Observations from a target's trajectqry represent a cantin o2, = Ko(" 9" X, V) Ko (XY, X,Y) Ko (XY,

ous path through space. The Gaussian process places a dist

tribution over functions (Rasmussen and Williams, 2005)where the expressiof,(X,Y, X,Y) is shorthand for the

serving as a non-parametric form of interpolation. Gauscovariance matrixt. with termsX;; = K, (s, yi, x5, y;)-

sian process models are extremely robust to unaligned; noishe equations fofZ " are equivalent to those above, using

measurements and are well-suited for modeling the continynhe covariancés,.

ous paths underlying our non-uniformly sampled time-serie

samples of the target’s locations. Estimating Future Trajectorie\s summarized in equation 5,
The Gaussian process for a motion pattern that models@ur Gaussian process motion model places a Gaussian dis-

trajectory’s derivative is specified by a set of mean and cotribution over trajectory derivative(sﬁ—f, %) for every lo-

variance functions. Specifically, given an ingut y) loca-  cation (x,y). If the target's location is always known, we

tion, the GP model for the motion pattern predicts the trajeconly need to predict the target’s position one-step into the

tory derivatives(ﬁ—j;, %) at that location. We describe the future to track it: even if it goes in an unexpected direction

mean trajectory-derivative functions 3_;?] = pa(z,y) we will know that a rare event has occurred and can plan

and E[%] = u,(z,y), and implicitly set both of them to accordingly. However, if the target’s position is not alway
initially be zero everywhere (for alt andy) by our choice known—for example, if it can only be observed within the
of parameterization of the covariance function. This emsod agent's camera radius—then the agent must be able to infer
the prior bias that, without any additional knowledge, we ex Where the target might be multiple steps into the future to in
pect the target to stay in the same place. Zero-mean GP pigrcept it again from knowledge about where the target was
ors also simplify computations. The model assumes that trdocated in the past.

jectory derivatives in the x-direction and y-direction &re In our prior work (Joseph et al, 2010), we used a sim-
dependent; while a more sophisticated model could be usdife approach to sample a target's possible trajectory pleilti

to model these trajectory derivatives jointly (Boyle anddar, Steps into the future: starting with the target's currestlo

. . 4 H : VAT Ayg
2005), we found that our simple approach had good empirition (z1, y1), we sampled a trajectory de_”Vat'(’gt_f’ an)
cal performance and scaled well to larger datasets. to get a next locatiofizs, y2). Then starting fronfzz, y»),

. . . . A
We denote the covariance function in thalirection as We Sampled a trajectory derivativé&?>, 512) to get a next

K, (z,y,2',y), which describes the correlations betweenlocation(x§,y3). We repeated this process untilyve had sam-
trajectory derivatives at two poinfs, y) and(z’, y’). Given pled a trajectory of lengtiL. The entire sampling proce-

locations(z1, .., zx, 1, .., yx ), the corresponding trajectory dure was repeated from the current locatien, y1) multi-

derivatives(4zt, .., Azt are jointly distributed according ple times to get samples of the target’s future trajectories

to a Gaussian with meafy,(z1, 1), .., e (2r, y&)} and 6 We described the kernel for two dimensions, but it can beyeasi
covarianceX, where theX;; = K(xz;,v;,2;,y;). In this  generalized to more.




A Bayesian Nonparametric Approach to Modeling Motion Rate 5

Example Linear Trajectories aussian Process Model Mean Velocity Direction F Markov Model Mean Velocity Direction Field
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Fig. 3 Velocity fields learned by a GP and a Markov model from thragttories of an approximately linear motion pattern. THedeéneralizes
quickly from the irregularly observed trajectories, wres¢he discretization in the Markov model slows down geieagbn.

While samples drawn from this procedure are an accuduced by its discretization. These gaps could be filled by a
rate representation of the posterior over trajectoriesi-sa coarser discretization; however, the modeling would akso b
pling N trajectories of where the target may besteps in  coarser. The GP automatically adjusts the generalizaton a
the future requiresV L queries to the Gaussian process. Itmore data arrive.
also does not take advantage of the unimodal, Gaussian dis-
tributions being used to model the trajectory derivatiesy,
to efficiently predicting future trajectories in this wokap- 2.2 Dirichlet Process Mixture Weights
plying an approximation of Girard et al (2003) and Deisen-
roth et al (2009) that provides a fast, analytic approach of\lthough a single Gaussian process can robustly model the
approximating the Output of a Gaussian process given a diy.ariation within many C|Ose|y related trajectories, it istn
tribution over the input distribution. In our case, our Gaus able to capture differences resulting from targets with dif
sian process motion model over trajectory derivatives$iveferent destinations or different preferred routes. To nhode
us a Gaussian distribution over possible target nextioest qualitatively different motion patterns, we can represbat
at each time step. The approximation of Girard et al (2003§listribution over behaviors as a mixture of Gaussian pro-
and Deisenroth et al (2009) allows us to string these districesses. However, we do not know ahead of time how many
butions together: we input a distribution of where the targebehaViorS are sufficient for the model. We use a Dirichlet
may be at time and a distribution of trajectory derivatives to Process to allow for new behaviors to be added as they are
get a distribution of where the target may be at timel. By ~ observed.
being able to estimate the target’s future traiectoriejyajna The Dirichlet process is a distribution over discrete dis-
Ca”y’ we reduce the Computations required_ohlqueries tributions in which the number of motion patterns is poten-
to the Gaussian process are needed to predict the targeffally unbounded, but with the expectation that there are a

location L steps into the future—and avoid the variance in-few patterns the target tends to follow most of the tiftie.
troduced by sampling future trajectories. z; indicates the motion pattern to which trajectotyis as-

signed, the prior probability that target trajectatyelongs

Comparison with a Markov chain modéhstead of using a to an existing motion pattery is

Gaussian process—which defines a distribution over veloci-
ties in a continuous state space—we could imagine a modé&
that discretizes the state and velocity space into bins and

learns a transition model between state-velocity bins. W‘\e/vherez_i refers to the motion pattern assignments for the

call this alternative the “Markov model” because predictio remaining trajectoriesy is the concentration parameter of

about the target’s next position depend only on the target’tsr_]e Dirichlet processy; is the number of trajectories as-

" ; . ; signed to motion patterty;, and N is the total number of
current position and velocity, not its past history. observed trajectories. The probability that trajecttirgx
A key question when trying to train such a Markov model J ' P v ! ¥

is the appropriate level of discretization for the statecgepa hibits a new motion pattern is

Ip figure 3, we gon&der_modehng a m.otlon pattern the_lt con- (5= M +1]2_1,0) = @ ' @
sists of approximately linear trajectories observed agiur N -1+«

lar intervals. By mod_ellng the vel_ocny field over the contin .wherel is the number of observed motion patterns.
uous space, the GP is able to quickly generalize the velocity
field over region, whereas the Markov model has gaps in- 7 See Teh (2007) for an overview of Dirichlet processes.

nj
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increases as more trajectories are added.

Fig. 5 Performance on 15 held-out test trajectories vs. modelfsize
. . . . a variety of finite models (black) and the DPGP (blue) trained200
Equation 7 implies that the number of motion patterns,ajectories. The error bars represent the standard iaviat the re-
can grow as more data is obtained. This property is keward from five runs. Note the inferred DPGP model has mode siz

to realistically modeling targets: the more interceptiol a error bars also due to variation in the estimated model sizedch
tracking tasks we perform, the more varieties of target mo™"
tion patterns we expect to encounter. Figure 4 shows how
the number of motion patterns grows (under our model) agequire more computation but also because the search re-
new trajectories are observed for the actual dataset ofegrea quires us to choose a regularization criterion to avoid -over
Boston taxi routes (described in section 3). We show in seditting. Standard criteria, such as the Bayesian infornmatio
tion 3 that we can efficiently plan even when the numbegriterion (Raftery, 1986) cannot be applied in this context
of actively observed motion patterns is unknown; moreoverpecause the GP contains an unbounded number of param-
this flexibility yields significantly improved results in ¢h eters; thus we must choose from various cross-validation
performance of the planner. or bootstrap procedures. The DPGP provides a principled,
simple-to-use regularization criterion within its model.

DP Trajectory Classifying Exampldust as the Gaussian Searching in the space of finite models is especially com-
process in section 2.1 allows us to model motion patternputationally expensive when the data arrives online and the
without specifying a discretization, the Dirichlet prosesix- number of clusters are expected to grow with time. (The DP
ture model allows us to model mixtures of motion patternsan update the number of clusters incrementally.) To gain
without specifying the number of motion patterns. One cpuldnsight into the extra computation cost of this search pro-
of course, simply search over the number of motion patterns:ess we implemented EM where every 10 paths we search
we could train models with different numbers of patterns,over models sizes that are within five clusters of the current
examine how well each mixture model explains the data, anthodel. Figure 6 shows run time as the number of training
finally choose the best one. However, as we see below, thjgaths increase for our DPGP model and this adaptive EM
search requires much more computation time than using t®chnique. The running time grows exponentially longer for
Dirichlet process to automatically determine the number oEM with model search compared to the DPGP.
patterns, with similar performance.

We compare the DPGP to a set of finite mixture models
that also use Gaussian processes to model motion patter8\pplication of Tracking with Full Information
(that is, the finite mixture model first described in equa-
tion 2). We consider the helicopter-based tracking scenariWe first consider the case in which our agent has access to
for a data set of taxi trajectories. Each model was trained othe target’s current position but needs to be able to prédict
a batch of 200 trajectories using five differentinitialivas.  future position to track it effectively. We call this the ffin-
We tested tracking performance on a set of 15 held-out tesbrmation” case because this scenario implies that thetagen
trajectories. None of the models were updated during thas access to sensors covering the environment such that the
testing phase. target's current state is always known (up to time disceetiz

The results in figure 5 show that while the finite GP-tion). For example, we may be given location information
based models perform well overall, our DPGP model hasrom a dense sensor network. In this section, we formalize
nearly the best performanagithout having to perform a the tracking problem and describe the process of training
search over the finite model spackhis last point is im- a motion model for this full-information tracking task. We
portant, not only because a search over finite models wouldext provide results for our tracking problem applied to two
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18000 Algorithm 1 Motion Model Inference

K 1: for sweep = 1 to # of sweepio
16000{ =—DPGP o 2:  for each motion patterh; do
4
140001 K 3 Draw the GP hyperparametet§ ”, 657
‘ 4 end for
~ 12000 ’ R
O K 5: Draw the DP hyperparameter
2 10000} K 1 6 for each trajectory® do
= go0o) o 7 Draw z; using equations 8 and 9
E Lo 8 end for
60001 Re 9: end for
L4
40007 L’
20001 .’ -’ : 1 . . .
L L ‘ ing samples from the posterior over motion models. These
0 20 40 60 80 100 samples are then used by our agent for planfing.

Number of Paths

Fig. 6 Run time vs. number of paths for adaptive EM and our DPGP3 2.1 Training the Model
model. o

Our model contains two sets of parameters—the DP mixture

targets with completely different motion models, one synWeightsp(b;), the motion pattern assignments ?Dndér;e
thetic and one built from a real-world dataset. In SectiorPP hyperparameter—the GP hyperparameteﬁg 505
4, we will relax the assumption of a dense sensor networkénd the trajectories assigned to each motion pattern cluste

and show how to extend our approach to target interceptiofiollowing the work of Rasmussen and Ghahramani (2002)
given information from a sparse sensor network. and Rasmussen (2000), learning the model involves Gibbs

sampling the parameters (see algorithm 1).
We first resample each; in turn, using the exchange-
ability properties of the DP and GP to model the target tra-
3.1 Tracking Problem Formulation jectoryt' as the most recently observed target. The proba-
bility that the trajectory’ will be assigned to an instantiated

Since the target's current position is known at every timghotion pattern is
step, we can formalize the scenario as a Markov decision o ap oGP ] n,
process (MDP), a common tool for autonomous decisio®(zi = j[t', 0775 ,0,5) o< U(bj; t*) (m) (8)
making. An MDP is defined by a set of states, a set of ac-
tions, a transition function, and a reward function. Herewherel(b;;t") is the likelihood of motion patterh; from
the state is the joint position of our agent and the targeequation 3 and; is the number of trajectories currently as-
(x2,y®, ztarget qtarget) - Given an action and our agent’s signed to motion patterhy;. The probability that the trajec-
current position(z¢, y¢), we assume that our agent's next tory ¢* belongs to a new motion pattern is given by
position (z¢, ,,y¢, 1) is deterministic and known. In con- (21 = M 411 0)
trast, the target's transitions are stochastic over théimon P\%i = ) ¢
ous space; we can only place a distribution over the target’s /l b 440G doCT @ 9
next position(z;% 7", y;%?") based on our motion model. (aras )05 3126y b | 77 +a)’ ®
Ateach ?tep’ our agent_lr_lcurs some smal_l CO_St for MOVING 4 we use Monte Carlo integration (Bishop, 2006) to ap-
and receives a large positive reward each time it sharesagri . . LU .

: . . . . proximate the integral. The likelihood from equation 8 also
cell with the target. For this type of interception and triagk . )

. T - must be approximated for popular motion patterns, as the

scenario the policy is fairly insensitive to the reward \eu

: ) . . : computations in equation 5 are cubic in the cluster size
Given an MDP, we can find the optimal policy using stan-_. . - ;
. Similar to Rasmussen and Williams (2005), we approximate
dard forward search techniques (Puterman, 1994).

the likelihood for these larger clusters using tNg,,, tra-
jectories that are closest to the trajectoiry
The DP concentration hyperparameteiis resampled

3.2 Model Inference using standard Gibbs sampling techniques (Rasmussen).2000

8 The inference approach described here is taken from ouiouev
Given a set of target trajectories, we can train the DPGork (Joseph etal, 2010).

model from section 2 and use it to make predictions about__ Ve tested the validity of this approximation by comparingrap
imations in which only the nearest points to the true liketid were

future trajectories. Since exact inference over the sp&ce @gseqd and found no practical difference when discarding 76&ajec-
DPs and GPs is intractable, we describe a process for draweries for large clusters.
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The GP length-scale and variance hyperparameters are more 1
difficult to resample, so we leverage the fact that their pos- 0.9t
teriors are extremely peaked and instead always set them ;4|
to their maximum likelihood values (using gradient ascent)
In applications where the posteriors are less peaked, dybri o
Monte Carlo techniques may be used (Duane et al, 1987). 5067

G os|

o
3.2.2 Classification and Prediction with New Trajectories > 04

0.3t

The motion model from algorithm 1 can now be used to 0.
p{redict a target's future locations, given a partial trayeg oi
t*. We first apply equations 8 and 9 to compute the rela-
tive probability of it belonging to each motion patteip % 02 04 06 08 1
Equation 3 is used to compute the likelihoods. Just as in sec- X Position

tion 3.2.1 where we trained the model using complete targ(?g_ _ ,
. . . . . ig. 7 Several trajectory samples from th@RIDORScenario, where
tra!ectorles, the partial trajectory may contain any nunafe targets roughly following a straight line
points. We can use the same equations 8 and 9 to determine
the most likely motion patterns for the partial trajectory.
For each likely patterh;, we first compute the expected 3.3.1 Results on a Simple Synthetic Example
Ax Ay

trajectory derivative§ 57, 5% ); conditioned on GP parame-

ters(657, 057 (equation 5). The expected trajectory deriva\Ve first apply our approach to a simple example involving
tive is a weighted average over all the conditional deriva@ target following a straight line with occasional deviago

tives ", p(b;)(4z, %)j_lo We apply this expected trajec- (for example, walking along a puddle-cgvered road)_. _The
tory derivative to the target’s most recent location to jred agent receives a reward of -10 for every time step until it in-

where it will be in the future. tercepts the target, whereupon it receives a reward of +100.
The agent’s task involved intercepting and tracking 50 tar-
gets one after the other. We call this th©@RRIDOR sce-
nario. Figure 7 shows several trajectories from this exampl
Figure 8 shows the results for five repetitions of this set

of tasks. For comparison, we plot the results of both the

In this sectiqn we describe_ou.r results on two example SC%1arkov model and a naive pursuit approach that moves the
narios. The firstis a synthetic single-trajectory scenatiere agent to the target's most recent position. Overall, we see

thﬁ ag_lt?;]\t must |r(1jtercept f”m,d trac.k 5? tar‘?ekt]s,l.one afzgr tr{ﬁat while the agent planning with the Markov models with
ot er. The second scenario1s a (simulated) helicoptez S various initializations eventually reaches the same lefel
tracking scenario in which the targets are cars whose paths, .-~ o< the agent using the Gaussian process, the

are collected from a real dat_asét_' In both cases, we tested, o process motion model learns faster from the data.
our models in an online fashion: initially our agent had nOFigure 9 shows an example planning sequence derived us-

experience with the target, aftgr each epls_ode, the target]-ng the Gaussian process motion model in which the agent
full trajectory was incorporated into the motion model. intercepts the target

We compare our DPGP motion model to a Markov model While this is a simple and easy example, we note that the

that projectg positions and velocities to a disp_retized_ gnld DPGP still outperforms the other models. The DPGP learns
uses the trajectory data to learn target transition praitiabi the model almost instantaneously, but the Markov model re-

between grid cells. The Markov model predicts a targets, ires approximately 50 trials before matching the perfor-
next grid cell using the transition probabilities storedreg mance of the DPGP.

grid cell closest to the target’s current position and veloc
ity. In contrast to the Markov model, which ignores trajec- _ _ _
tory history, the DPGP model considers the entire observed-3-2 Results on a Helicopter-based Tracking Scenario

portion of the trajectory when predicting both the target's .
motion pattern and future trajectory. Next, we tested our approach on a helicopter-based target-

tracking scenarid! To model the helicopter and its rewards,
10 |n practice, we found that the motion pattern likelihoodsrave We place &0 x 20 grid over a city (an area of approximately
highly peaked. In this situation, it was sufficient to onlynsaler the

maximum likelihood motion pattern when predicting the fetloca- 11 Results in this section are also described in our previous
tions in partial trajectories. work (Joseph et al, 2010).

3.3 Results
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Fig. 9 A planning episode for a single path in th@rRiDORscenario. Agent positions are shown in blue and untagggdttpositions are shown
in dashed red (before they are tagged) and dashed greenti&fyeare tagged). The small blue circle around the agenifig the tagging range.
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---MM
—DPGP

were discretized on 20 x 20, 40 x 40, or a60 x 60 grid

(the helicopter’s discretization never changed). Velogias
either discretized into four or eight states. The models wit
finer discretizations were more expressive but require more
data to train effectively.

After each trajectory was completed, our DPGP driver
model was updated using algorithm 1. Each update was ini-
tialized with the most recently sampled model. Since a full
update required significant computation, new trajectovies

Reward Averaged Over 5 episodes

, . , , , . , , ,
0 5 10 15 20 25 30 35 40 45 50
Number of Episodes

initially clustered with their most likely motion patterwfich

could have been a new pattern) using equations 8 and 9.
Fig. 8 Sliding window average of per-episode rewards achievedfby d
ferent models on the @RRIDORScenario. Error bars show the 95%
confidence interval of the mean from five repeated runs.

Every 10 new trajectories, a complete set of 5 Gibbs
sweeps (algorithm 1) were run to update the model parame-
ters and trajectory assignments (we found that samples gen-
erally stopped changing after the first 2 sweeps). The noise
10 square miles) and represent the helicopter’s state éth t parameter,, in equation 4 was fit from the current trajec-
closest grid cell. At each time step, the helicopter canistay tory set. While the DPGP model required more computation
place, move one cell, or move two cells. These actions resulhan the Markov model (about 10 times slower), it could still
in rewards of 0, -1, and -2, respectively. The helicopten als incorporate a new set of samples in minutes, an update rate
receives a reward of 10 for each time step it shares a grid ceftast enough for a real scenario where the model may be up-
with the target car. While a real “chase” scenario would havelated several times a day. The planning time was nearly in-
many more complexities, this simplified tracking task abow stantaneous for both the DPGP and the Markov driver mod-
us to show empirically that our model, initially trained on els.
likelihood-based criteria, also performs well on a plagnin We first carried out a series of experiments to evalu-
problem based on real daté. ate the quality of our models. Example predictions of the

We tested both our DPGP and the Markov model on 50§pGp and Markov models are seen in figure 10. The solid
trajectories taken from the CarTel dataset of time-stampeglcles show a partial trajectory; the open circles show the
GPS coordinates of greater Boston area taxis. Training trarye continuation of the trajectory. The cyan, red, and blue
jectories were randomly drawn from this set of 500 withouteyrves show the continuations predicted by the DPGP model
replacement until all 500 trajectories were incorporalé®  5nd two Markov models. With only 100 training trajecto-
Markov model was initialized with a uniform prior, and its ries, none of the models predict the full path, but the DPGP
transition probabilities were updated as new traject@res s close while the other models are completely lost. As more

rived. To assess the effect of discretization granulantf®  {raining data is added, the DPGP and the finer-grained Markov
Markov model, we evaluated Markov models with differ- model match the true trajectory, while the simpler Markov
ent position and velocity resolutions. Thendy-positions  model is not flexible enough to fit the data.

As the goal of our model is to predict the motion of mo-
bile agents within a planner, we compared the performance
of planners using the DPGP and Markov models, as well as

12 ikelihood-based methods try to explain the data well, witiie
goal of the planning problem is to maximize rewards. A molat best
explains the data is not guaranteed to be the best modeldoniplg.
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Fig. 10 Predictions given a partial path for the DPGP and two Mark@dets for various amounts of training data. Trajectoriesengrawn
randomly from the full dataset without replacement.

a naive pursuit approach that simply assumed the vehicle 1 5x10°
position at time+1 would be the same as its location attime
t. We also evaluated a simple k-nearest neighbor techniqt 2
that, given anx, y) point, simply searched the training set E
of trajectories for nearbyz, y) points and interpolated the &
trajectory derivatives‘f and% from the trajectory deriva- E —— Pursuit
tives of nearby training points’ Finally, we evaluated a GP  § —— MM 20x20x4
) . : c - - -MM 20x20x8
model that was fit to only the current trajectory and ignorec @ MM 40x40xd
all past training data. This single GP model ensured that th g MM 40x40x8
previous trajectories were important for making preditsio ‘03, MM 60x60x4
. . . > MM 60x60x8
about the current trajectory, that is, the current trajgcto = | — KNN K=1
could not be well-predicted based on its own velocities. S - - -KNN K=25
Figure 11 shows the cumulatiwifferenceof total re- § | SpNK=s0
ward between all the approaches and naive pursuit metho —DPGP

The k-nearest neighbor and simple GP rarely out-perforr 2% 100 200 300 400 500
pursuit. The Markov models initially do worse than pursuit Number of Training Paths
because they have many parameters (making them vulnefig. 11 Cumulative difference in reward from the pursuit approash f
able to over-fitting) and often make incorrect predictionsthe DPGP model, various Markov models (MM), k-nearest rteogta
. . . NN), and a GP fit to the current trajectory (GP) (higher eslare
when the agent observes a trajectory in a sparse region tter)
their state space. In contrast, the DPGP starts out sinailar t
pursuit, since the zero-mean prior on trajectory deriestiv

naturally encodes the bias that, in the absence of other datgithin some observation radius of the agent, and no mea-

the car will likely stay still. The DPGP model quickly gener- surement otherwise. The agent’s task is to first intercept th
alizes from a few trajectories and thus attains the highest ¢ target — maneuver to within some small interception radius

mulative rewards of the other methods. The Markov modelsf the target for “inspection” — and then to keep the target
eventually also exhibit similar performance, but they mevewithin its larger observation radius.

make up for the initial lost reward. In many senses, this problem formulation is a more re-
alistic scenario in that we do not assume a sensor network
will always provide the target’s location. However, be@us

4 Interception and Tracking with Partial Information the agent can only observe the target when it is near it, it no
longer has full trajectories to cluster into motion pattern

We now consider the case in which the agent does not alFhus, a key additional step in the partially observable case

ways have access to the target's current location. Insteag that the agent must now infer where the target when it was

we assume that the agent has a sensor that will providereot being observed. This information is needed both to de-

perfect measurement of the target's location if the target itermine which motion pattern the target was exhibiting and

to update the characteristics of a motion pattern clusben fr
13 For reasonably dense data, Gaussian process and neaggtanei partial trajectories.

approximations are very close; thus, the k-nearest neigielchnique We fi f i h del d detail the inf

also served as a close approximation of a solution trainea single e Tirst tormalize the model and detall the Interence

GP for the entire dataset. procedure; we next show how our motion model helps the
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agent intercept and track targets in a synthetic domain (sedlgorithm 2 Partially Observable Motion Model Inference
tion 4.3.1) and a helicopter-based search and tracking scet: for sweep = 1 to # of sweepo

nario using the real-world taxi data (section 4.4). 2. for each trajectory’ do
3 for each time stem do
4: if (w9t yf‘”'getg was not observethen
_ _ _ 5: Draw (z;*" 9, y£*"9") using equation 5
4.1 Interception and Tracking Problem Formulation 6 if (20979 499 \was withinrops Of (22, &)
then
Since the target's current position is now potentially un- 7: Reject sample, go to 5
known at every time step, we formalize the interception andgj enc??fd if
tracking scenario as a partially observable Markov deaisio 1. end for

process (POMDP). In addition to the states, actions, trant1: end for
sition function, and reward function present in an MDP, al2:  for each motion patter; do

; . : P pGP
POMDP also includes a set of observations and an observﬁ; mdeﬁW the GP hyperparametei§ 7, 67}
tion fU”_Ct'On- _ 15:  Draw the DP hyperparameter
As in the fully observable MDP case (section 3), the16: for each trajectory’ do
state consists of the joint position of our agent and theetarg 17: Drawz; using equations 8 and 9

18: end for

@,y gtarget qtarget)  Gijven an action and our agent's
( Y Y ) 9 19: end for

current position(z¢, y¢), we assume that our agent’s next
position(z¢, |, y¢, 1) is deterministic and known. However,
the target's positiofze"9¢t  yte79¢t) may no longer be ob-
served. Instead, our agent receives an (accurate) ohiservat. . . . -

; S S . information case (section 3.2) also applies to the partial i
of the target’s position if the target is within an obsereati

. . : formation case. However, using only the observed locations
radiusr,,s of our agent. Otherwise our agent receives na

. . , o . ignores a key piece of information: whenever the agent does
information about the target’s position. Essentially, we a

) . _ . not see the target, it knows that the target is not nearby. In
relaxing the assumption of the previous section that the tar,, . . .

. this way, the lack of observations actually provides (nega-
getis tracked by a dense sensor network.

. ) . . tive) information about the target’s location.
Our agent gets target information at irregular intervals

from a sparse sensor network, and must model the target's To leverage this information, we use Gibbs sampling to
behavior and plan trajectories to intercept the targetrgivesample the unobserved target locations as well as the-rajec
imperfectinformation about the current target's locatida  tory clusterings. Once the partially observed trajectosiee
before, the target’s transitions are stochastic over théito  completed, inference proceeds exactly as in the full infor-
uous space; we can place a distribution over the targetis nemation case. Specifically, we alternate resampling the clus
position (z} ¥, y,4'7*") based on our motion model. The ter parameters (section 3.2) with resampling the unobserve
agent receives a large one-time reward for being within @arts of each target's trajectory. Given all of the other tra
small interception radius of the target (which is signifitan  jectories in an incomplete trajectory’s cluster, we can-sam
smaller than the observation radius and a small tracking reple the missing sections using the prediction approach in
ward for every target within its observation radius. section 3.2.2; this approach also ensures that the filled in
The inference procedure for learning the target motionrajectories connect to observed segments smoothly. If the
models (algorithm 2) is described next in section 4.2; giversampled trajectory crosses a region where the agent could
this model and the remaining problem parameters, the ageftve observed it—but did not—then that sample is rejected,
chooses actions using a standard forward search (Ross etahd we sample a new trajectory completion. This rejection-
2008). sampling approach ensures that we draw motion patterns
consistent with all of the available information (see algo-
rithm 2).

4.2 Model Inference

To predict future target positions, several of the sam-
Since our agent sees a target’s location only when the tapled trajectory completions are retained and averageato pr
get is within a given observation radius, the target trajecduce a final prediction. Each trajectory completion suggest
tory that the agent observes will often be disjoint sectimins a different Gaussian process motion model, and is weighted
the target’s full trajectory. Fortunately, the Gaussiancgiss  using Bayesian model-averaging. Using the final velocity
does not require continuous trajectories to be trained, angrediction, computed as the weighted average of individ-
the Dirichlet process mixture model can be used to classifyal model predictions, we can then apply the prediction and
partial paths that contain gaps during which the vehicle waslassification approach in section 3.2.2 for intercepting a
not in sight. In this sense, the inference approach for the futracking new targets.
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4.3 Results

In this section, we apply our DPGP model to two partially
observable interception and tracking problems. The firat is
synthetic example designed to show the basic qualitiesof th
DPGP in the partially observable case. In the second prob-
lem, we return to a more challenging, partially observable
version of the taxi tracking scenario from section 3. As in
the fully observable case, we tested each model in an online
fashion: initially the agent had no experience with the tar-
get; after each episode, any information it received abmut t
target was incorporated into the motion model. Specifically
if the agent only observed the target at certain times, only
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those lacations were used to update the motion model. Trﬁg. 12 Search and tracking task in the syntheticd® K s scenario.

agent does not receive any additional information about the
missed observations of a target’s trajectory after an elgiso

In all of the scenarios, we compared our DPGP algo
rithm to a pursuit forward search algorithm and a Markov
model. The pursuit algorithm goes to the target’s last ob
served location but uses forward search to plan about ho
bestto interceptand track all three targets. The Markov-moc

Pursuit
---MM
——DPGP

els use a position discretization equal to the intercepten
gion with z andy velocity each discretized into two bins.
The transition matrix is initialized with a small probabjli
mass on self transitions to encode the bias that in the absen
of data the target will tend to stay in the same location. With 300
out this bias the model performs extremely poorly initially
and would be an unfair comparison to our model which has §'9- 13 Sliding window average of per-episode rewards achieved by
similar prior bias (section 2.1). The Markov model also use%'ﬁe.rent models on the Bocks scenario. Error bars show the 95%

. ) onfidence interval of the mean from five repeated runs.
forward search to plan for the helicopter. While we could
have used other Markov models with more bins, the results

from section 3.3 show us that these Markov models mayhe five runs. In the figure, not only are the means of the

perform better in the limit of infinite data but with the small ppgp approach higher than the other approaches, but in
data set here a Markov model with a small number of bing,ractice it scores significantly better on each individual.r
will perform the best. The Markov models, despite requiring a fair amount of data
to start making relatively good predictions, do outperform
the simpler strategy. Figure 14 shows parts of a single plan-
ning episode, where the helicopter initially intercept® on
We first illustrate our approach on a synthetic interceptioriarget going below the obstacle before pursuing the last two
and tracking problem based on Roy and Earnest (2006). Iabove the obstacle.
this problem, illustrated in figure 12, the agent starts ttear Since this is a synthetic example, we can also compare
opening on the far right and must track three targets whiclthe motion patterns found to the true underlying patterns in
start from the right side of the region and simultaneouslithe model. The model has six patterns: the target can go ei-
move to three different target locations on the left walk-Ta ther above or below the obstacle to reach one of the three
gets have 0.75 probability of going above the central obfinal locations on the left wall. The number of clusters found
stacle and 0.25 probability of going below it. The agent reby our DPGP approach as a function of training paths is
ceives a reward of -10 for every time step until it interceptsshown in figure 15. In the beginning, when the agent has
the target, whereupon it receives a reward of +100. Addiseen relatively little data, it maintains a smaller numtfer o
tionally, it receives a reward of +1 for every target withisi i motion patterns. As the agent observes more trajectories, w
observation radius. We call this the 8cks scenario. see that the number of motion patterns settles around the
Figure 13 shows the performance of each approach ovérue number (the error bars show 95% confidence intervals
five runs, where each run consists of 100 episodes. The eof the mean). By the end of the 100 trials, if two trajecto-
ror bars show the 95% confidence interval of the mean fromies belonged to the same true cluster, then our DPGP model

RS e T [
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4.3.1 Results on a Synthetic Multi-Target Scenario
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Fig. 14 A planning episode in the BdCKS scenario. Agent positions are shown in blue and targetipositare shown in red before they are
intercepted and green after. The small blue circle and fige layan circle around the agent signify the interceptigioreand observation radius,
respectively. Target locations that were within the ages#nsor range are marked kysymbols, and target locations beyond the agent’s sensor
range are marked with symbols.

Number of Motion Patterns with Increasing Episodes based alert network. After being given this initial piece of
e ———— information about the targets, the target states are nalong
®[" == = True Number o Motion Patters ] directly accessible, and the helicopter receives infoionat
8f 1 about a target’s location only if the target is within abolg 1

miles (a quarter the map area) of the helicopter. The inter-
ception radius is 0.25 miles (a twenty-fifth the map area).
The reward function is identical to the one described in sec-
tion 4.3.1.

The results comparing our DPGP approach to the same
control strategies from section 4.3.1 are shown in figure 16
and figure 17, with the error bars showing the 95% confi-
dence interval of the mean for the five runs of 150 tasks.
Using our DPGP approach for modeling the targets results
o 10 2w Nuﬁfber ;OEpisi)des w0 o in much better interception and tracking performance from

the start. Unlike the simpler IBoCcks scenario, the Markov
Fig. 15 Number of discovered target motion patterns in theoBks ~ Models do no better than simple pursuit after 150 episodes.
scenario. Figure 18 shows the number of clusters found by the DPGP
approach as a function of training paths. As expected from

placed them in different clusters with probability 0.26#5; a_real-world dataset, the number of motlon patterns grows
with the number of episodes as new motion patterns ob-

two trajectories actually belonged to separate clustees) t qi traiectories. Finallv. fi 19 sh
our DPGP model placed them in the same cluster with probs_erve N New trajectories. Finaty, igure 1= Shows an ex-

ability 0.1567. Some of this clustering error is due to ourample episode_ where the _helicopterfirst intercepts eaeh_ tar
agent being out of range of the target resulting in some traget and then finds a Iocat!on where it can observe multiple
jectories not containing the full location history. In faap- targets to keep them localized.

proximately 20% of the data points were not observed dur-

ing the trails. These statistics, consistent over five riitise

100 episodes, strongly suggest that our DPGP model wdsDiscussion

learning key clustering characteristics of the target oroti
patterns. Using our Bayesian nonparametric DPGP approach for mod-

eling target motion patterns improved our agent’s ability t
predict a target’s future locations from relatively few sxa
4.4 Results on a Helicopter-based Multi-Target Scenario ples. A key advantage of the DPGP model is that it provides
a way of scaling the sophistication of its predictions given
We next applied our approach to a helicopter-based seartche complexity of the observed target trajectories: we aoul
and tracking scenario that used the same taxi dataset derodel motion patterns directly over a continuous space-with
scribed in section 3.3. We assume that the agent was givenut needing to specify discretization levels or expectedesi
the targets’ true initial locations and velocities fromagnd-  In contrast, the Markov models suffered because even at a

Number of Motion Patterns
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scribe a trajectory type or movement mode is a standard way
to avoid issues such as the Markov model’'s confusion over
/ | crossing paths (figure 2). However, standard HMM-based
1 approaches would still typically need to define the number
of trajectory typesa priori and commit to a level of dis-
““““““““““““ i cretization. The DPGP can be viewed as an HMM model in

----- a continuous space with an unknown number of trajectory
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““““ Pursuit | types.
oo “--MM | . . o
—DPGP While we focused on the motion patterns of taxis in the
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o

150 Boston area, as seen in our synthetic example, the DPGP
. o . ) _ approach is not limited to modeling motion patterns of cars.
Fig. 16 Sliding window average of per-episode rewards achieved b)1t is meant as a far more general mobile agent model, which
different models on the taxi multi-target interception aratking task. ) . . . . '
Error bars show the 95% confidence interval of the mean from fiv Models a wide variety of trajectories over a continuousepac
repeated runs. as long as the targets motions obey local smoothness and
continuity constraints—as seen in section 4.4, paths and tr
x 10* ‘ ‘ jectory types can be inferred from even sparsely observed
““““ Pursuit | targets if the smoothness assumptions imposed by the GP
16 —bPoP | model are true. We would expect the DPGP model to have
. ifficulty modeling trajectories where smoothness assump-
& difficulty modeling traject h th D
tions about the trajectory derivatives could not be charac-
terized by the single distance parameter in the GP covari-
ance kernel: for example, if trajectories tended to havet tig
curves or kinks. Nonstationary GPs could be used in these
situations (Meiring et al, 1997; Paciorek and SchervisB0
In environments where movement in x and y directions is
o 50 ) 150 tightly coupled, GP models with multiple outputs may be
Number of Episodes .
more appropriate (Boyle and Frean, 2005).

50 100
Number of Episodes

Cumulative Rew

Fig. 17 Results from the taxi multi-target interception and tracki

task showing cumulative reward achieved by different medel the The stationary, single-valued aspects of the GP motion
BLocks scenario. Error bars show the 95% confidence interval of thanodel also make it in appropriate for modeling trajectories
mean from five repeated runs. that loop onto themselves—that is, do different things at th

same location based on some other context—and for adver-
sarial situations. In these cases, additional informatanh
as the agent’s location relative to the target, would need to
be incorporated into the GP inputs. Thus, the DPGP model
is best suited for situations where complex, non-overlagpi
dynamics and clusterings must be learned from relatively li
tle data—as we saw in the results sections, the Markov mod-
els do catch up in performance once sufficient data is avail-
able; however, the DPGP makes significantly better predic-
tions from only a few trajectories. In situations where the
50 100 150 number of trajectory types is known and large batches of
Number of Episodes data exist, the DPGP will likely add little over a finite HMM-
Fig. 18 Number of discovered motion patterns for the taxi datasetpased model trained on the same large dataset. The Bayesian
search and tracking task. nature of our approach does allow available expert knowl-
edge about target motion patterns to be given in the form of
additional example trajectories without any need to adjust
the rest of the inference process.
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“reasonable” discretization, these models needed totinain
motion model for every grid cell—which required observing
many more trajectories. Finally, itis well-known that standard GPs requi’éN 3)
One way to think about the DPGP is as a type of hiddertomputation to perform inference, whekeis the number
Markov model (HMM), where the future trajectories of the of data points. In our work, we were still able to process
agent are Markov conditioned on some hidden (instead ddll of the data using the approximations described in sec-
observed) state. Indeed, introducing a hidden variableto d tion 3.2.1; for larger datasets, there are fairly standard a
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Fig. 19 A planning episode from the taxi data set. Helicopter posgtiare shown in blue. Car positions are shown in red befaegciption
and green after. The small blue circle and the large cyatecaound the helicopter signify the tagging and obseraatimge, respectively. Car
locations are marked with & symbol when observed by the helicopter, andsymbol when beyond the helicopter’s sensor range.

proximation algorithms witlO (V') running times (Csat and cialized data) and modeling a single agent (requiring data

Opper, 2001; Snelson and Ghahramani, 2006). generated by the single agent). Letchner et al (2006) built a
model that predicted trajectories based on the optimal path
between two locations (given factors such as the time of day)

6 Related Work and the amount of “wasted time” a driver was willing to ac-
cept. Dia (2002) used a survey to classify drivers into diffe

Much of the past work in modeling mobile agents has fo-ent profiles to enable better prediction. Both of these works

cused on two problems: expert systems (which require Spg_n_ote that it is difficult to specify a model for human motion
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patterns based on logical reasoning. For example, Letchneecent approximate point-based techniques, for example by
et al (2006) note only 34.5% of drivers choose the fastedtisu et al (2008) and Kurniawati et al (2009), have expanded
route between two locations. the applicability of general POMDP solvers to the target-

Whether these statistics are a result of driver ignorancttacking domain by rapidly exploring the reachable and high
or another factord.g, avoiding a stressful route) is highly value regions of the belief space.
debatable and difficult to incorporate into expert models of ~Despite these advances, point-based POMDP methods
human motion patterns. Without access to similar data fostill have limited utility in this domain. These methods typ
the greater Boston area or having similar time-stamped GPigally discretize the agent and target state spaces torobtai
data for their models, we were unable to compare them ta finite-dimensional belief space, and are unable to adapt to
our approach; however, it would be interesting to see if inchanging motion patterns due to substantial offline require
corporating expert features related to human psycholdgy in ments.
the priors of our model could improve predictions. One approach to avoiding state space discretization is to

Another body of literature has trained Markov modelsrepresent beliefs using Gaussian distributions, as appyie
(generally using data from only one person) in which eactMiller et al (2009) to target tracking, or by He et al (2010)
road segment is a state and transition probabilities encodwith Gaussian mixture models. An advantage of these rep-
the probabilities of moving from one segment to another. Foresentations is the ability to analytically and exactly ipan
example, Patterson et al (2003) treated the true drives statilate the belief state. However, these approaches focus on
as hidden by GPS sensor noise and a hidden driver modelanning with accurate models, and do not address model
Ashbrook and Starner (2003) model the end position antgarning or acquisition.
transition probabilities explicitly, but doing so prevertihe
method from updating the probabilities based on a partially
observed trajectory. Using a hierarchy of Markov models;7 Conclusion
Liao et al (2007) were able to make both local and destina-
tion predictions but still had difficulty in regions of spars Accurate agent modeling in large domains often breaks down
training data. Taking a machine learning approach, Ziebaftom over-fitting or under-fitting the training data. We used
et al (2008) used inverse reinforcement learning with goo Bayesian nonparametric approach to motion-pattern mod-
results when the target’s destination is known in advance. eling to circumvent these issues. This approach allows us

Recently, Gaussian processes have been successfully ap-build flexible models that generalize sensibly with spars
plied to modeling and prediction in robotics tasks. Tay anddata and add structure as more data is added. The reward
Laugier (2007) used a finite mixture of Gaussian processanodels, the dynamics model of the agent, and the form of
to model multiple moving targets in a small simulation en-the agent’s planner can all be adapted to the task at hand
vironment. In the context of controlling a single vehicley K with few adjustments to the DPGP model or inference pro-
and Fox (2009) demonstrated that Gaussian processes iedure.
proved the model of a vehicle’s dynamics. We demonstrated our motion model on a set of helicopter-

Fox et al (2007) took a related approach to ours andbased interception and tracking tasks trained and tested on
modeled the number of motion patterns with a Dirichlet pro-a real dataset of complex car trajectories. The results sug-
cess prior, with each motion pattern governed by a lineargest that our approach will be useful in a variety of agent-
Gaussian state space model. Unlike our approach, agent®deling situations. Since the underlying structure of our
could switch between motion patterns using an underlyingnodel is based on a Gaussian process framework, our ap-
hidden Markov model. In our specific dataset and applicaproach could easily be applied to beyond car domains to
tion, the agents usually know their start and end destinageneric metric spaces. Finally, although we focused our ap-
tions from the very beginning; not allowing motion pattern proach on a set of interception and tracking tasks, we note
changes helped predict a car’s path on roadways that wetkat the DPGP motion model can be applied to any task
common to many motion patterns. However, our frameworkvhere predictions about a target's future location are eged
could certainly be extended to allow agents to change mo-
tion patterns. Future work could also incorporate addéion
information—such as inputs of the road network—to furtherreferences
constrain the trajectories.

The target-tracking problem under partial observabilityAshbrook D, Starner T (2003) Using GPS to Learn Signif-
conditions has a natural formulation as a POMDP, since the icant Locations and Predict Movement Across Multiple
agent must make decisions with incomplete knowledge of Users. Personal Ubiquitous Computing 7(5):275-286
the targets. Pineau et al (2003) first applied the PBVI pointBishop CM (2006) Pattern Recognition and Machine Learn-
based solver to a small target-tracking problem, and more ing (Information Science and Statistics). Springer
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