
Learning User Models with Limited Reinforcement: An Adapti ve
Human-Robot Interaction System

Finale Doshi and Nicholas Roy
Computer Science and Artificial Intelligence Laboratory,

Massachusetts Institute of Technology,
32 Vassar St., Cambridge, MA 02139.

{finale|nickroy}@mit.edu

Abstract

Spoken dialog allows for natural human-robot interac-
tion, but ambiguous phrases or noisy speech recognition
can lead to considerable uncertainty during the conversa-
tion. Planning algorithms such as the Partially Observ-
able Markov Decision Process (POMDP) have successfully
overcome this uncertainty and generated reasonable inter-
actions during natural dialogs between people and mobile
robots. However, like all dialog systems, a POMDP is de-
fined by a large number of parameters that may be difficult
to specify a priori from domain knowledge. Even with an
online adaptive system, learning these parameters may re-
quire a tedious training period from the user.

In this paper, we present an approach which lets the agent
decide when it needs more information to be an effective
dialog manager. If the agent feels that it is familiar with a
situation, it acts based on its current understanding of the
dialog. When faced with an unfamiliar scenario, the agent
asks its human user what he or she would do in the agent’s
situation—advice that we believe is relatively easy for hu-
mans to give. Our approach both avoids a training period
of constant questioning and allows the agent to discover the
consequences of a poor decision without actually making
mistakes. We demonstrate our approach both in simulation
and on a dialog manager for a robotic wheelchair applica-
tion.

Introduction
Spoken language allows for natural human-robot interac-
tion, and the ability for a robot to take verbal commands
can be especially useful when interacting with those who
have limited mobility. The role of a dialog management
system is to take dialog from a user—in our case, output
from a voice recognition system—and interpret it to deter-
mine what action (if any) to take in response. In our work,
we focus on a dialog manager for a robotic wheelchair (see
Figure 1). The dialog manager’s goal is to discover where
the user wishes to go and command the wheelchair’s navi-
gation software to take the wheelchair to the desired loca-
tion.

While navigating to a given location may seem to be a
well-defined task, several factors make the dialog manage-
ment challenging. First, the voice recognition system is
often noisy—for example, the system may hear the words
“coffee machine” when the user asks to go to “copy ma-
chine”. Even with perfect voice recognition, ambiguities
may occur when people use different names for the same

Figure 1: Our dialog manager allows for more natural hu-
man communication with a robotic wheelchair.

location (such as “my desk” and “my office”). Users may
also use the same word to refer to multiple locations (such
as “elevator” when there are multiple elevators). Finally,
to make decisions under uncertainty, the dialog manager
must understand the user’s preferences: How tolerant is
the user of mistakes? How likely is the user to be frus-
trated by additional questions?

A good dialog manager must trade between asking
questions to reduce its uncertainty (thus avoiding er-
rors), and fulfilling the user’s request within a reasonable
amount of time. Partially Observable Markov Decision
Processes (POMDPs) provide a theoretical framework for
making decisions under uncertainty and have been suc-
cessfully applied to dialog management situations. The
ability to manage dialog uncertainty has made POMDPs
attractive in assistive health-care (Roy et al., 2000; Hoey
et al., 2005) and dialog management domains (Williams
and Young, 2005; Litman et al., 2000), where the agent
must reason about how to respond to user requests. Un-
fortunately, such real-world problems typically require a
large number of parameters that are difficult to specifya
priori .

One way to handle the problem of specifying the param-
eters corresponding to vocabulary, word error rate, user
preference, etc. is to learn the model parameters online. In
particular, we have shown previously that reinforcement



learning can be an effective way to learn dialog models on-
line while interacting with users (Doshi and Roy, 2007a).
Reinforcement learning is a form of learning in which the
agent receives numeric feedback (or “reward”) after every
action. The agent adjusts its actions based on the feed-
back, and, over time, it learns how to maximize the reward
it expects to receive.

While the reinforcement learning approach has been
demonstrated in a wide variety of problems, including
human-robot interaction (Litman et al., 2000), it has not
met with widespread adoption in dialog management sys-
tems for several reasons. First, requiring the user to supply
reward feedback after each action may be tedious, leading
to frustration and inaccurate results. Second, in the re-
inforcement learning framework, the dialog manager will
only learn about the consequences of a poor decision after
making a mistake and experiencing a large negative re-
ward. Experiencing a large penalty allows for rapid learn-
ing but can quickly lead to user dissatisfaction with the
overall system. Finally, humans are notoriously bad at
giving accurate numerical feedback which can cause the
system to learn to do the wrong thing.

In this work, we present an alternative approach to on-
line learning in human-robot interaction in which we learn
a POMDP model online from data and use that model to
derive a correct interaction strategy. By building an ex-
plicit model, the interaction agent can both assess its con-
fidence in its own decision making and decide when addi-
tional training is needed. Instead of a reward signal after
each interaction, we propose the concept of a meta-query,
that is, a question about an action that the agent should
take. These meta-queries take an intuitive form:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

The agent uses these queries to learn about the user’s pref-
erences (for example, risk aversion) as well as discover
information about their word choice and voice recognition
noise. The agent asks a meta-query only if it is sufficiently
confused about what action to take next. This active learn-
ing scheme limits the amount of feedback that is required,
easing the training burden on the user. We show that such
a system can adapt to users in a real robotic wheelchair
application.

The remaining sections are organized as follows: Sec-
tion I describes the basic POMDP dialog model and Sec-
tion II describes how we incorporate the unknown model
parameters into a larger POMDP. We present our algo-
rithm in Section III and results in Section IV. Sections
V and VI summarize our results and relate them to other
work in POMDP model learning.

I. The POMDP Model

Formally, a POMDP consists of the n-tuple{S, A, O, T,
Ω, R, γ}. S, A, andO are sets of states, actions, and ob-
servations. In our wheelchair command-and-control sce-
nario, the states represent locations to which the user may

wish to go. The user’s desired location cannot be di-
rectly observed and must be inferred from a set of noisy
observations—in our case, keywords from a voice recog-
nition system. The actions represent physical locations to
which the wheelchair may drive, as well as questions that
the wheelchair may ask the user. Figure 2 shows a cartoon
of a simple dialog model.

start

Go to
Kitchen

Go to
Elevator

Go to
Office

...

done

reset

Figure 2: A toy example of a dialog POMDP. The nodes
in the graph are different states of the dialog (i.e., user in-
tents). Solid lines indicate likely transitions; we assume
that the user is unlikely to change their intent before their
original request is fulfilled. The system automatically re-
sets once we reach the end state.

The transition functionT(s′|s,a) is a distribution over
the states to which the agent may transition after taking
actiona from states. Similarly, the observation function
Ω(o|s,a) is a distribution over observationso that may be
seen in statesafter taking actiona. If the observations are
keywords, for example, the observation model might en-
code that the keyword “coffee” is commonly heard when
the user wishes to go to the coffee machine. The reward
function R(s,a) specifies the agent’s immediate reward
for each state-action pair. In the wheelchair scenario, the
agent may incur a small negative reward for asking a clar-
ification question about where the user wishes to go. Sim-
ilarly, it may incur a large penalty for taking the user to
an incorrect location. Finally, the discount factorγ ∈ [0,1)
measures the relative importance of current and future re-
wards.

Since the true state—the user’s intent—is hidden from
the agent, it must choose actions based only on past ac-
tions and observations. In general, the optimal action to
take now will depend onall prior actions and observa-
tions; however, keeping a history of the entire dialog to
date can become quite cumbersome. Fortunately, it is
sufficient to store only a distribution over possible user
intents—known as a belief—as a sufficient statistic for the
past history of actions and observations. If the agent takes
actiona and hears observationo from an initial beliefb,
we can easily update the belief using Bayes rule:

ba,o(s) =
Ω(o|s′,a)

∑
s∈ST(s′|s,a)b(s)∑

σ∈SΩ(o|σ,a)
∑

s∈ST(σ|s,a)b(s)
(1)

If the agent has a set of POMDP model parameters that
accurately describe the user, then it can simply solve the
POMDP for the dialog management policy. The solution



Time t+1

State

Recognized  
Keyword

Manager

Action Selected
by Dialog

User
State

Observed

Hidden

Reward

Time t

User

(a) Standard POMDP model

Time t+1

State

Recognized  
Keyword

Manager

Action Selected
by Dialog

User
State

Observed

Hidden

User
Model

Reward

Time t

User

(b) Model-Uncertainty POMDP

Figure 3: (a) The standard POMDP model. (b) The extended POMDP model. In both cases, the arrows show which parts
of the model are affected by each other from timet to t +1. Not drawn are the dependencies from timet +1 onwards, such
as the user state and user model’s effect on the recognized keyword at timet +1.

to a dialog POMDP model is a policy that maps beliefs to
actions. If the goal is to maximize the expected discounted
reward, then the optimal policy can be found by solving
the Bellman equations:

V∗(b) = max
a∈A

Q∗(b,a), (2)

Q∗(b,a) = R(b,a)+ γ
∑
o∈O

Ω(o|b,a)V∗(ba,o), (3)

where the optimal value functionV∗(b) is the expected
discounted reward that an agent will receive if its current
belief isb andQ∗(b,a) is the value of taking actiona in be-
lief b. The optimal policyπ∗ : P(S) → A can be extracted
from the value function using

π∗ = max
a∈A

Q∗(b,a). (4)

The exact solution to equation 3 is PSPACE-hard but
point-based approximations (Pineau et al., 2003) can be
used to find high quality solutions efficiently.

II. Modeling POMDP Uncertainty
The problem with using a POMDP to compute a dialog
policy is that some of the individual model parameters{S,
A, O, T, Ω, R, γ} are difficult to specify. It is reasonable
to assume that the parameter setsS, A, andO are fixed
and known beforehand. For example, in our dialog man-
agement task,S could represent all the places that a user
may wish to go based on some map initially provided to
the robot. The actionsA can be pre-specified clarification
questions or movements the wheelchair may take, and the
observationsO the keywords received from a voice recog-
nition system. However, determining the parameters inT,
Ω, andR is more difficult, as these parameters describe
the user’s preferences and the noise in voice recognition
system.

However, just as the user’s true intent is hidden from
the agent, we can also represent the true parameters of the

dialog model as hidden variables. We can therefore extend
our basic dialog model by including the model parameters
as part of the hidden state. We call this new represen-
tation a “model-uncertainty” POMDP in which the state
space consists of both the user’s intent and the true dialog
parameters. In this new POMDP model, the state space
becomes the set̃S= S×M, whereS is the user space as
before, andM is the space of dialog models as described
by all valid values for the model parameters. We note that
the new state spacẽS is continuous and high dimensional.

Each state ˜s therefore describes a particular user intent
sand a particular user modelm. The model componentm
of the state contains the probability distribution describing
how the user states changes, as in the standard POMDP.
The observations and rewards received for taking a par-
ticular action for a particular user intent now also depend
on the hidden dialog model state. To generate policies
tractably, we assume that the model componentm itself
is fixed, that is, the parameters of the user model do not
change over time.

Figure 3(a) shows the standard POMDP process. The
arrows in the graph show which parts of the model are af-
fected by each other from timet to t +1, for instance, the
reward at timet is a function of the state at the previous
time and the action chosen by the dialog manager. The
parameters defining this function are knowna priori al-
though every part of the model below the “hidden” line is
not directly observed by the dialog manager and must be
estimated on-line. In contrast, figure 3(b) shows the ex-
tended model. The reward at timet is still a function of
the state at the previous time and the action chosen by the
dialog manager, but the parameters are not knowna pri-
ori and are therefore hidden model variables that must be
estimated along with the user state.

Transition and Observation Uncertainty In the previ-
ous section, we introduced the belief as a distribution over
possible user states. In the model-uncertainty representa-



tion, our belief is now a joint distribution over both the
possible user states and the possible user model parame-
ters. Just as we must specify an initial belief over user
intents (for example, in Figure 2 we assume that we begin
in a “start” state before the user has any intent), we must
now specify an initial distribution over possible dialog
models—a Bayesian prior on the models. The Bayesian
approach is attractive in the dialog setting because we may
have strong notions regarding certain parameters, but the
exact values for the full set of parameters is typically dif-
ficult to specify. For example, we may not know the exact
probability of hearing the word “coffee” if the user wants
to go to the coffee machine, but we can guess it is proba-
bly high. Similarly, we can guess that there is a significant
positive reward for driving to the right location and a sig-
nificant negative reward for driving to the wrong location.
We establish a prior distribution over the model parame-
ters to express our domain knowledge, and improve the
prior distribution with experience.

The need to represent the prior belief over models raises
the question of how to represent this belief. The user state
space is a discrete state space, so a standard histogram or
multinomial distribution can be used. However, the model
parameters such as the transition functionsT are continu-
ous parameters of distributions themselves; a distribution
overT is effectively a distribution over distributions.

SinceT and Ω are collections of multinomial distri-
butions, the Dirichlet distribution is a natural choice of
prior. The Dirichlet distribution places a probability mea-
sure over the “simplex” of valid multinomials. Figure 4
shows an example of such a simplex for a discrete random
variableX whereX can have three different outcomes with
different probabilities, e.g.,p(X) = [0.25,0.25,0.5]. Each
value of p(X) is a different point on the triangular sim-
plex shown in figure 4 and the Dirichlet gives a measure
of the likelihood of each such distribution. Ifp(X) is in
fact a transition probability distributionp(X) = p(·|s,a),
then each possible transition probability distribution (i.e.,
each possible user model) is also some point on this sim-
plex, with probability also described by the Dirichlet. As
the agent’s confidence in a particular model of user behav-
ior increases, the probability mass of the Dirichlet distri-
bution becomes increasingly concentrated around a single
point.

Given a set of parametersα1...αm, the likelihood of the
discrete probability distributionp1...pm is given by

P(p;α) = η(α)

m∏
i

pαi−1
i δ(1−

m∑
i

pi),

whereη is a normalizing constant. The process for up-
dating Dirichlet estimate of the multinomial given addi-
tional data is straight-forward. For example, suppose we
are given a set of observation parametersα1...α|O| cor-
responding to a particulars,a. If we observe observa-
tion oi , then a Bayesian update produces new parameters
(α1, . . . ,αi+1, . . . ,α|O|). Thus, we can think of quantity
αi − 1 as a count of how many times observationoi has

a

b

c

.5

.2
.3

P(a) = .2
P(b) = .3
P(c) = .5

Figure 4: An example simplex for a multinomial that can
take three different values (a,b,c). Each point on the sim-
plex corresponds to a valid multinomial distribution; the
Dirichlet distribution places a probability measure over
this simplex.

been seen for the (s,a) pair. Initially, the expert can spec-
ify an educated guess of the distribution—which we take
to be the mode of the distribution—and a pre-observation
total that represents the expert’s confidence in his guess.

Reward Uncertainty Next, we must specify a distribu-
tion over rewards. We fix a large positive reward value for
driving the user to the correct location, and a small penalty
for confirming the correct location with the user (for the
minor inconvenience of having to communicate with the
robot). These two reward values set a scale for the remain-
ing reward values. We assume that the reward values are
uniformly distributed between these ranges. The ranges
are expert-specified initially, but the range shrinks as the
model of user preferences becomes increasingly certain.

Passive Model Learning The Dirichlet transition, ob-
servation and uniform reward priors together specify a dis-
tribution over possible POMDP models. The agent can
learn some information about the model through user in-
teractions and improve the certainty of the model distribu-
tion. For example, suppose that the agent initially hears
the word “printer,” and user responds to the affirmative
when the agent asks if the user wishes to go to printer.
Then the agent can increase the probability that word
“printer” is associated with the printer location. However,
if the user responds to the negative, then the agent can in-
fer that either the word “printer” is not associated with the
location printer, or that printer is a commonly the output of
a voice recognition error. Likewise, the agent can discover
what are the most popular places where the user wishes to
go (information about the transition model).

Active Model Learning Other information cannot be
learned through user interactions. If the agent is only
listening for location keywords, it cannot determine the
user’s frustration due to a poor action or repeated ques-
tions. One option would for the user to input such feed-
back into the agent; however, even from a small set of user
tests in our lab, we found that it was often difficult to ex-
plain to users how to input reward values that would lead
to the desired behavior from the wheelchair. Such training
was also tedious. Thus, we introduced an additional ac-



tion to the dialog manager’s options: the meta-query. For
example, if the wheelchair is fairly certain that the user
wishes to go to the printer, it might ask:

“I think you definitely want me to go to the printer.
Should I go to the printer?”

On the contrary, if the wheelchair thinks that the user may
want to go to the printer but is not very certain, it might
ask:

“I think you may want me to go to the printer. Should
I go to the printer?”

The choice of adverb gives the user an intuitive sense of
the agent’s uncertainty. Thus, the user can advise the
robotic wheelchair based on their internal preferences. For
example, if the user is risk averse, they may respond “yes”
to the first question but “no” to the second question. If
the user answers a question to the negative, the wheelchair
might follow up with further questions such as,

“In that case, I think I should confirm that you want
to go to printer first. Is that correct?”

until it receives an affirmative response (assuming that the
observation space has been augmented with yes/no key-
words)1. These meta-queries are not perfect, since the
user cannot know the true source of the wheelchair’s con-
fusion, but we believe they can provide a more natural way
for the human to instruct the robot. We therefore add a set
of meta-queries to the action set of the extended POMDP.
Each meta-query has a fixed probability of a “yes” or “no”
response for each model, which has the effect of changing
the model component of the current belief. For simplicity,
we fix the cost of each meta-query across all models.

III. Solving the Model-Uncertainty POMDP
Augmenting the original state space with the model pa-
rameters provides a principled way of thinking about the
actions that result from uncertain dialog models. In Sec-
tion IIIA, we validate our approach in simulation by solv-
ing this model-uncertainty dialog model directly when
only a few discrete parameters are unknown. Unfortu-
nately, the increase in the size of the state space also leads
to computational intractability; in Section IIIB, we present
an approximation that allows us to scale to real-world
problems.

IIIA. Solving the Model-Uncertainty POMDP
directly
In general, the parameters transition, observation, and
reward functions are continuous-valued, with an infi-
nite number of possible models. As such, the model-
uncertainty POMDP is especially difficult to solve using
standard methods. In special situations, however, uncer-
tainty in the dialog model may be expressed as a small,
discrete set of possible models rather than a continuous

1In our tests, we used an abbreviated form of the meta-queries
for simulation speed.

No Meta−Actions With Meta−Actions

Effect of Meta−Actions On Total Reward

95

90

85

80

75

70

65

60

55

50

100

Figure 5: Boxplot of dialog manager performance with a
discrete set of four possible models. In this case, the user
is very intolerant to errors, but the learner does not ini-
tially know this. Although the medians of the two policies
are not so different, the active learner (right) makes fewer
mistakes than the passive learner (left), leading to overall
much less user-annoying behavior.

distribution, making the model-uncertainty POMDP much
easier to solve.

For example, consider a scenario where we already
have accurate transition and observation models (say, from
some prior work with the voice recognition system), but a
new user’s preference model is unknown. The user’s ex-
act preference model may not matter as long as the dia-
log manager has roughly the appropriate pattern of behav-
ior. In an extreme case, we may decide to only charac-
terize the user’s frustration with an incorrect movement as
low or high, and similarly characterize the user’s frustra-
tion with an incorrect confirmation aslow or high. The
user model can be described by two variablesWrong-
MovePenalty WrongQuestionPenalty. The two variables
WrongMovePenaltyandWrongQuestionPenaltycan each
take either values ofhigh or low, so that the model for
a particular user might bem =< WrongMovePenalty=
high,WrongQuestionPenalty= low >. This particular
user would be conservative, with a preference to be asked
questions repeatedly rather than risk being taken to the
wrong location. With only four possible dialog models,
the state space is still discrete and small, and we can now
solve the model-uncertainty POMDP using a standard al-
gorithm (Pineau et al., 2003).

We show simulated results with this very simple sce-
nario of only four possible preference models in Figure 52.
The figure compares the performance of the policy with-
out using meta-queries (left column) to the performance
of the policywith meta-queries. As expected, the system
which has the ability to ask meta-queries can use the ques-
tions to gain information about the user’s internal prefer-
ence model. It is able to discern that the user is very sensi-
tive about incorrect movements, and therefore it asks more
confirmation questions before taking an action. While the

2This work previously appeared in (Doshi and Roy, 2007b).



without meta−actions with meta−actions
0

10

20

30

40

50

60

70

80

90

100

T
ot

al
 R

ew
ar

d

Effect of Meta−Actions on Total Reward,
 Forgiving User

Figure 6: Boxplot of dialog manager performance with
a discrete set of four possible models, lenient user. The
effect is not as dramatic, but again, the learning dialog
manager is able to adapt to the user’s preferences and out-
perform the non-learner, especially in avoiding large mis-
takes.

difference in medians is not extreme, the reduction in large
negative mistakes is substantial—which is particularly im-
portant in dialog management, where users will likely find
a system that regularly makes mistakes annoying.

In Figure 6, we see similar improvements for the sce-
nario where the user is fairly tolerant to mistakes. Again,
the learning dialog manager outperforms the non-learner
because it is able to determine the user’s internal prefer-
ence model and therefore ask fewer confirmation ques-
tions before acting.

Unfortunately, our approach of representing the user
model as discrete values (such asWrongQuestion-
Penalty= low) does not scale well. Experimentally we
found that even a modest increase in the number of pos-
sible user models from 4 to 48 meant that the model-
uncertainty POMDP could no longer be solved using stan-
dard solution techniques. While it may be possible to
group the possible combinations of user preferences into
a few representative models (since the effects of small
changes to the preference model may not be apparent to
the user), discretizing other parts of the user model such as
vocabulary choices quickly produces an exponential num-
ber of states. For example, for each keyword the user
might utter, we have to consider how likely it is to be heard
in each goal location. We therefore turn to approximation
techniques which will allow us to represent a larger class
of models with continuous parameters.

IIIB. Approximately Solving for a Dialog Policy

Instead of trying to solve for a dialog policy that incorpo-
rates both the uncertainty of the user model and the un-
certainty of the user state, we separate the problem into
two parts: first, we use the current belief over models to
establish a representative set of candidate dialog models,
and we solve for the optimal policy in each model. We
then use these models to choose an action that has mini-
mal risk; if the risk of all other actions is greater than the
cost of asking a question for all possible models, we ask a

Table 1: Dialog model learning approach using Bayes risk
and meta-queries.

DIALOG MODEL LEARNING WITH BAYES RISK

• Sample POMDPs from a prior distribution over dia-
log models.

• Interact with the user:

– Use the dialog model samples to compute the ac-
tion with (approximately) minimum Bayes risk.

– If the risk is larger than a givenε, perform a meta-
query.

– Update each dialog model sample’s belief based
on the observation received from the user.

• Periodically resample from an updated prior over di-
alog models.

meta-query to improve our estimate of the true user model
and reduce the risk of errors. As we interact with the user,
we update our collection of possible dialog models to re-
flect our changing belief about the user model. Table 1
outlines our approach for the continuous dialog parameter
case.

Minimum Risk Action Selection If we know the cor-
rect user modelm, then the optimal action to take (either
confirming the user intent, or executing an action) isaopt.
Let us define a loss functionL(a,aopt), which describes
the cost of taking a different actiona. If we know the cor-
rect modelm, we can solve the model and compute the
value of each actiona using a standard POMDP solution
algorithm to solve equation 2. The loss function of can
then be calculated asQ(b,a)−Q(b,aopt), whereaopt is
the optimal action.

We cannot calculateL(a,aopt) since we do not knowm,
but we do have a beliefpM(m) over models that allows us
to calculate the expected lossEM[L]. This expected loss is
also known as the “Bayes risk”:

BR(a) =

∫
M

(Qm(bm,a)−Qm(bm,aopt,m))pM(m), (5)

whereM is the space of dialog models,bm is the current
belief over possible user intents according to dialog model
m, andaopt,m is the optimal action for the current beliefbm

according to dialog modelm. Let a∗ = argmaxa∈ABR(a)
be the action with the least risk. If the riskBR(a∗) is less
than fixed cost of a meta-query, that is, if the least expected
loss is still more than a certain threshold, we perform the
meta-query, otherwise we choose the actiona∗.

Intuitively, equation 5 computes the potential loss due
to taking actiona instead of the optimal actionaopt ac-
cording to dialog modelm and weights that loss by the
probability of modelm. When we are sufficiently sure
about the model, the risk will be low; when we are unsure
about the model, the risk may be high but the series of
meta-queries will lead us to choose the correct action and
avoid the risk. We unfortunately cannot solve equation 5



exactly because the integral is over the model parameters,
and the solution would require us to solve for the value
functions of an infinite number of POMDPs. However,
we can use numerical techniques to find an approxima-
tion. Our belief over user states and user models gives us
the probability of each modelp(m); if we draw sample
models from this distribution, we will draw many sam-
ples in regions wherep(m) is high and few samples from
wherep(m) is low. The more samples we draw, the better
the densities of the samples will represent the distribution
from which they were drawn. Thus, we can approximate
equation 5 with the sum:

BR(a) =
∑

i

(Qi(bi ,a)−Qi(bi ,aopt,i))wi , (6)

whereQi provides the value of taking actions from belief
states according to dialog samplei.

By drawing samples from the distributionp(m), we
are using the samples to approximate this distribution.
However, the distribution over models will change as the
wheelchair interacts with the user. The wheelchair must
therefore periodically update the sample of dialog mod-
els that it is using to approximate its belief over models.
If model samples are drawn from the current distribution
over models, the weightwi of each model is simply1

N ,
whereN is the number of samples. However, for compu-
tational reasons—since we must solve every dialog model
that we sample—it may be undesirable to resample mod-
els every time some new information changes our belief
over possible models. In this case, the original sample set
of models can be re-used by changing the weight of each
model and representing the distributionp(m) as a set of
weighted samples. At each time step, the weight of each
model should be adjusted to be proportional to the ratio
of the previous likelihood of the sample and its likelihood
given new information. While it is possible to provide for-
mal bounds on the number of samples needed to approxi-
mate the Bayes risk to a specified degree of accuracy, these
bounds are loose and in practice we found that fifteen sam-
ples sufficed for our dialog management application.

POMDP Resampling In some cases, the set of
weighted samples may no longer accurately represent the
true distribution over models, requiring a new set of sam-
ple models to be generated. The need for resampling may
arise because one of the models becomes far more likely
than the other dialog models in our sample set. If one
model’s weightwi is close to 1, and the rest are close to 0,
then the risk will appear to be quite small. This approxi-
mation is reasonable when the risk is truly small, but we
do not want the dialog manager to become over-confident
due to a poor set of candidate models. Another reason to
resample models is that an interaction may have provided
information that made all of the models in our current set
very unlikely, and we would like our sample set to reflect
our current belief over the dialog parameters.

We have two sources of information when it is time to
update our sample set of dialog models. One source is the
history of the most recent dialog, which consists of action-

observation pairsh = {a,o}. Another source is the set of
meta-queriesQ= {(q, r,h′)}, whereh′ is the history of the
dialog from the initial belief to the query,q is the query,
andr is the user’s response to the query. Givenh andQ,
the posterior probabilitypM|h,Q over models is:

pM|h,Q(m|h,Q) = ηp(Q|m)p(h|m)pM(m), (7)

whereη is a normalizing constant. Note that ifpM is
a Dirichlet distribution, thenη′p(h|m)pM(m) is also a
Dirichlet distribution since the likelihoodp(h|m) is prod-
uct of multinomials. Recall that updating the Dirichlet dis-
tribution corresponded to adding counts—for example, if
wheelchair observed the word “printer” after asking the
user where he wished to go when the user truly wished
to go to the printer, then we would add 1 to the Dirichlet
parameter for hearing “printer” given a general query, true
user goal is printer. The trouble is that we never know the
true user state—we only have actions and observations.

Given a complete dialog, however, and assuming that it
is unlikely that the user switched their objective in mid-
dialog, it is possible to accurately infer the most likely
underlying states from a history of actions and obser-
vations using the standard forward-backward algorithm.
We can use the output of this algorithm to update the
Dirichlet counts. This is a modified form of the standard
Expectation-Maximization algorithm, and thus the prior
will converge to some local optimal dialog model.

Incorporating meta-query information requires a dif-
ferent approach, since each specific meta-query response
provides information about the dialog policy, not the di-
alog model parameters. We do not have a closed-form
expression forpM|h,Q, so we must use sampling to draw
dialog model samples that are consistent with all of the
meta-queries that have been asked so far. Each query in
the setQ provides a constraint on the feasible set of dia-
log modelsM. Dialog models are feasible if their policy
is consistent with the responses in the meta-query.

Computing this feasible set directly is intractable, how-
ever, given the setQ, we can check if a sampled dialog
POMDP is consistent with the previous meta-query re-
sponses stored inQ. Thus, to sample POMDPs, we first
sample dialog POMDPs from the updated Dirichlet pri-
ors. Next, we solve for the optimal policy of each model
(which can be done quickly, since each dialog model sam-
ple is discrete and relatively small) and check if each di-
alog model’s policy is consistent with the previous meta-
query responses stored inQ.

IV. Results
Simulation Figure 7 shows results from a simulated di-
alog manager for our wheelchair application. The states
consisted of locations where the user wanted to go, and
the observations consisted of keywords extracted from ut-
terances. Actions included open-ended questions, con-
firming a particular state, and driving to a particular lo-
cation. Above, we see the usefulness of the Bayes-risk
approach (compared to stochastic actions selection based
on the weights of the sampled models) when the reward



0 5 10 15 20 25 30 35 40 45
−400

−350

−300

−250

−200

−150

−100

−50

0
Mean difference between optimal and system rewards when learning the observation spaces

m
ea

n 
di

ffe
re

nc
e 

in
 r

ew
ar

d

trial number

 

 

stochastic action selection

bayes−risk action selection

0 5 10 15 20 25 30 35 40 45 50
−12000

−10000

−8000

−6000

−4000

−2000

0

2000

trial number

m
ea

n 
di

ffe
re

nc
e 

in
 r

ew
ar

d

Dialog: Mean difference between optimal and system rewards when 
learning both observation and reward spaces

 

 

no learning
passive learning
active learning

Figure 7: Dialog manager simulation results. Top: results
from learning only the observation model. Bottom: bene-
fits of active learning when learning both the observation
and reward model.

model is known. In this case, the Bayes risk action selec-
tion allows us to choose non-risky actions.

The usefulness of our approach is even more dramatic
when the reward prior is uninformative (below). In this
case, the dialog manager can improve somewhat by pas-
sively updating its priors based on what it has heard (solid
gray line). However, simply listening cannot provide the
dialog manager information about the user’s preferences.
Moreover, since the active learning system asks the user
for help whenever it is confused, this system does not suf-
fer from an initial dip in performance before the model
estimate converges to the true model. The meta-queries
allow the active learner to learn while avoiding mistakes,
thus maintaining a high level of performance.

Robotic Wheelchair We also validated our approach on
a dialog manager for a robotic wheelchair with a sim-
ple user study. The underlying POMDP, with 10 states,
38 observations, and 21 actions, used keywords from a
voice recognition system output as observations. Initially,
each state had one strongly mapped observation (such as
‘printer’ for the printer location). The remaining observa-
tions received uniform initial priors. Four users conducted
12-15 interactions (20-25 minutes) with the system.

By asking meta-queries, the dialog manager was able to
successfully complete all 57 interactions without making
a serious error, that is, trying to drive the user to an in-
correct location. Table 2 shows that the proportion of di-
alogs with meta-queries decreased significantly from the

Table 2: Proportion of dialogs with meta-queries by lo-
cation. The decrease in the number of meta-queries from
the second to the third time the location was asked for is
statistically significant at thep = 0.05 level.

First half of interactions .79
Second half of interactions .48

Table 3: Proportion of dialogs with meta-queries. The
decrease in the proportion of queries is significant at the
p = 0.05 level.
How often place was re-
quested

First
time

Second
time

Third
Time

Total number of requests 29 15 8
Number of requests with
meta-queries

22 11 2

Proportion of requests with
meta-queries

.76 .73 .25

user’s initial interactions with the system to his or her fi-
nal interactions with the system. The proportions are rela-
tively high because the users, being new with the system,
asked for a variety of locations or experimented with dif-
ferent vocabulary. In Table 3, we see that the system often
asked a meta-query the first or second time a user asked
to go to a particular location, but there was a significant
drop in the number of meta-queries after the third time
the user requested to go to the same place. We note that
our active-learning approach allowed our dialog manager
to automatically determine the length of its training phase.
Our trials were too small to draw strong conclusions from
these results (especially since we were unable to account
for the effect of the novelty factor in the interactions), but
our quantitative analysis does show statistically significant
decreases in the number of meta-queries asked as the dia-
log manager adapts to each user.

Next we present some sample dialogs to illustrate our
system’s learning. Table 4 contains a sample dialog where
the system used a meta-query to establish the meaning of a
new word. In the initial dialog, the word ‘forecast’ is new
to the system, that is, it has no prior on what that word may
mean. The system determines that the Bayes risk is great
enough to warrant asking for a policy clarification. As a
result, future dialogs are biased toward choosing POMDP
samples that satisfy the initial policy query request, which
allows later dialogs to avoid the same kind of training.

In Table 5, the system adapts to a situation where two
words, ‘coffee’ and ‘copy’ are often mistaken for each
other in the voice recognition system. We stress that at
the beginning of the dialog, the system was initialized to
believe that the word ‘coffee’ was most likely if the user
wished to go to the coffee machine, while the word ‘copy’
was most likely if the user wished to go to the copy ma-
chine. The other key words—“tea” and “kitchen”—-in
this segment began with uniform priors.

During the first conversation, the agent is confused by
the many new words. Even after asking a meta-query,



Early Conversation
ROBOT: How can I help you?
USER: Give me the forecast.
ROBOT: I’m confused. What action should I take
now?
The system pops up a meta-query window, and user
indicates action “show weather” is correct.
ROBOT: Showers.
Later Conversation (with the same user)
ROBOT: How can I help you?
USER: What’s the forecast for today?
ROBOT: Do you want the weather?
The system has partially the word “forecast” and con-
firms the correct state.
USER: Yup.
ROBOT: Showers.

Table 4: Learning a new word: The system learns the
meaning of a new word through a meta-query.

it is confused by hearing the word “copy” since the user
seems to want to go to the kitchen. After several interac-
tions, the agent goes to the correct location. We note that
even in this tricky scenario, the use of the meta-queries
helped the agent focus on to the kitchen when the only
word it recognized—“copy”—seemed to indicate that the
user wished to go to another location. In the later dialog,
we see the effect of the learning: upon hearing the words
“kitchen” and “copy,” the agent correctly infers that the
user wishes to drive to the kitchen.

V. Discussion and Related Work

Prior work in POMDP learning has also considered in-
corporating the parameters of the POMDP as additional
hidden states into a larger model-uncertainty POMDP.
One approach, the Beetle algorithm (Poupart et al., 2006)
solves the problem analytically by casting an MDP with
unknown parameters as a POMDP. However, this ap-
proach would be difficult to extend to the POMDP case as
the state space would now be doubly continuous and very
high dimensional. Note that our goal is policy learning,
rather than explicitly learning a vocabulary as in (Lopes
and Teixeira, 2000; Lopes and Chauhan, 2007). We learn
additional word models only as a function of how they af-
fect the policy.

An approach that is closer to ours is the Medusa algo-
rithm (Jaulmes et al., 2005). The Medusa algorithm also
samples POMDPs from a prior over model parameters,
but the actions are chosen stochastically and queries are
made to a state oracle, not for policy information. While
the Medusa approach can allow for faster learning, our ac-
tion selection criterion is more robust (something valuable
for dialog management applications with a robotic wheel-
chair) and our queries provide a more natural way for the
user to provide feedback to the robot. To our knowledge,
this is the first example of using Bayesian reinforcement
learning on a real-world application.

Early Conversation
ROBOT: How can I help you?
USER: I want some tea from the kitchen.
ROBOT: How can I help you?
USER: The tea is in the kitchen near the coffee machine.
The system heard “copy” instead of “coffee” and is confused
about the new word “kitchen.”
ROBOT: How can I help you?
USER: Go to the kitchen.
ROBOT: I’m confused. What action should I take now?
The user indicates “Confirm the coffee machine area” is the
correct action.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
... The system asks a few more (non-meta) questions before
re-confirming the coffee machine state.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.
Later Conversation (with same user)
ROBOT: How can I help you?
USER: Take me to the kitchen.
The system hears a noisy combination of “nick” and
“kitchen” (mostly “kitchen”).
ROBOT: How can I help you?
USER: I want some coffee.
The system hears “copy” instead of “coffee,” but with its
learned observation model, it confirms correctly.
ROBOT: Do you want to go to the coffee machine area?
USER: Yup.
ROBOT: Going to the coffee machine area.

Table 5: Learning about observation noise: the system
learns new words for a noisy pair of states.

VI. Conclusion
We developed an approach for active learning for dialog
managers that robustly adapts to different users. Meta-
queries—questions about actions that the agent is think-
ing of taking—and a risk-averse action selection criterion
allowed our agent to behave robustly even when its knowl-
edge of the POMDP model was uncertain. Moreover, we
demonstrated that this model could be successfully trans-
ferred to a dialog manager on a robotic wheelchair.

References
Doshi, F. and Roy, N. (2007a). Efficient model learning

for dialog management. InProceedings of Human-
Robot Interaction (HRI 2007), Washington, DC.

Doshi, F. and Roy, N. (2007b). Efficient model learning
for dialog management. InTechnical Report SS-07-
07, Palo Alto, CA. AAAI Press.

Hoey, J., Poupart, P., Boutilier, C., and Mihailidis, A.
(2005). Pomdp models for assistive technology.
IATSL Technical Report.

Jaulmes, R., Pineau, J., and Precup, D. (2005). Learning in
non-stationary partially observable markov decision
processes. ECML Workshop.

Litman, D., Singh, S., Kearns, M., and Walker, M. (2000).
NJFun: a reinforcement learning spoken dialogue



system. InProceedings of the ANLP/NAACL 2000
Workshop on Conversational Systems, Seattle.

Lopes, L. S. and Chauhan, A. (2007). How many words
can my robot learn? an approach and experiments
with one-class learning.Interaction Studies, 8(1):53–
81.

Lopes, L. S. and Teixeira, A. (2000). Human-robot in-
teraction through spoken language dialogue. InPro-
ceedings IEEE/RSJ International Conference on In-
telligent Robots and Systems(IROS), pages 528–534.

Pineau, J., Gordon, G., and Thrun, S. (2003). Point-based
value iteration: An anytime algorithm for pomdps.
IJCAI.

Poupart, P., Vlassis, N., Hoey, J., and Regan, K. (2006).
An analytic solution to discrete bayesian reinforce-
ment learning. InICML, pages 697–704, New York,
NY, USA. ACM Press.

Roy, N., Pineau, J., and Thrun, S. (2000). Spoken dia-
logue management using probabilistic reasoning. In
Proceedings of the 38th Annual Meeting of the ACL,
Hong Kong.

Williams, J. and Young, S. (2005). Scaling up pomdps
for dialogue management: The ”summary pomdp”
method. InProceedings of the IEEE ASRU Work-
shop.


