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Motivation

Imagine an agent trying to help book a flight...

A successful agent must manage uncertainty in the dialog.

I'd like to fly 
to Paris

I'd like to buy
two pairs

???
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● The Partially Observable Markov Decision Process (POMDP) 
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

States: hidden
but fixed!

agent
action

vacation
location

utterance

agent
action
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● The Partially Observable Markov Decision Process (POMDP) 
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

agent
action

vacation
location

utterance
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action

– Actions:   
– -Query: “Where do you want to go?”
– -Confirm: “Did you say Rome?”
– -Submit: “You're booked to Rome.”
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● The Partially Observable Markov Decision Process (POMDP) 
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

agent
action

vacation
location

utterance

agent
action

Observation Model 
(depends on state, action)
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A useful insight
● POMDPs are often hard to solve; the optimal action depends on the 

agent's belief (probability distribution over the hidden state). 
● However, this POMDP has a special structure:

● Correct type of action depends only on the 'shape' of the belief, not 
the belief itself.

Rome London Paris 

pr
ob

ab
ilit

y

both cases:
best action is 
book most 
likely state

Rome London Paris 
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The More General Case

● We can think of many scenarios—booking systems, appointment 
systems, etc.—that have a similar structure:
– Goal: determine the identity of a fixed, hidden state.
– Actions: divide into classes of types with similar but state-

dependent effects.
– Observations: also divide into classes with similar, state-

dependent effects.
● In all of these cases, only the shape of the belief matters!
● Note: Other algorithms such as AMDP and Summary POMDP have 

used this idea, but ours is not an approximation!
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Intuitively, why is this useful?
● When solving, we know all permutations of a belief are similar.
● This exponentially decreases the belief space we need to consider!

state 1 state 2
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Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if, 
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R( s , a ) = R( π(s) , a
π 

)

– O( o | s ,a ) = O( π
π,a

(o) | π(s) , a
π
 ) 

– T( s' | s , a ) = T( π(s') | π(s) , a
π
 ) 

The proof follows from substituting the sufficient condition into the 
Bellman optimality equations for POMDPs.
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Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if, 
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R( s , a ) = R( π(s) , a
π 

)

– O( o | s ,a ) = O( π
π,a

(o) | π(s) , a
π
 ) 

– T( s' | s , a ) = T( π(s') | π(s) , a
π
 ) 

The proof follows from substituting the sufficient condition into the 
Bellman optimality equations for POMDPs.

For any action, no matter how
we swap around the states,

we can find an action and a
way to swap around the observations

so that the parameters are
remain the same



AAMAS 2008 15

Formalities: sufficient conditions

Example: given

● π(s), π(Rome) = London

● Action “Confirm Rome” 

Let a
π
 = “Confirm London” and observation permutation π

π,a
(o) = o

– R( Rome , “Confirm Rome” ) = R( π( Rome ) , “Confirm London” )
– O( Yes | Rome , “Confirm Rome” ) = O( Yes | London , “Confirm London” )
– T( Rome | Rome , “Confirm Rome” ) = T( London | London , “Confirm London” ) 

Rome London Paris 

st
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ob
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Rome London Paris 
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Practicalities: how do we use this?

We'll illustrate the approach for a simple point-based 

POMDP solution technique, but the idea—which 

exponentially reduces the size of the belief space—

can be applied to more sophisticated POMDP solvers.
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Practicalities: how do we use this?
Generic point-based POMDP solution scheme:
● Sample a set of beliefs.
● Loop:

– Compute action-observation value vectors:

– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s ,aOo∣s ' , a ' s ' },∀ '∈n

b
a=R . ,a∑

o∈O
argmax∈ a,o⋅b

n1=argmaxb
a ,ab

a⋅b
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Practicalities: how do we use this?
Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove 
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 
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Results 
● Scenario:

– Three types of actions: “ask,” “confirm,” “submit”
– Unique observation associated with each state
– Pr[ hear correct state ] from “ask” = .5
– Pr[ hear correct confirmation ] from “confirm” = .8
– Varied the number of states.

● Two types of tests:
– let the belief set size grow with the number of states (more fair to 

the generic algorithm)
– fix belief set size (more reasonable if time or memory is limited)
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Growing belief set size
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Fixed belief set size
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Conclusion

● Useful trick for solving POMDPs with a particular structure
– can also be used if a substructure is permutable.
– useful in learning situations in which a policy must be 

evaluated whenever parameters change.
● Future work: 

– determine a more general set of necessary conditions.
– are there approximate ways to apply this trick for 

POMDPs with not quite permutable structure?
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Thank-you
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Formalities: sufficient conditions

Example: given π(s) and action “Give location”

 

Let a
π
 = “Give location” and π

π,a
(os) = oπ(s) :

– R( Rome , “Give location” ) = R( π( Rome ) , “Give location” 
 
) 

– O( Rome | Rome , “Give location” ) = O( London | London , “Give location” )
– T( Rome | Rome , “Give location” ) = T( London | London , “Give location” )

Rome London Paris 

pr
ob

ab
ilit

y

Rome London Paris 

Pr( o | Rome,  “give location” ) Pr( o | London,  “give location” )
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Time Spent on Backups
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Alpha Set Sizes
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Interaction Model

actionobservation

State of the 
world

Agent

World

Belief about 
the world

planningstate 
estimation

sensors world dynamics

Model of the 
world
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Solving a POMDP
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Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy 
tree...

Action: Go 
to elevator

+100

-500

E
xp

ec
te

d 
R

ew
ar

d

Certain that we're in state one: 
User wants to go to the elevator

Certain in state two: User
wants to go to the cafeteria
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Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy 
tree...
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Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy tree; 
planning ahead increases our expected reward.
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wants to go to the
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wants to go to the
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Dialog Model: Solving the POMDP

Given multiple trees, we can determine the most appropriate 
action:

Action: Go 
to elevator

Action: Ask 
for location

Action: Go 
to elevator

Action: Go
to cafeteria

Observe
“elevator”

Observe
“cafeteria”

Action: Go 
to cafeteria +100

-500

E
xp

ec
te

d 
R

ew
ar

d

State one: User
wants to go to the
elevator

State two: User
wants to go to the
cafeteria
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Practicalities: how do we use this?

● We'll illustrate the approach for a simple point-based POMDP solution 
technique, but the idea—which effectively reduces the size of the 
belief space—can be applied to more sophisticated POMDP solvers.

● Begin with some notation:

– Γ: value function; dot( Γ , b ) is the value of being in belief b.

– Γa
b
: action value funciton; dot( Γa

b
 , b ) is the value of being in b 

and taking action a.
– Γa,o: action-observation value function; dot( Γa,o , b ) is the value of 

being in b, taking action a, and seeing observation o.
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Practicalities: how do we use this?
Adaptation to the permutable POMDP:
● Sample a set of beliefs.
● Sort beliefs in descending order and remove nearby points.
● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s ,aOo∣s ' , a ' s ' },∀ '∈n

b
a=R  ,a∑

o∈O
argmax∈a, o⋅b

n1=argmaxb
a ,ab

a⋅b

Get a canonical
set of beliefs
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Practicalities: how do we use this?
Why we sort the Γa,o vectors: 
● Previous step:
● Next step:

a ,o={∣s=∑
s '∈S
T s '∣s ,aO o∣s ' , a ' s ' },∀ '∈n

b
a=R  ,a∑

o∈O
argmax∈a, o⋅b

state 1 state 2
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