
AAMAS 2008 1

The Permutable POMDP:
Fast Solutions to POMDPs for

Preference Elicitation

Finale Doshi
 MIT, Cambridge University

Nick Roy
 MIT

AAMAS 2008 2

Motivation

Imagine an agent trying to help book a flight...

A successful agent must manage uncertainty in the dialog.

I'd like to fly
to Paris

I'd like to buy
two pairs

???

AAMAS 2008 3

● The Partially Observable Markov Decision Process (POMDP)
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

States: hidden
but fixed!

agent
action

vacation
location

utterance

agent
action

AAMAS 2008 4

● The Partially Observable Markov Decision Process (POMDP)
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

agent
action

vacation
location

utterance

agent
action

– Actions:
– -Query: “Where do you want to go?”
– -Confirm: “Did you say Rome?”
– -Submit: “You're booked to Rome.”

AAMAS 2008 5

● The Partially Observable Markov Decision Process (POMDP)
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

agent
action

vacation
location

utterance

agent
action

Observations

AAMAS 2008 6

● The Partially Observable Markov Decision Process (POMDP)
planning framework can optimally manage the dialog uncertainty.

● For our toy example, the model consists of

● Agent rewarded for submitting the correct location and shorter dialogs.

Toy Example

vacation
location

utterance

agent
action

vacation
location

utterance

agent
action

Observation Model
(depends on state, action)

AAMAS 2008 7

A useful insight
● POMDPs are often hard to solve; the optimal action depends on the

agent's belief (probability distribution over the hidden state).
● However, this POMDP has a special structure:

● Correct type of action depends only on the 'shape' of the belief, not
the belief itself.

Rome London Paris

pr
ob

ab
ilit

y

both cases:
best action is
book most
likely state

Rome London Paris

AAMAS 2008 8

A useful insight
● POMDPs are often hard to solve; the optimal action depends on the

agent's belief (probability distribution over the hidden state).
● However, this POMDP has a special structure:

● Correct type of action depends only on the 'shape' of the belief, not
the belief itself.

Rome London Paris

pr
ob

ab
ilit

y

both cases:
best action is
confirm most
likely state

Rome London Paris

AAMAS 2008 9

The More General Case

● We can think of many scenarios—booking systems, appointment
systems, etc.—that have a similar structure:
– Goal: determine the identity of a fixed, hidden state.
– Actions: divide into classes of types with similar but state-

dependent effects.
– Observations: also divide into classes with similar, state-

dependent effects.
● In all of these cases, only the shape of the belief matters!
● Note: Other algorithms such as AMDP and Summary POMDP have

used this idea, but ours is not an approximation!

AAMAS 2008 10

Intuitively, why is this useful?
● When solving, we know all permutations of a belief are similar.
● This exponentially decreases the belief space we need to consider!

state 1 state 2

va
lu

e
of

 b
el

ie
f

AAMAS 2008 11

Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if,
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R(s , a) = R(π(s) , a
π

)

– O(o | s ,a) = O(π
π,a

(o) | π(s) , a
π
)

– T(s' | s , a) = T(π(s') | π(s) , a
π
)

The proof follows from substituting the sufficient condition into the
Bellman optimality equations for POMDPs.

AAMAS 2008 12

Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if,
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R(s , a) = R(π(s) , a
π

)

– O(o | s ,a) = O(π
π,a

(o) | π(s) , a
π
)

– T(s' | s , a) = T(π(s') | π(s) , a
π
)

The proof follows from substituting the sufficient condition into the
Bellman optimality equations for POMDPs.

For any action, no matter how
we swap around the states,

AAMAS 2008 13

Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if,
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R(s , a) = R(π(s) , a
π

)

– O(o | s ,a) = O(π
π,a

(o) | π(s) , a
π
)

– T(s' | s , a) = T(π(s') | π(s) , a
π
)

The proof follows from substituting the sufficient condition into the
Bellman optimality equations for POMDPs.

For any action, no matter how
we swap around the states,

we can find an action and a
way to swap around the observations

AAMAS 2008 14

Formalities: sufficient conditions

Theorem: All permutations of the belief will have the same value if,
● for every state permutation π(s) and action a

● there exists an action a
π
 and observation permutation π

π,a
(o)

● such that

– R(s , a) = R(π(s) , a
π

)

– O(o | s ,a) = O(π
π,a

(o) | π(s) , a
π
)

– T(s' | s , a) = T(π(s') | π(s) , a
π
)

The proof follows from substituting the sufficient condition into the
Bellman optimality equations for POMDPs.

For any action, no matter how
we swap around the states,

we can find an action and a
way to swap around the observations

so that the parameters are
remain the same

AAMAS 2008 15

Formalities: sufficient conditions

Example: given

● π(s), π(Rome) = London

● Action “Confirm Rome”

Let a
π
 = “Confirm London” and observation permutation π

π,a
(o) = o

– R(Rome , “Confirm Rome”) = R(π(Rome) , “Confirm London”)
– O(Yes | Rome , “Confirm Rome”) = O(Yes | London , “Confirm London”)
– T(Rome | Rome , “Confirm Rome”) = T(London | London , “Confirm London”)

Rome London Paris

st
at

e
pr

ob
ab

ilit
y

Rome London Paris

AAMAS 2008 16

Practicalities: how do we use this?

We'll illustrate the approach for a simple point-based

POMDP solution technique, but the idea—which

exponentially reduces the size of the belief space—

can be applied to more sophisticated POMDP solvers.

AAMAS 2008 17

Practicalities: how do we use this?
Generic point-based POMDP solution scheme:
● Sample a set of beliefs.
● Loop:

– Compute action-observation value vectors:

– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s ,aOo∣s ' , a ' s ' },∀ '∈n

b
a=R . ,a∑

o∈O
argmax∈ a,o⋅b

n1=argmaxb
a ,ab

a⋅b

AAMAS 2008 18

Practicalities: how do we use this?
Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 

AAMAS 2008 19

Practicalities: how do we use this?

state 1 state 2

va
lu

e

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 

AAMAS 2008 20

Practicalities: how do we use this?

state 1 state 2

va
lu

e

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 

AAMAS 2008 21

Practicalities: how do we use this?

state 1 state 2

va
lu

e

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 

AAMAS 2008 22

Practicalities: how do we use this?

state 1 state 2

va
lu

e

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

AAMAS 2008 23

Practicalities: how do we use this?

state 1 state 2

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 
va

lu
e

AAMAS 2008 24

Practicalities: how do we use this?

state 1 state 2

Adaptation to the permutable POMDP:

● Sample a set of beliefs.

● Sort beliefs in descending order and remove
nearby points.

● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s , aO o∣s ' , a ' s ' },∀ '∈ n

b
a=R . ,a ∑

o∈O

argmax ∈a ,o ⋅b 

n1=argmax b
a ,a b

a⋅b 
va

lu
e

AAMAS 2008 25

Results
● Scenario:

– Three types of actions: “ask,” “confirm,” “submit”
– Unique observation associated with each state
– Pr[hear correct state] from “ask” = .5
– Pr[hear correct confirmation] from “confirm” = .8
– Varied the number of states.

● Two types of tests:
– let the belief set size grow with the number of states (more fair to

the generic algorithm)
– fix belief set size (more reasonable if time or memory is limited)

AAMAS 2008 26

Growing belief set size

AAMAS 2008 27

Fixed belief set size

AAMAS 2008 28

Conclusion

● Useful trick for solving POMDPs with a particular structure
– can also be used if a substructure is permutable.
– useful in learning situations in which a policy must be

evaluated whenever parameters change.
● Future work:

– determine a more general set of necessary conditions.
– are there approximate ways to apply this trick for

POMDPs with not quite permutable structure?

AAMAS 2008 29

Thank-you

AAMAS 2008 30

Formalities: sufficient conditions

Example: given π(s) and action “Give location”

Let a
π
 = “Give location” and π

π,a
(os) = oπ(s) :

– R(Rome , “Give location”) = R(π(Rome) , “Give location”

)

– O(Rome | Rome , “Give location”) = O(London | London , “Give location”)
– T(Rome | Rome , “Give location”) = T(London | London , “Give location”)

Rome London Paris

pr
ob

ab
ilit

y

Rome London Paris

Pr(o | Rome, “give location”) Pr(o | London, “give location”)

AAMAS 2008 31

Application References

● Williams and Young, Scaling up POMDPs for dialog management: the
summary POMDP method, IEEE ASRU Workshop 2005.

● Roy, Pineau, and Thrun, Spoken dialog management using probabilistic
reasoning, Proceedings of the 38th Meeting of the ACL, 2000.

● Regan, Cohen, and Poupart, The advisor POMDP: a principled approach to
trust through reputation in electronic markets. Conference on Privacy,
Security, and Trust, 2005.

● Doshi and Roy, Efficient model learning for dialog management, Human-
Robot Interaction, 2007.

● Boutilier, A POMDP formulation of preference elicitation problems,
Proceedings of the 18th National Conference on Artificial Intelligence, 2002.

AAMAS 2008 32

Time Spent on Backups

AAMAS 2008 33

Alpha Set Sizes

AAMAS 2008 34

Interaction Model

actionobservation

State of the
world

Agent

World

Belief about
the world

planningstate
estimation

sensors world dynamics

Model of the
world

AAMAS 2008 35

Solving a POMDP

AAMAS 2008 36

Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy
tree...

Action: Go
to elevator

+100

-500

E
xp

ec
te

d
R

ew
ar

d

Certain that we're in state one:
User wants to go to the elevator

Certain in state two: User
wants to go to the cafeteria

AAMAS 2008 37

Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy
tree...

Action: Ask
for location

+100

-500

E
xp

ec
te

d
R

ew
ar

d

State one: User
wants to go to the
elevator

State two: User
wants to go to the
cafeteria

AAMAS 2008 38

Dialog Model: Solving the POMDP

We think of the previous recursions as building a policy tree;
planning ahead increases our expected reward.

Action: Ask
for location

+100

-500

E
xp

ec
te

d
R

ew
ar

d

Action: Go
to elevator

Action: Go
to cafeteria

Observe
“elevator”

Observe
“cafeteria”

+100

-500

E
xp

ec
te

d
R

ew
ar

d

State one: User
wants to go to the
elevator

State two: User
wants to go to the
cafeteria

AAMAS 2008 39

Dialog Model: Solving the POMDP

Given multiple trees, we can determine the most appropriate
action:

Action: Go
to elevator

Action: Ask
for location

Action: Go
to elevator

Action: Go
to cafeteria

Observe
“elevator”

Observe
“cafeteria”

Action: Go
to cafeteria +100

-500

E
xp

ec
te

d
R

ew
ar

d

State one: User
wants to go to the
elevator

State two: User
wants to go to the
cafeteria

AAMAS 2008 40

Practicalities: how do we use this?

● We'll illustrate the approach for a simple point-based POMDP solution
technique, but the idea—which effectively reduces the size of the
belief space—can be applied to more sophisticated POMDP solvers.

● Begin with some notation:

– Γ: value function; dot(Γ , b) is the value of being in belief b.

– Γa
b
: action value funciton; dot(Γa

b
 , b) is the value of being in b

and taking action a.
– Γa,o: action-observation value function; dot(Γa,o , b) is the value of

being in b, taking action a, and seeing observation o.

AAMAS 2008 41

Practicalities: how do we use this?
Adaptation to the permutable POMDP:
● Sample a set of beliefs.
● Sort beliefs in descending order and remove nearby points.
● Loop:

– Compute action-observation value vectors:

– Sort the Γa,o in descending order.
– Compute the action value vectors:

– Compute the new value function:

a ,o={∣s=∑
s '∈S
T s '∣s ,aOo∣s ' , a ' s ' },∀ '∈n

b
a=R  ,a∑

o∈O
argmax∈a, o⋅b

n1=argmaxb
a ,ab

a⋅b

Get a canonical
set of beliefs

AAMAS 2008 42

Practicalities: how do we use this?
Why we sort the Γa,o vectors:
● Previous step:
● Next step:

a ,o={∣s=∑
s '∈S
T s '∣s ,aO o∣s ' , a ' s ' },∀ '∈n

b
a=R  ,a∑

o∈O
argmax∈a, o⋅b

state 1 state 2

va
lu

e
of

 b
el

ie
f

