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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes

– Infinite State Controllers*
– Infinite Dynamic Bayesian Networks*

● Conclusions and Continuing Work
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Example: Searching for Treasure
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Example: Searching for Treasure

I wish I had 
a

GPS...
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Example: Searching for Treasure

Partial Observability: can't tell 
where we are just by looking...
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Example: Searching for Treasure
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Example: Searching for Treasure

Reinforcement Learning: 
don't even have a map!
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ot-1 ot ot+1 ot+2... ...

The Partially Observable 
Reinforcement Learning Setting

at-1 at at+1 at+2... ...
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The Partially Observable 
Reinforcement Learning Setting
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Given a 
history
of actions,
observations,
and rewards
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ot-1 ot ot+1 ot+2... ...

The Partially Observable 
Reinforcement Learning Setting

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...
-1 -1 -1 10

Given a 
history
of actions,
observations,
and rewards

How can we
act in order to
maximize 
long-term 
future rewards?
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ot-1 ot ot+1 ot+2... ...

The Partially Observable 
Reinforcement Learning Setting

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...
-1 10 -1 10

recommender systems
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ot-1 ot ot+1 ot+2... ...

The Partially Observable 
Reinforcement Learning Setting

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...
-1 -1 -5 10

...

clinical diagnostic tools
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ot-1 ot ot+1 ot+2... ...

Motivation:
the Reinforcement Learning Setting

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

Key Challenge: 
The entire history may be needed

 to make near-optimal decisions
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ot-1 ot ot+1 ot+2... ...

The Partially Observable
Reinforcement Learning Setting

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

All past
events
are needed
to predict
future
events
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ot-1 ot ot+1 ot+2... ...

General Approach: Introduce a 
statistic that induces Markovianity

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

st-1 st st+1 st+2... ...
The

representation
summarizes
the history
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ot-1 ot ot+1 ot+2... ...

General Approach: Introduce a 
statistic that induces Markovianity

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

xt-1 xt xt+1 xt+2... ...
The

representation
summarizes
the history

Key Questions:
●  What is the form of the statistic?
●  How do you learn it from 
   limited data? (prevent overfitting)
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ot-1 ot ot+1 ot+2... ...

History-Based Approaches

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

st-1 st st+1 st+2... ...

Examples:
● U-Tree1 (learn 
with statistical 
tests)
● Probabalistic 
Deterministic 
Finite Automata2 
(learned via 
validation sets)  
● Predictive State 
Representations3 
(learned via 
eigenvalue 
decompositions) 

Idea: build the statistic directly from the history 

1. e.g. McCallum, 1994
2. e.g. Mahmud, 2010 
3. e.g. Littman, Sutton, and Singh, 2002
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ot-1 ot ot+1 ot+2... ...

Hidden-Variable Approaches

at-1 at at+1 at+2... ...

rt-1 rt rt+1 rt+2... ...

st-1 st st+1 st+2... ...

Examples: 
POMDPs (and 
derivatives)1 
learned via
● Expectation-
Maximization 
(validation sets)
● Bayesian 
methods (using 
Bayes rule)2 

Idea: system is Markov if certain hidden variables are known

Our Focus: in the 
Bayesian setting, 
“belief” p(st) is a
sufficient statistic

1. e.g. Sondik 1971, Kaelbling, Littman, and 
Cassandra 1995, McAllester and Singh 1999
2. e.g. Ross, Chaib-draa, Pineau 2007, 
Poupart and Vlassis, 2008
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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes

– Infinite State Controllers
– Infinite Dynamic Bayesian Networks

● Conclusions and Continuing Work
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Formalizing the Problem
The agent maintains a representation of how the 

world works as well as the world's current state

Representation
of current 
world state

action

observation,
reward

World

Representation
of how the 
world works

Agent
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Model-Based Approach
The agent maintains a representation of how the 

world works as well as the world's current state

Representation
of current 
world state

action

observation,
reward

World

Representation
of how the 
world works

Agent
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Being Bayesian
If the agent has an accurate world representation, 

we can keep a distribution over current states..

Possible
world state

now

Possible
world state

now

action

observation,
reward

World

Accurate
world

representation
m

Possible
world state

now
p(s|m,h)

Agent
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Being (more) Bayesian
If the world representation are unknown, can 

keep distributions over those too.

Belief over
world state

now

action

observation,
reward

World

Possible
world 

dynamics

Belief over
world state

now

Possible
world 

dynamics

Belief over
world state

now

Possible
world 

dynamics

Possible
world state

now
p(s|m,h)

Possible
world 

representation
p(m|h)

Agent
p m∣h∝ ph∣m pm
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Lots of unknowns to reason about!

Why is this problem hard?
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Lots of unknowns to reason about!

Why is this problem hard?

… and just how many unknowns are 
there? (Current methods struggle 
reasoning about too many unknowns.)
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Lots of unknowns to reason about!

Why is this problem hard?

… and how many unknowns 
are there? Current methods 
struggle trying to reason 
about too many unknowns.
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We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional 
parameter space
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We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional 
parameter space

Already talked
about keeping 

distributions
p( m | h ) 

over representations
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We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional 
parameter space

Already talked
about keeping 

distributions
p( m | h ) 

over representations

Now place the 
prior p( m ) over 

representations with
an infinite number

of parameters in m 
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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes*

– Infinite State Controllers
– Infinite Dynamic Bayesian Networks

● Conclusions and Continuing Work

* Doshi-Velez, NIPS 2009
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Being (more) Bayesian
If the world representation are unknown, can 

keep distributions over those too.

Belief over
world state

now

action

observation,
reward

World

Possible
world 

dynamics

Belief over
world state

now

Possible
world 

dynamics

Belief over
world state

now

Possible
world 

dynamics

Possible
world state

now

Possible
world 

representation

AgentNeed to choose
what type of 

representation
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We represent the world as a 
partially observable Markov Decision 

Process (POMDP)

st st+1

otrt

at
Input: actions 
(observed, discrete)

Output: observations, 
rewards (observed)

Latent state: 
(hidden, discrete, finite)

Transition Matrix:
T(s'|s,a)

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)
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“Learning” a POMDP means learning 
the parameter values

st st+1

otrt

at
Transition Matrix:
T(s'|s,a)

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)

Ex.: T( Jּ |s,a) is a vector 
(multinomial)
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Being Bayesian means putting 
distributions over the parameters

st st+1

otrt

at
Transition Matrix:
T(s'|s,a)

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)

Ex.: T( Jּ |s,a) is a vector 
(multinomial)

The conjugate prior 
p( T( Jּ |s,a) ) is a Dirichlet

distribution 
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Making things nonparametric:
the Infinite POMDP

st st+1

otrt

at
Transition Matrix:
T(s'|s,a)

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)

Ex.: T( Jּ |s,a) is a vector 
(infinite multinomial)

The conjugate prior 
p( T( Jּ |s,a) ) is a Dirichlet

process

...

...

(built from the HDP-HMM)
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Generative Process
(based on the HDP-HMM)

1. Sample the base transition distribution β:

β ~ Stick( γ )
2. Sample the transition matrix in rows T( Jּ |s,a):

T( Jּ |s,a) ~ DP( β , α ) 
3. For each state-action pair, sample 

observation and reward distributions from a 
base distribution: 

Ω(o|s,o) ~ HO   
R(r|s,o) ~ HR  

...

...

...

...

-10 -1 10

st st+1

otrt

at
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Model Complexity Grows with Data: 
Lineworld Example

Episode Number
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Model Complexity Grows with Data: 
Loopworld Example
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Incorporating Data and 
Choosing Actions

All Bayesian reinforcement learning approaches 
alternate between two stages, belief monitoring 
and action selection. 
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All Bayesian reinforcement learning approaches 
alternate between two stages, belief monitoring 
and action selection.

● Belief monitoring: maintain the posterior

Issue: we need a distribution over infinite models! 
 Key idea: only need to reason about parameters 
of states we've seen. 

Incorporating Data and 
Choosing Actions

b s ,m∣h=b s∣m ,hb m∣h
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High-level Plan: Apply Bayes Rule

P(model|data)     P(model|world) P(model)

What's likely given the data?
Represent this complex distribution
by a set of samples from it...

How well do possible world 
models match the data?

A priori, what models
do we think are likely?

st st+1

otrt

at
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High-level Plan: Apply Bayes Rule

P(model|data)     P(model|world) P(model)

What's likely given the data?
Represent this complex distribution
by a set of samples from it...

How well do possible world 
models match the data?

A priori, what models
do we think are likely?

st st+1

otrt

at
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High-level Plan: Apply Bayes Rule

P(model|data)     P(model|world) P(model)

What's likely given the data?
Represent this complex distribution
by a set of samples from it...

How well do possible world 
models match the data?

A priori, what models
do we think are likely?

st st+1

otrt

at
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Inference: Beliefs over Finite Models

O( o|s',o)
T(s'|s,o)

Estimate the parameters Estimate the state sequence:
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Inference: Beliefs over Finite Models

O( o|s',o)
T(s'|s,o)

Estimate the parameters:

Discrete case, use Dirichlet-
multinomial conjugacy: 

Estimate the state sequence:

 

Transition Prior: β

State-visit counts:

Posterior:
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Inference: Beliefs over Finite Models

O( o|s',o)
T(s'|s,o)

Estimate the parameters:

Discrete case, use Dirichlet-
multinomial conjugacy: 

Estimate the state sequence:

Forward filter (e.g. first part of 
Viterbi algorithm) to get 
marginal for the last state; 
backwards sample to get a 
state sequence. 

Transition Prior: β

State-visit counts:

Posterior:
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Inference: Beliefs over Infinite Models

Ω( o|s',o)
T(s'|s,a)

Estimate T,Ω,R for visited states Estimate the state sequence 
 

T(s'|s,a)

...
Pick a slice 
variable u to 
cut infinite 
model into a 
finite model.

T
u

u

(Beam Sampling, Van Gael 2008)
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Inference: Beliefs over Infinite Models

Ω(o|s',o)
T(s'|s,a)

Estimate T,Ω,R for visited states Estimate the state sequence 
 

T(s'|s,a)

...
Pick a slice 
variable u to 
cut infinite 
model into a 
finite model.

T
u

u

Ω(o|s',a)

(Beam Sampling, Van Gael 2008)
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All Bayesian reinforcement learning approaches 
alternate between two stages, belief monitoring 
and action selection.

● Belief monitoring: maintain the posterior

Issue: we need a distribution over infinite models! 
 Key idea: only need to reason about parameters 
of states we've seen.
● Action selection: use a basic stochastic forward 
search (we'll get back to this...) 

Incorporating Data and 
Choosing Actions

b s ,m∣h=b s∣m ,hb m∣h



53

Results on Standard Problems
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Results on Standard Problems
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Results on Standard Problems
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Results on Standard Problems
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Results on Standard Problems
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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes

– Infinite State Controllers*
– Infinite Dynamic Bayesian Networks

● Conclusions and Continuing Work

* Doshi-Velez, Wingate, Tenenbaum, and Roy, NIPS 2010
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Leveraging Expert Trajectories

Often, an expert (could be another planning 
algorithm) can provide near-optimal trajectories.
However, combining expert trajectories with data 
from self-exploration is challenging:
● Experience provides direct information about the 
dynamics, which indirectly suggests a policy.
● Experts provide direct information about the policy, 
which indirectly suggests dynamics.
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Policy Priors

Suppose we're turning data from an expert's demo into a 
policy...

π(history)s s s s s

o,r o,r o,r o,r

a a a a
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Policy Priors

Suppose we're turning data from an expert's demo into a 
policy... a prior over policies can help avoid overfitting...

π(history)

p(π)

s s s s s

o,r o,r o,r o,r

a a a a
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Policy Priors

Suppose we're turning data from an expert's demo into a 
policy... a prior over policies can help avoid overfitting... 
but the demo also provides information about the model

π(history)
model

p(π)

s s s s s

o,r o,r o,r o,r

a a a a
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Policy Priors

Suppose we're turning data from an expert's demo into a 
policy... a prior over policies can help avoid overfitting... 
but the demo also provides information about the model

π(history)
model

p(π)

p(m)

s s s s s

o,r o,r o,r o,r

a a a a
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Policy Priors

Suppose we're turning data from an expert's demo into a 
policy... a prior over policies can help avoid overfitting... 
but the demo also provides information about the model

   But if we assume the expert acts near
   optimally with respect to the model, 
   don't want to regularize!

s s s s s

o,r o,r o,r o,r

a a a a

π(history)
model

p(π)

p(m)
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Policy Prior Model

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy
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Policy Prior: What it means

Model Space

Models 
with simple
dynamics
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Policy Prior: What it means

Model Space

Models 
with simple control
policies.
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Policy Prior: What it means

Model Space

Joint Prior: models
with few states, also
easy to control.
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Policy Prior Model

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy
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Modeling the Model-Policy Link

Apply a Factorization:
    the probability of the 
    expert policy π
p( π | m , policy prior ) 
    is proportional to 
f( π , m ) g( π , policy prior)  

Many options for f( π , m ), 
assume we want something
like δ(π*,π) where π* is the
optimal policy under m

Policy
Prior

World
Prior

Expert
Policy

World
Model

Expert 
Data

Agent 
Data

Agent
Policy
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Modeling the World Model

Represent the world
model with an infinite
POMDP

Policy
Prior

World
Prior

Expert
Policy

World
Model

Expert 
Data

Agent 
Data

Agent
Policy

st st+1

otrt

at
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Modeling the Policy

Represent the policy
as a (in)finite state 
controller:

Policy
Prior

World
Prior

Expert
Policy

World
Model

Expert 
Data

Agent 
Data

Agent
Policy

nt nt+1

at

ot

Transition 
Matrix:
T(n'|n,o)Emission 

Matrix:
P(a|n,o)
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Doing Inference

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy



74

Some parts aren't too hard...

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy

st st+1

otrt

at
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Some parts aren't too hard...

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy

nt nt+1

at

ot
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But: Model-Policy Link is Hard

Policy
Prior

Dynamics
Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
Policy
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Sampling Policies Given Models

Suppose we choose f() and g() so that the probability of an expert policy, 
p( π | m , data , policy prior ) is proportional to 

          f( π , m ) g( π , data , policy prior)

where the policy π is given by a set of 
● transitions T(n'|n,o) 
● emissions P(a|n,o) nt nt+1

at

ot

Transition 
Matrix:
T(n'|n,o)Emission 

Matrix:
P(a|n,o)

iPOMDP prior + dataδ(π*,π) where π* is opt(m)
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β: prior/mean
transition from 
the iPOMDP

Looking at a Single T(n'|n,o)

Consider the inference update for a single distribution T(n'|n,o): 

          f( π , m ) g( π , data , policy prior)  

Easy with Beam Sampling if we have
Dirichlet-multinomial conjugacy

(data just adds counts to the prior)

node-visit counts: 
how often n' occurred 
after seeing o in n

+ =

posterior 
Dirichlet for
T(n'|n,o)

n n n n n

a a a a

o o o o
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Looking at a Single T(n'|n,o)

Consider the inference update for a single distribution T(n'|n,o): 

          f( π , m ) g( π , data , policy prior)  

Approximate δ(π*,π)
with Dirichlet counts, using 

Bounded Policy Iteration (BPI)
(Poupart and Boutilier, 2003)

nt nt+1

at

ot

Current policy has some
value for T(n'|n,o)

nt nt+1

at

ot

nt nt+1

at

ot

One step of BPI changes
T'(n'|n,o) = T(n'|n,o) + a 
(keeps node alignment)

More steps of BPI change
T*(n'|n,o) = T(n'|n,o) + a* 
(nodes still aligned)
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Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,o):  

          f( π , m ) g( π , data , policy prior)  

Distribution
for T*(n|n,o)
scaled by k

β: prior/mean
transition from 
the iPOMDP

node-visit counts: 
how often n' occurred 
after seeing o in n

+ =

posterior 
Dirichlet for
T(n'|n,o)

+

Approximate δ(π*,π)
with Dirichlet counts/BPI

n n n n n

a a a a

o o o o
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Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,o):  

          f( π , m ) g( π , data , policy prior)  

Distribution
for T*(n|n,o)
scaled by k

β: prior/mean
transition from 
the iPOMDP

node-visit counts: 
how often n' occurred 
after seeing o in n

+ =

posterior 
Dirichlet for
T(n'|n,o)

n n n n n

a a a a

o o o o

+

Approximate δ(π*,π)
with Dirichlet counts/BPI
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Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,o):  

          f( π , m ) g( π , data , policy prior)  

Distribution
for T*(n|n,o)
scaled by k

β: prior/mean
transition from 
the iPOMDP

node-visit counts: 
how often n' occurred 
after seeing o in n

+ =

posterior 
Dirichlet for
T(n'|n,o)

+

Approximate δ(π*,π)
with Dirichlet counts/BPI

n n n n n

a a a a

o o o o
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Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

min1 ,
f  ,m' g m' , D , pM ⋅g m , D , pM 
f  ,mg m , D , pM ⋅g m' , D , pM 

=min 1 , f  , m' 
f  , m



Likelihood ratio:
p(m')/p(m)

Proposal ratio:
q(m)/q(m')
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Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

We still have a problem: If f() is strongly peaked, will never accept!  

min1 ,
f  ,m' g m' , D , pM ⋅g m , D , pM 
f  ,mg m ,D , pM ⋅g m' , D , pM 

=min 1 , f  , m' f  ,m 
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Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

We still have a problem: If f() is strongly peaked, will never accept!

Temper
again...  

min1 ,
f  ,m' g m' , D , pM ⋅g m , D , pM 
f  ,mg m , D , pM ⋅g m' , D , pM 

=min 1 , f  , m' 
f  , m



Desired link
m

Intermediate functions
m

f  ,m=exp a⋅V m f  ,m=∗,m
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Example Result 
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Same trend for Standard Domains
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Results on Standard Problems 
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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes

– Infinite State Controllers
– Infinite Dynamic Bayesian Networks*

● Conclusions and Continuing Work

* Doshi-Velez, Wingate, Tenenbaum, and Roy, ICML 2011
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Dynamic Bayesian Networks

time t time t+1
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Making it infinite...

time t time t+1

... ...
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The iDBN Generative Process

... ...

time t time t+1
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Observed Nodes Choose Parents

... ...

time t time t+1

Treat each parent as a 
dish in the Indian Buffet
Process: Popular parents 
more likely to be chosen.
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Hidden Nodes Choose Parents

... ...

time t time t+1

Treat each parent as a 
dish in the Indian Buffet
Process: Popular parents 
more likely to be chosen.
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Hidden Nodes Choose Parents

Treat each parent as a 
dish in the Indian Buffet
Process: Popular parents 
more likely to be chosen.

... ...

time t time t+1
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Hidden Nodes Choose Parents

... ...

time t time t+1

Key point: we only need to
instantiate parents for nodes
that help predict values for
the observed nodes.
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time t time t+1

Other infinite nodes
are still there, we just
don't need them to
explain the data.



98

Instantiate Parameters

time t time t+1

Sample observation
CPTs ~ H0 for all
observed nodes

Sample transition
CPTs ~ HDP for all
hidden nodes
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Inference

Resample factor-factor connections

Add / delete factors

Resample state sequence

Resample observations

Gibbs sampling

Metropolis-Hastings birth/death

Dirichlet-multinomial

Dirichlet-multinomial

Factored frontier – Loopy BP

General Approach: Blocked Gibbs sampling with the usual tricks 
(tempering, sequential initialization,etc.) 

Gibbs sampling

Resample transitions

Resample factor-observation connections
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Inference

Resample factor-factor connections

Add / delete factors

Resample state sequence

Resample observations

Gibbs sampling

Metropolis-Hastings birth/death

Dirichlet-multinomial

Dirichlet-multinomial

Factored frontier – Loopy BP

General Approach: Blocked Gibbs sampling with the usual tricks 
(tempering, sequential initialization,etc.) 

Gibbs sampling

Resample transitions

Resample factor-observation connections

Specific to iDBN
only 5% computational

overhead!

Common to all
DBN inference
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Example: Weather Data

…

Time series of US precipitation patterns...
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Weather Example: Small Dataset

A model with just five locations quickly separates 
the east cost and the west coast data points.
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Weather Example: Full Dataset

On the full dataset, we get regional factors with a 
general west-to-east pattern (the jet-stream).
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Weather example: Full Dataset
Training and test performance (lower is better)
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Outline
● Introduction: The partially-observable 

reinforcement learning setting
● Framework: Bayesian reinforcement learning
● Applying nonparametrics:

– Infinite Partially Observable Markov Decision 
Processes

– Infinite State Controllers
– Infinite Dynamic Bayesian Networks

● Conclusions and Continuing Work
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When should we use this?
● Predictive accuracy is the priority.

● When the data is limited or fundamentally sparse... 
otherwise a history-based approach might be better.

● When the “true” model is poorly understood... 
otherwise use calibration and  system identification.

(and what are the limitations?)

(learned representations aren't always interpretable,
and they are not optimized for maximizing rewards)

(most reasonable methods perform well with lots of data,  
and Bayesian methods require more computation)

(current priors are very general, not easy to combine
with detailed system or parameter knowledge)
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Continuing Work
● Action-selection: when do different strategies matter?

● Bayesian nonparametrics for history-based approaches: 
improving probabilistic-deterministic infinite automata

● Models that match realworld properties.
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Summary

In this thesis, we introduced a novel approach to learning 
hidden-variable representations for partially-observable 
reinforcement learning using Bayesian nonparametric 
statistics.  This approach allows for
● The representation to scale in sophistication with the 

complexity in the data 
● Tracking uncertainty in the representation 
● Expert trajectories to be incorporated
● Complex causal structures to be learned
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Standard Forward-Search to 
Determine the Value of an Action:

b(s)

o1          o2               o3

For some action a1
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Consider what actions are possible 
after those observations ...

b(s)

o1          o2               o3

a1      a2 a1       a2 a1     a2

For some action a1
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... and what observations are 
possible after those actions ...

b(s)

o1          o2               o3

a1      a2 a1       a2 a1     a2

o1 o2 o3 o1 o2o3 o1 o2o3 o1o2 o3 o1o2 o3 o1 o2 o3

For some action a1
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Use highest-value branches to 
determine the action's value

b(s)

                     

R R R       R R    R

R(b,a1)

V V VV V V V V V V V V V V V V V V

Choose 
action with 
highest value

Average over 
possible
observations

Average over 
possible
observations
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Forward-Search in Model Space

b(s) For some action a1
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b(s) For some action a1
models

Forward-Search in Model Space



117

b(s) For some action a1

weight of models b(m)

Forward-Search in Model Space
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b(s)

b'(s) b'(s)

o2o1

For some action a1

Each model updates 
its belief b(s) and 
weights over models 
b(m) also change.

models

weight of models b(m)

Forward-Search in Model Space 
(cartoon for a single action)
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b(s)

b'(s) b'(s)

v(b') v(b')

o2o1

For some action a1

Leaves use values of 
beliefs for each model; 
sampled models are 
small, quick to solve.

Each model updates 
its belief b(s) and 
weights over models 
b(m) also change..

models

weight of models b(m)

Forward-Search in Model Space
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Generative Process
First, sample overall popularities, observation and 

reward distributions for each state.

Overall 
Popularity 

1 2 3 4 State Index

...
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Generative Process
First, sample overall popularities, observation and 

reward distributions for each state-action.

Observation
Distribution

Overall 
Popularity 

1 2 3 4 State Index

...

...
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Generative Process
First, sample overall popularities, observation and 

reward distributions for each state-action.

Observation
Distribution

Reward
Distribution

Overall 
Popularity 

1 2 3 4 State Index

...

...

...

-10 -1 10 -10 -1 10 -10 -1 10 -10 -1 10
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Generative Process
For each action, sample transition matrix using 

the state popularities as a base distribution.

Transition probability

1 2 3 4 Destination state

1

2

3

Start 
state

...

...

...
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Thought Example: Ride or Walk?

Suppose we initially think that 
each scenario is equally likely.

o B

Bus comes 90% of the time, 
though sometimes 5 minutes late

Bus comes 50% of the time, 
though sometimes 5 minutes late
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We gather some data...

data: Bus come 1/2 times

It's now the time for the bus to arrive, 
but it's not here. What do you do?

o B

Bus comes 90% of the time, 
though sometimes 5 minutes late

Bus comes 50% of the time, 
though sometimes 5 minutes late
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Compute the posterior on scenarios.

Bayesian reasoning tells us 
B is ~3 times more likely than o

o B

Bus comes 90% of the time, 
though sometimes 5 minutes late

Bus comes 50% of the time, 
though sometimes 5 minutes late
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and decide if we're sure enough:

Bayesian reasoning tells us 
B is ~3 times more likely than o
... but if we really prefer the bus, 
we still might want more data.

o B

Bus comes 90% of the time, 
though sometimes 5 minutes late

Bus comes 50% of the time, 
though sometimes 5 minutes late
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Results on Some Standard Problems

Metric States Relative Training Time Test Performance
Problem True iPOMDP EM FFBS FFBS-

big
EM FFBS FFBS-

big
iPOMDP

Tiger 2 2.1 0.41 0.70 1.50 -277 0.49 4.24 4.06
Shuttle 8 2.1 1.82 1.02 3.56 10 10 10 10
Network 7 4.36 1.56 1.09 4.82 1857 7267 6843 6508
Gridworld 26 7.36 3.57 2.48 59.1 -25 -51 -67 -13
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Results on Some Standard Problems
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Results on Standard Problems
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Results on Standard Problems
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Results on Standard Problems
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Summary of the Prior


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134

