To Infinity and Beyond

... or ...

Bayesian Nonparametric Approaches for Reinforcement Learning in Partially Observable Domains

Finale Doshi-Velez December 2, 2011

To Infinity and Beyond

... or ...

Bayesian Nonparametric Approaches for Reinforcement Learning in Partially Observable Domains

Finale Doshi-Velez December 2, 2011

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers*
 - Infinite Dynamic Bayesian Networks*
- Conclusions and Continuing Work

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers
 - Infinite Dynamic Bayesian Networks
- Conclusions and Continuing Work

Partial Observability: can't tell where we are just by looking...

recommender systems

a_{t+1}

O_t+1

r_{t+1}

-5

 O_{t+2}

r_{t-1}

clinical diagnostic tools

Motivation: the Reinforcement Learning Setting

Key Challenge: The **entire history** may be needed to make near-optimal decisions

···· ^t-1 ^t ^t+1 ^t+2 ^t

All past events are needed to predict future events

General Approach: Introduce a statistic that induces Markovianity

History-Based Approaches

Idea: build the statistic directly from the history

Examples:

• U-Tree¹ (learn with statistical tests)

Probabalistic
Deterministic
Finite Automata²
(learned via
validation sets)
Predictive State
Representations³
(learned via
eigenvalue
decompositions)

2. e.g. Mahmud, 2010

3. e.g. Littman, Sutton, and Singh, 2002

Hidden-Variable Approaches

Idea: system is Markov if certain hidden variables are known

Examples: POMDPs (and derivatives)¹ learned via • Expectation-Maximization (validation sets) • Bayesian methods (using Bayes rule)²

> Our Focus: in the Bayesian setting, "belief" **p(s_t)** is a sufficient statistic

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers
 - Infinite Dynamic Bayesian Networks
- Conclusions and Continuing Work

Formalizing the Problem

The agent maintains a representation of how the world works as well as the world's current state

Model-Based Approach

The agent maintains a representation of how the world works as well as the world's current state

Being Bayesian

If the agent has an accurate world representation, we can keep a distribution over current states..

Being (more) Bayesian

If the world representation are unknown, can keep distributions over those too.

Why is this problem hard?

Lots of unknowns to reason about!

Why is this problem hard?

Lots of unknowns to reason about!

Why is this problem hard?

Lots of unknowns to reason about!

We'll address these challenges via **Bayesian Nonparametric Techniques**

Bayesian models on an infinite-dimensional parameter space

We'll address these challenges via **Bayesian Nonparametric Techniques**

Bayesian models on an infinite-dimensional parameter space Already talked about keeping distributions p(m|h)over representations

We'll address these challenges via Bayesian Nonparametric Techniques

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes*
 - Infinite State Controllers
 - Infinite Dynamic Bayesian Networks
- Conclusions and Continuing Work

Being (more) Bayesian

If the world representation are unknown, can keep distributions over those too.

We represent the world as a partially observable Markov Decision Process (POMDP)

"Learning" a POMDP means learning the parameter values

Being Bayesian means putting distributions over the parameters

The conjugate prior p(T(☉|s,a)) is a *Dirichlet distribution*

Making things nonparametric: the Infinite POMDP

(built from the HDP-HMM)

Generative Process

(based on the HDP-HMM)

1. Sample the base transition distribution β :

 $\beta \sim \text{Stick}(\gamma)$

2. Sample the transition matrix in rows T(@|s,a):

 $T(\odot|s,a) \sim DP(\beta, \alpha)$

3. For each state-action pair, sample observation and reward distributions from a base distribution:

Ω(o|s,o) ~ HO R(r|s,o) ~ HR

Model Complexity Grows with Data: Lineworld Example

Model Complexity Grows with Data: Loopworld Example

Incorporating Data and Choosing Actions

All Bayesian reinforcement learning approaches alternate between two stages, belief monitoring and action selection.

Incorporating Data and Choosing Actions

- All Bayesian reinforcement learning approaches alternate between two stages, belief monitoring and action selection.
- Belief monitoring: maintain the posterior

b(s, m|h) = b(s|m, h)b(m|h)

Issue: we need a distribution over infinite models! Key idea: only need to reason about parameters of states we've seen.

High-level Plan: Apply Bayes Rule

What's likely given the data? Represent this complex distribution by a set of samples from it... How well do possible world models match the data?

A priori, what models do we think are likely?

High-level Plan: Apply Bayes Rule

High-level Plan: Apply Bayes Rule P(model|data) P(model|world) P(model) What's likely given the data? How well do possible world A priori, what models Represent this complex distribution models match the data? do we think are likely? by a set of samples from it...

Inference: Beliefs over Finite Models

Estimate the parameters

Estimate the state sequence:

Inference: Beliefs over Finite Models

Estimate the parameters:

Discrete case, use Dirichletmultinomial conjugacy:

Transition Prior: β
State-visit counts:
Posterior:

Estimate the state sequence:

Inference: Beliefs over Finite Models

O(c T(s'|s,o)

Estimate the parameters:

Discrete case, use Dirichletmultinomial conjugacy:

Transition Prior: β
State-visit counts:
Posterior:

Estimate the state sequence:

Forward filter (e.g. first part of Viterbi algorithm) to get marginal for the last state; backwards sample to get a state sequence.

Inference: Beliefs over Infinite Models (Beam Sampling, Van Gael 2008)

Estimate T, Ω ,R for visited states

Pick a slice variable u to cut infinite model into a finite model.

Estimate the state sequence

Inference: Beliefs over Infinite Models (Beam Sampling, Van Gael 2008)

Estimate T, Ω ,R for visited states

Pick a slice variable u to cut infinite model into a finite model.

Ω(os',a)

Estimate the state sequence

Incorporating Data and Choosing Actions

- All Bayesian reinforcement learning approaches alternate between two stages, belief monitoring and action selection.
- Belief monitoring: maintain the posterior

b(s, m|h) = b(s|m, h)b(m|h)

Issue: we need a distribution over infinite models! Key idea: only need to reason about parameters of states we've seen.

 Action selection: use a basic stochastic forward search (we'll get back to this...)

Per-Iteration Running-Time Compared to iPOMDP

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers*
 - Infinite Dynamic Bayesian Networks
- Conclusions and Continuing Work

Leveraging Expert Trajectories

Often, an expert (could be another planning algorithm) can provide near-optimal trajectories.

However, combining expert trajectories with data from self-exploration is challenging:

- Experience provides direct information about the dynamics, which indirectly suggests a policy.
- Experts provide direct information about the policy, which indirectly suggests dynamics.

Suppose we're turning data from an expert's demo into a policy...

Suppose we're turning data from an expert's demo into a policy... a prior over policies can help avoid overfitting...

Suppose we're turning data from an expert's demo into a policy... a prior over policies can help avoid overfitting... but the demo also provides information about the model

Suppose we're turning data from an expert's demo into a policy... a prior over policies can help avoid overfitting... but the demo also provides information about the model

Suppose we're turning data from an expert's demo into a policy... a prior over policies can help avoid overfitting... but the demo also provides information about the model

p(π)

But if we assume the expert acts near optimally with respect to the model, **don't** want to regularize!

Policy Prior Model

Policy Prior: What it means

Models with simple dynamics

Model Space

Policy Prior: What it means

Model Space

Models with simple control policies.

Policy Prior: What it means

Joint Prior: models with few states, also easy to control.

Model Space

Policy Prior Model

Modeling the Model-Policy Link

Modeling the World Model

Modeling the Policy

Doing Inference

Some parts aren't too hard...

Some parts aren't too hard...

But: Model-Policy Link is Hard

Sampling Policies Given Models

Suppose we choose f() and g() so that the probability of an expert policy, p(π | m , data , policy prior) is proportional to

where the policy π is given by a set of

- transitions T(n'|n,o)
- emissions P(a|n,o)

Looking at a Single T(n'|n,o)

Looking at a Single T(n'|n,o)

Combine with a Tempering Scheme

Combine with a Tempering Scheme

Combine with a Tempering Scheme

Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

- 1. Propose a new model m' from q(m') = g(m | all data, prior)
- 2. Accept the new value with probability

$$min(1, \frac{f(\pi, m')g(m', D, p_M) \cdot g(m, D, p_M)}{f(\pi, m)g(m, D, p_M)}g(m', D, p_M)} = min(1, \frac{f(\pi, m')}{f(\pi, m)})$$

Likelihood ratio:
p(m')/p(m) Proposal ratio:
q(m)/q(m')

Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

Propose a new model m' from q(m') = g(m | all data, prior)
Accept the new value with probability

$$min(1, \frac{f(\pi, m')g(m', D, p_M) \cdot g(m, D, p_M)}{f(\pi, m)g(m, D, p_M) \cdot g(m', D, p_M)}) = min(1, \frac{f(\pi, m')}{f(\pi, m)})$$

We still have a problem: If f() is strongly peaked, will never accept!

Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

Propose a new model m' from q(m') = g(m | all data, prior)
Accept the new value with probability

$$min(1, \frac{f(\pi, m')g(m', D, p_M) \cdot g(m, D, p_M)}{f(\pi, m)g(m, D, p_M) \cdot g(m', D, p_M)}) = min(1, \frac{f(\pi, m')}{f(\pi, m)})$$

We still have a problem: If f() is strongly peaked, will never accept!

Example Result

Rewards for 9-Jointed Snake

Same trend for Standard Domains

Results on Standard Problems

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers
 - Infinite Dynamic Bayesian Networks*
- Conclusions and Continuing Work

Dynamic Bayesian Networks

Making it infinite...

The iDBN Generative Process

Observed Nodes Choose Parents

Hidden Nodes Choose Parents

Hidden Nodes Choose Parents

Hidden Nodes Choose Parents

Instantiate Parameters

Inference

General Approach: Blocked Gibbs sampling with the usual tricks (tempering, sequential initialization,etc.)

Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling
Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling
Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial
Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial
Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$	Factored frontier – Loopy BP
Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death

Inference

General Approach: Blocked Gibbs sampling with (tempering, sequential initialization, etc.)

Common to all DBN inference

Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling
Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling
Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial
Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial
Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$	Factored frontier – Loopy BP
Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death

Inference

General Approach: Blocked Gibbs sampling with (tempering, sequential initialization, etc.)

Common to all DBN inference

		only 5% computationa overhead!	t
	\[Specific to iDBN	
Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death	
Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$) Factored frontier – Loopy BP	
Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial	
Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial	
Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling	
Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling	

Example: Weather Data

Time series of US precipitation patterns...

Weather Example: Small Dataset

A model with just five locations quickly separates the east cost and the west coast data points.

Weather Example: Full Dataset

On the full dataset, we get regional factors with a general west-to-east pattern (the jet-stream).

Weather example: Full Dataset

Training and test performance (lower is better)

Outline

- Introduction: The partially-observable reinforcement learning setting
- Framework: Bayesian reinforcement learning
- Applying nonparametrics:
 - Infinite Partially Observable Markov Decision Processes
 - Infinite State Controllers
 - Infinite Dynamic Bayesian Networks
- Conclusions and Continuing Work

When should we use this?

(and what are the limitations?)

- Predictive accuracy is the priority. (learned representations aren't always interpretable, and they are not optimized for maximizing rewards)
- When the data is limited or fundamentally sparse... otherwise a history-based approach might be better. (most reasonable methods perform well with lots of data, and Bayesian methods require more computation)
- When the "true" model is poorly understood... otherwise use calibration and system identification. (current priors are very general, not easy to combine with detailed system or parameter knowledge)

Continuing Work

• Action-selection: when do different strategies matter?

- Bayesian nonparametrics for history-based approaches: improving probabilistic-deterministic infinite automata
- Models that match realworld properties.
Summary

In this thesis, we introduced a novel approach to learning hidden-variable representations for partially-observable reinforcement learning using Bayesian nonparametric statistics. This approach allows for

- The representation to scale in sophistication with the complexity in the data
- Tracking uncertainty in the representation
- Expert trajectories to be incorporated
- Complex causal structures to be learned

Standard Forward-Search to Determine the Value of an Action:

Consider what actions are possible after those observations ...

... and what observations are possible after those actions ...

Use highest-value branches to determine the action's value

For some action a₁

models

weight of models b(m) For some action a₁

Forward-Search in Model Space (cartoon for a single action)

First, sample overall popularities, observation and reward distributions for each state.

First, sample overall popularities, observation and reward distributions for each state-action.

First, sample overall popularities, observation and reward distributions for each state-action.

For each action, sample transition matrix using the state popularities as a base distribution.

Thought Example: Ride or Walk?

Suppose we initially think that each scenario is equally likely.

We gather some data...

data: Bus come 1/2 times

It's now the time for the bus to arrive, but it's not here. What do you do?

Compute the posterior on scenarios.

Bayesian reasoning tells us B is ~3 times more likely than o

and decide if we're sure enough:

Bayesian reasoning tells us B is ~3 times more likely than o ... but if we really prefer the bus, we still might want more data.

Results on Some Standard Problems

Metric	States			
Problem	True	iPOMDP		
Tiger	2	2.1		
Shuttle	8	2.1		
Network	7	4.36		
Gridworld	26	7.36		

Results on Some Standard Problems

Metric	States	i i	Relative Training Time			
Problem	True	iPOMDP	EM	FFBS	FFBS- big	
Tiger	2	2.1	0.41	0.70	1.50	
Shuttle	8	2.1	1.82	1.02	3.56	
Network	7	4.36	1.56	1.09	4.82	
Gridworld	26	7.36	3.57	2.48	59.1	

Results on Some Standard Problems

Metric	States		Relative Training Time		Test Performance				
Problem	True	iPOMDP	EM	FFBS	FFBS- big	EM	FFBS	FFBS- big	iPOMDP
Tiger	2	2.1	0.41	0.70	1.50	-277	0.49	4.24	4.06
Shuttle	8	2.1	1.82	1.02	3.56	10	10	10	10
Network	7	4.36	1.56	1.09	4.82	1857	7267	6843	6508
Gridworld	26	7.36	3.57	2.48	59.1	-25	-51	-67	-13

Results on Standard Problems

Results on Standard Problems

Mean Iteration Time Network

Mean Iteration Time Shuttle

Results on Standard Problems

200

0

iPOMDP FFBS FFBS-Big Bipartite

UTree

EM-Big DMM-AO DMM-OA

М

Summary of the Prior

