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Example: Searching for Treasure




Example: Searching for Treasure
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Example: Searching for Treasure

Partial Observability: can't tell
where we are just by looking...




Example: Searching for Treasure
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Example: Searching for Treasure

Reinforcement Learning:
don't even have a map!




The Partially Observable
Reinforcement Learning Setting
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The Partially Observable
Reinforcement Learning Setting

history

of actions,
observations,
and rewards
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The Partially Observable
Reinforcement Learning Setting

Given a

history

of actions,
observations,
and rewards

How can we

act in order to
maximize
long-term
future rewards?
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The Partially Observable
Reinforcement Learning Setting
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The Partially Observable
Reinforcement Learning Setting

clinical diagnostic tools
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Motivation:
the Reinforcement Learning Setting

Key Challenge:
The entire history may be needed

to make near-optimal decisions
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The Partially Observable
Reinforcement Learning Setting

All past ‘\‘:

eve .- At \%\ ~—
are needed v\ ‘\, \v
to predict \\\ ‘\\
future el & ‘ Q A

events \V\ ‘\v‘é‘\ﬁ’\o'

-~




General Approach: Introduce a
statistic that induces Markovianity

The
representation
summarizes
the history
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General Approach: Introduce a
statistic that induces Markovianity

Key Questions:
e \What is the form of the statistic?

 How do you learn it from
limited data”? (prevent overfitting)
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History-Based Approaches

|dea: build the statistic directly from the history

Examples:
« U-Treel (learn e
with statistical

tests)

* Probabalistic
Deterministic
Finite AutomataZ2

(learned via
validation sets) ce
 Predictive State

Representations3
(learned via
eigenvalue

decompositions)

1. e.g. McCallum, 1994
2. e.g. Mahmud, 2010
3. e.g. Littman, Sutton, and Singh, 2002




Hidden-Variable Approaches

ldea: system is Markov if certain hidden variables are known

Examples:
POMDPs (and .
derivatives)?

learned via

» Expectation-
Maximization
(validation sets)

Our Focus: in the

Bayesian setting,

“belief” p(sy¢) is a 1. e.g. Sondik 1971, Kaelbling, Littman, and
3~ Pt Cassandra 1995, McAllester and Singh 1999

sufficient statistic 2. e.g. Ross, Chaib-draa, Pineau 2007,

Poupart and Vlassis, 2008

e Bayesian
methods (using e
Bayes rule)2
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Formalizing the Problem

The agent maintains a representation of how the
world works as well as the world's current state

R

A

Representation| |Representation |
of how the of current |
world works world state |

7

(OT1
‘ JK observation,
reward L

Agent

o’

World




Model-Based Approach

The agent maintains a representation of how the
world works as well as the world's current state

o

observation,
reward

| World




Being Bayesian

If the agent has an accurate world representation,
we can keep a distribution over current states..

action

—

|
Accurate Possible |
world world state |
representation now |
W ™ M eeimn
‘ observation,
reward L
/7
Agent ' World
| or

04



Being (more) Bayesian

If the world representation are unknown, can

keep distributions over those too.

T

Possible Possible
world world state
l representation now
\ p(m!h) p(s|m,h)
—
7
Agent

o’

observation,
reward

p(mlh)oc p(h|lm) p(m)

World




Why is this problem hard?

Lots of unknowns to reason about!




Why is this problem hard?

Lots of unknowns to reason about!

... and just how many unknowns are
there? (Current methods struggle

reasoning about too many unknowns. )
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Why is this problem hard?

Lots of unknowns to reason about!

are there? Current methods
struggle trying to reason
about too many unknowns.
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We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional
parameter space
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We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional
parameter space

Already talked

about keeping
distributions

p(m|h)
over representations



We'll address these challenges via
Bayesian Nonparametric Techniques

Bayesian models on an infinite-dimensional
parameter space

Already talked Now place the

about keeping
distributions

p(m|h)
over representations

prior p( m ) over
representations with

an infinite number
of parameters in m

32
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- Infinite Partially Observable Markov Decision
Processes™

- Infinite State Controllers
- Infinite Dynamic Bayesian Networks

* Conclusions and Continuing Work

* Doshi-Velez, NIPS 2009



Being (more) Bayesian

If the world representation are unknown, can
keep distributions over those too.

T

|

|-

Possible Possible
world world state
representation now
, — observation,
reward

| World

Need to choose
what type of

representation
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We represent the world as a
partially observable Markov Decision
Process (POMDP)

Transition Matrix:  |nput: actions
T(s'|s,a) (observed, discrete)

Latent state:
(hidden, discrete, finite)

Output: observations,
rewards (observed)

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)



“Learning” a POMDP means learning
the parameter values

TN

Ex.: T(::]s,a) is a vector
(multinomial)

Transition Matrix:

Reward Matrix:
R(r|s,a)

Observation Matrix:
36 O(o|s',a)
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Being Bayesian means putting
distributions over the parameters

Transition Matrix: |

Ex.: T(::]s,a) is a vector
(multinomial)

[l

The conjugate prior
p( T(::|s,a) ) is a Dirichlet
distribution

Reward Matrix:
R(r|s,a)

Observation Matrix:
O(o|s',a)



Making things nonparametric:
the Infinite POMDP

(built from the HDP-HMM)

Transition Matrix: |

Ex.: T(::]s,a) is a vector
(infinite multinomial)

The conjugate prior
p( T(::|s,a) ) is a Dirichlet
process

Reward Matrix:
R(r|s,a)

Observation Matrix:
38 O(ol|s’,a)
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@ .
\\ Generative Process

St+
¥ (based on the HDP-HMM)

() (o
1. Sample the base transition distribution 3: I | T
B ~ Stick(y)
2. Sample the transition matrix in rows T(-:::e:::-|s,a):_ [ ge.. ...
T(=[s,a)~DP(B, a) . ...
3. For each state-action pair, sample 1..0... ...

observation and reward distributions from a
base distribution:

()(o|s,0) ~ HO
R(r|s,0) ~ HR I_L— I‘I_L

-10-110
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Model Complexity Grows with Data:
Lineworld Example

Lineworld
OO On0n00.0

Number of States in Lineworld POMDP

12

10

Mumber of States

I
10 20 an 40 a0 G0 o all] a0 100

Episode Number
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Model Complexity Grows with Data:

Loopworld Example

Number of States in an:-pwc:-rld POMDP

12 T |i
[ '|'+ + +|| T ' + +

L r o o I I
o A r e b '.+ . L
+ b |I (A Y | i
4+ B [+ o LT ll | . ”l I
i . i h|| ||| | || | r,|
- 1 |I, , | T AT o T NG P A ki
Y I I|| Il II 0 R il
2 A ril Ilil O i
= LN L[ LUl !
< _

0 | | | | | | | | | |
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Incorporating Data and
Choosing Actions

All Bayesian reinforcement learning approaches
alternate between two stages, belief monitoring
and action selection.



Incorporating Data and
Choosing Actions

All Bayesian reinforcement learning approaches
alternate between two stages, belief monitoring
and action selection.

» Belief monitoring: maintain the posterior
b(s,m|h)=>b(s|m,h)b(m|h)

Issue: we need a distribution over infinite models!
Key idea: only need to reason about parameters
of states we've seen.
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High-level Plan: Apply Bayes Rule

P(model|data)® P(model|world) P(model)

A\ /L A y
Y Y Y
What's likely given the data? How well do possible world A priori, what models
Represent this complex distribution models match the data? do we think are likely?

44

by a set of samples from it...



High-level Plan: Apply Bayes Rule

P(model|data)® P(model|world) P(model)
A\

/L A J
Y Y Y
What's likely given the data? How well do possible world A priori, what models
Represent this complex distribution models match the data? do we think are likely?

by a set of samples from it...




High-level Plan: Apply Bayes Rule

P(model|data)y P(model|world) P(model)

\\§ A /]
Y Y
What's likely given the data? How well do possible world A priori, what models
Represent this complex distribution models match the data? do we think are likely?

by a set of samples from it...
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Inference: Beliefs over Finite Models

2 W

Estimate the parameters Estimate the state sequence:



Inference: Beliefs over Finite Models

2 W

Estimate the parameters: Estimate the state sequence:

Discrete case, use Dirichlet-
multinomial conjugacy:

Transition Prior: 3 I I I

State-visit counts: I I s 0

Posterior: | - .
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Inference: Beliefs over Finite Models

w2 -

Estimate the parameters: Estimate the state sequence:
Discrete case, use Dirichlet- Forward filter (e.g. first part of
multinomial conjugacy: Viterbi algorithm) to get

marginal for the last state;
backwards sample to get a
state sequence.

Transition Prior: 3

State-visit counts:

Posterior: I I I

49




Inference: Beliefs over Infinite Models

r_l

(Beam Sampling, Van Gael 2008)

&

Estimate T,QQ,R for visited states Estimate the state sequence
Pick a slice ‘
variableuto T I | | I
cut infinite " i
model into a
finite model.

50



Inference: Beliefs over Infinite Models

(Beam Sampling, Van Gael 2008)

= W

Estimate T,QQ,R for visited states Estimate the state sequence

Pick a slice

variable u to T I | | I ‘
cut infinite " i _I
model into a
finite model.
u
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Incorporating Data and
Choosing Actions

All Bayesian reinforcement learning approaches
alternate between two stages, belief monitoring
and action selection.

» Belief monitoring: maintain the posterior
b(s,m|h)=>b(s|m,h)b(m|h)

Issue: we need a distribution over infinite models!
Key idea: only need to reason about parameters
of states we've seen.

e Action selection: use a basic stochastic forward

search (we'll get back to this...)
52



Results on Standard Problems

Rewards for Gridworld
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Results on Standard Pro
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Relative Running Time Compared to iPOMDP

Results on Standard Problems

Per-lteration Running-Time Compared to iPOMDP
I

+
|
| |
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|
I
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I
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Results on Standard Problems

Per-lteration Running-Time Compared to iPOMDP
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Results on Standard Problems

Per-lteration Running-Time Compared to iPOMDP
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Outline

 |ntroduction: The partially-observable
reinforcement learning setting

 Framework: Bayesian reinforcement learning
* Applying nonparametrics:

- Infinite Partially Observable Markov Decision
Processes

— Infinite State Controllers*®
- Infinite Dynamic Bayesian Networks

* Conclusions and Continuing Work

* Doshi-Velez, Wingate, Tenenbaum, and Roy, NIPS 2010
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Leveraging Expert Trajectories

Often, an expert (could be another planning
algorithm) can provide near-optimal trajectories.

However, combining expert trajectories with data
from self-exploration is challenging:

« Experience provides direct information about the
dynamics, which indirectly suggests a policy.

» Experts provide direct information about the policy,
which indirectly suggests dynamics.
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Policy Priors

Suppose we're turning data from an expert's demo into a
policy...

oJoXolo
XX&% ‘ m(history)
ONORORE
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Policy Priors

Suppose we're turning data from an expert's demo into a
policy... a prior over policies can help avoid overfitting...

OJONOXO
XX&% ‘ m(history)
SRORORO L]

p(TT)




Policy Priors

Suppose we're turning data from an expert's demo into a
policy... a prior over policies can help avoid overfitting...
but the demo also provides information about the model

S ‘ model
ORORORO "(hﬁory)

p(TT)
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Policy Priors

Suppose we're turning data from an expert's demo into a
policy... a prior over policies can help avoid overfitting...
but the demo also provides information about the model

ORORORO "(hﬁory)

p(TT)
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Policy Priors

Suppose we're turning data from an expert's demo into a
policy... a prior over policies can help avoid overfitting...
but the demo also provides information about the model

% § % p(m) moxdel—)
W\ \§ ‘ mm(history)
ONOROND x

But if we assume the expert acts near p()
optimally with respect to the model,
don't want to regularize!




Policy Prior Model

Policy Dynamics
Prior Prior

Expert
Policy

Dynamics
Model

Agent

Expert Data Agent Data
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Policy Prior: What it means

Models
with simple
dynamics

Model Space
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Policy Prior: What it means

Models

with simple control
Model Space policies.
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Policy Prior: What it means

Joint Prior: models
with few states, also
easy to control.

Model Space



Policy Prior Model

Policy Dynamics
Prior Prior

Expert
Policy

Dynamics
Model

Agent

Expert Data Agent Data
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Modeling the Model-Policy Link

Apply a Factorization:
the probability of the
expert policy

p( 1T | m, policy prior)
is proportional to

f(tr, m)g( 1, policy prior)

Many options for f( 1, m ),
assume we want something
like &(11*,1T) where 11* is the
optimal policy under m
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Modeling the World Model

Represent the world
model with an infinite
POMDP
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Modeling the Policy

Represent the policy
as a (in)finite state
controller:

Transition

Matrix:
Emission T(n'|n,0)
Matrix:
P(a|n,o0)
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Policy
Prior

Doing Inference

Dynamics

Prior

Expert
Policy

Dynamics
Model

Expert Data Agent Data

Agent
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Some parts aren't too hard...

Policy St “@ Dynamics

Prior ‘ \ Prior
Expert Dynamics Agent
Pollcy de Policy

Agent Data

Expert Data




Some parts aren't too hard...

Dynamics
Prior
Expert Agent
Policy . Policy

Agent Data

Expert Data
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But: Model-Policy Link is Hard

ot



Sampling Policies Given Models

Suppose we choose f() and g() so that the probability of an expert policy,
p( 1T | m, data , policy prior ) is proportional to

f(tr, m)g(1r, data, policy prior)

\_v_l\ ~ J

o(1r*,1m) where 1" is opt(m) iPOMDP prior + data

where the policy 1 is given by a set of
e transitions T(n'|n,0)
* emissions P(a|n,0) Nt

Nt+1

Transition

Matrix:
Emission a T(n'In,0)
Matrix:

P(aln,o)
77



Looking at a Single T(n'|n,0)

Consider the inference update for a single distribution T(n'|n,0):

f(r, m ' g( 1T, data , policy prior)

) - 4
v

Easy with Beam Sampling if we have
Dirichlet-multinomial conjugacy
(data just adds counts to the prior)

B: prior/mean  node-visit counts: posterior
transition from  how often n' occurred Dirichlet for
the iPOMDP after seeingoinn T(n'|n,0)
XK X
“a
n» n n» n n
a a 'a a

/8



Looking at a Single T(n'|n,0)

Consider the inference update for a single distribution T(n'|n,0):

f(1r, m )‘g( , data , policy prior)
H—/

Approximate o(11*,1m)
with Dirichlet counts, using
Bounded Policy Iteration (BPI)
(Poupart and Boutilier, 2003)

@ oN

Current policy has some One step of BPI changes More steps of BPI change
value for T(n'|n,0) T'(n'|n,0) = T(n'|n,0) + a T*(n'|In,0) = T(n'|n,0) + a*
(keeps node alignment) (nodes still aligned)

79



Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,0):

f(1r, m )‘g( , data , policy prior)

H_I

Approximate o(11*,1)
with Dirichlet counts/BPI

Distribution
for T*(n|n,0)
scaled by k

80

3: prior/mean

transition from
the iPOMDP

node-visit counts:
how often n' occurred
after seeingoinn

0 © © ©
n n n n n
\R\R\R\]

a

a a a

TH

posterior
Dirichlet for
T(n'|n,0)
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Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,0):

f(1r, m )‘g( , data , policy prior)

H_I

Approximate o(11*,1)
with Dirichlet counts/BPI

Distribution
for T*(n|n,0)
scaled by k

3: prior/mean node-visit counts:
transition from  how often n' occurred
the iPOMDP after seeingoinn

0 © © ©
n n n n n
\R\R\R\]

a

a a a

THAN

posterior
Dirichlet for
T(n'[n,0)



Combine with a Tempering Scheme

Consider the inference update for a single distribution T(n'|n,0):

f(1r, m )‘g( , data , policy prior)

H_I

Approximate o(11*,1)
with Dirichlet counts/BPI

Distribution
for T*(n|n,0)
scaled by k

82

3: prior/mean

transition from
the iPOMDP

node-visit counts:
how often n' occurred
after seeingoinn

0 © © ©
n n n n n
\R\R\R\]

a

a a a

THHH

posterior
Dirichlet for
T(n'|n,0)



Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

| flr,m ) g(m", D, p-g(m,D,p, )| f(wr,m)
min(1, , =min(1, )
f(mt,m)g(m,D,p,)|g(m", D, p,) f (T, m)
N A, J
I 48 Y
Likelihood ratio: Proposal ratio:
p(m’)/p(m) q(m)/q(m’)
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Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

f(m,m')g(m',D,p,)g(m,D,p,)
f(m,m)g(m,D,p,)g(m',D,p,)

Flor,m)
L m)

min(1, )=min

We still have a problem: If f() is strongly peaked, will never accept!

84



Sampling Models Given Policies

Apply Metropolis-Hastings Steps:

1. Propose a new model m' from q(m') = g( m | all data, prior )
2. Accept the new value with probability

min(1,

f(m.m)g(m'D. py)g(m.D. py),
f(m.m)g(m. D, p,)g(m’. D, p,)

We still have a problem: If f() is strongly peaked, will never accept!

Temper
again...

85

f(mr,m)=6 (1%, m)

m
Desired link

f(rt,m)=exp(a-V,(m))

m
intermediate functions
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Results on Standard

Rewards for tiger

* Rewards for network

Rewards for shuttle
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lterations of Experience

Iterations of Experience

[terations of Experience

lterations of Experience

Iterations of Experience
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Outline

 |ntroduction: The partially-observable
reinforcement learning setting

 Framework: Bayesian reinforcement learning
* Applying nonparametrics:

- Infinite Partially Observable Markov Decision
Processes

- Infinite State Controllers
- Infinite Dynamic Bayesian Networks™

* Conclusions and Continuing Work

* Doshi-Velez, Wingate, Tenenbaum, and Roy, ICML 2011
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Dynamic Bayesian Networks

=
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Making it infinite...

=
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The IDBN Generative Process
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Observed Nodes Choose Parents

time t

time t+1

Treat each parent as a
dish in the Indian Buffet
Process: Popular parents
more likely to be chosen.
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Hidden Nodes Choose Parents

time t

time t+1

Treat each parent as a
dish in the Indian Buffet
Process: Popular parents
more likely to be chosen.
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Hidden Nodes Choose Parents

time t

=

DOO-

time t+1

Treat each parent as a
dish in the Indian Buffet
Process: Popular parents
more likely to be chosen.
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Hidden Nodes Choose Parents

L

time t

r

QC

time t+1

Key point: we only need to
instantiate parents for nodes
that help predict values for
the observed nodes.
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=

Other infinite nodes
are still there, we just
don't need them to
explain the data.

time t time t+1
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Instantiate Parameters

L

time t

r

O -
Sample transition
CPTs ~ HDP for all

4» ’ hidden nodes

O _

time t+1

‘ Sample observation
CPTs ~ HO for all
‘ observed nodes
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Inference

General Approach: Blocked Gibbs sampling with the usual tricks
(tempering, sequential initialization,etc.)

Resample factor-factor connections p(Pan |Pam X, 5) Gibbs sampling

Resample factor-observation connections (P, |Pa,, X, B) Gibbs sampling

Resample transitions p(T|P,. , X, ) Dirichlet-multinomial

Resample observations p(QIPan, X, 3, Y) Dirichlet-multinomial

Resample state sequence p(X|Pan7 Pak? 5,T,4, Y) Factored frontier — Loopy BP

Add / delete factors P(Pa, | Pay, X, B) Metropolis-Hastings birth/death



Inference

General Approach: Blocked Gibbs sa

Common to all

(tempering, sequential initialization gtc.) DBN inference
Resample factor-factor connections p(P,, | P, X, ) Gibbs sampling
Resample factor-observation connections p(Py |Pa,, X, ) Gibbs sampling

Resample transitions p(T|P,. , X, ) Dirichlet-multinomial

Resample observations p(QIPan, X, 3, Y) Dirichlet-multinomial

Resample state sequence p(X|Pan7 Pak? 5,T,4, Y) Factored frontier — Loopy BP

Add / delete factors P(Pa, | Pay, X, B) Metropolis-Hastings birth/death

100



Inference

General Approach: Blocked Gibbs sa

Common to all

(tempering, sequential initialization gtc.) DBN inference
Resample factor-factor connections p(P,, | P, X, ) Gibbs sampling
Resample factor-observation connections p(Py |Pa,, X, ) Gibbs sampling

Resample transitions p(T|Pak> Xa /8) Dirichlet-multinomial

Resample observations p(QIPan, X, 3, Y) Dirichlet-multinomial

Resample state sequence p(X|Pan7 Pak? 5,T,4, Y) Factored frontier — Loopy BP

Add / delete factors P(Pa, | Pay, X, B) Metropolis-Hastings birth/death

\

Specific to iDBN
only 5% computational
overhead!
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Example: Weather Data

Time series of US precipitation patterns...




Weather Example: Small Dataset

A model with just five locations quickly separates
the east cost and the west coast data points.

Expected causal
netweork

100

e
&
Percentage

o
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Weather Example: Full Dataset

On the full dataset, we get regional factors with a
general west-to-east pattern (the jet-stream).
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Weather example: Full Dataset

Training and test performance (lower is better)

- hmim &
- himn 3
- himm 2
- himm 7
- hmm 110
[ Ihmmis
[ lhmm 2o
[ Ihmm 30
|:| himm 410
[ Ihmms0
] from 100
N it
- ifhimin
B

MNegative Log-likelihood
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Outline

 |ntroduction: The partially-observable
reinforcement learning setting

* Framework: Bayesian reinforcement learning
* Applying nonparametrics:

- Infinite Partially Observable Markov Decision
Processes

- Infinite State Controllers
- Infinite Dynamic Bayesian Networks

* Conclusions and Continuing Work
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When should we use this?

(and what are the limitations?)

* Predictive accuracy is the priority.
(learned representations aren't always interpretable,
and they are not optimized for maximizing rewards)

 When the data is limited or fundamentally sparse...

otherwise a history-based approach might be better.
(most reasonable methods perform well with lots of data,

and Bayesian methods require more computation)

 When the “true” model is poorly understood...

otherwise use calibration and system identification.

(current priors are very general, not easy to combine
with detailed system or parameter knowledge)
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Continuing Work

« Action-selection: when do different strategies matter?

Rewards for iPOMDP Rewards for FFBS Rewards for EM
407 40r 2ir
20t ot AW
20} i T F
ot - a0t : rl(: ' { H
¥ | |

20y or ) 40t *
T o w -G0f
o - <0y =]
© ol © © ool
= -60 = = -G0
(i) Qb [t
0 -anf o 0 joof f

—heighted Stochastic
o0t e ol b= e EEE 20t
| ——B0ss
-1207 "I Epsilon Greedy -1407
aof L m— it 2
-1407 Stochastic Fonward Search -160r
_-l EI:I 1 1 1 1 1 _-l I:II:I 1 1 1 1 ] _160 1 1 1 1
0 e0on 4000 g000 Ggoon 10000 0 000 4000 g000 Goon 10000 1] 2000 4000 GO0D gooo
Iterations of Experience Iterations of Experience Iterations of Experience

« Bayesian nonparametrics for history-based approaches:
improving probabilistic-deterministic infinite automata

 Models that match realworld properties.
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Summary

In this thesis, we introduced a novel approach to learning
hidden-variable representations for partially-observable
reinforcement learning using Bayesian nonparametric
statistics. This approach allows for

* The representation to scale in sophistication with the
complexity in the data

* Tracking uncertainty in the representation
» Expert trajectories to be incorporated

« Complex causal structures to be learned
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Standard Forward-Search to
Determine the Value of an Action:

@ For some action a1
61 02 03
O O C
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Consider what actions are possible
after those observations ...

For some action a1
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... and what observations are
possible after those actions ...

@ For some action a1
0
92
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Use highest-value branches to
determine the action's value

Average over
@ R(b,a1) possible
observations

‘ ‘ ‘ gcr;]t?oonssvith

highest value

o Q 0 0 0 C possble
possible

observations

00000010000 00I0001I00@®
‘vlvlvHvlvlv‘ ‘vlvlv”vlvlv”vlvlv‘ ‘vlvlv‘

114




Forward-Search in Model Space

I ‘ ‘ 1|
‘(‘(@ For some action a
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Forward-Search in Model Space

| ‘ | 1|
models “‘@ For some action a4
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Forward-Search in Model Space

weight of models b(m)

[ ‘ ‘ 11
‘(‘(@ For some action a
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Forward-Search in Model Space
(cartoon for a single action)

weight of models b(m)

I ‘ ‘ 11
models ‘(‘(@ For some action a4

0 02 Each model updates
/ \ ‘ its belief b(s) and
11 |

I ‘ weights over models
I 1| '

b(m) also change.
€4€eq(d L (b
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Forward-Search in Model Space

weight of models b(m)

For some action aq

0 Each model updates
\ its belief b(s) and
‘ | weights over models
1 1

b(m) also change..

Leaves use values of
beliefs for each model;
sampled models are
small, quick to solve.
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Generative Process

First, sample overall popularities, observation and
reward distributions for each state.

1 | 2 | 3 | 4

State Index

Overall
Popularity
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Generative Process

First, sample overall popularities, observation and
reward distributions for each state-action.

3 | 4
I
I
|
[ |
‘_H_I | m | Observation
| | Distribution
e, |

State Index

Overall

|
|
| Popularity
|
|

u 1 |
1 VO

o8 .
#
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Generative Process

First, sample overall popularities, observation and
reward distributions for each state-action.

1 | 2 | 3 | 4 | State Index

Overall
| Popularity

| | | | Observation
|‘|_ | | | | Distribution

| ® | ® | | e
| | | | Reward
— Distribution
-10-110 | -10-1 10 | -10-1 10 | -10-1 10 I
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Generative Process

For each action, sample transition matrix using
the state popularities as a base distribution.

Start 1 | 2 | 3 | 4 | Destination state
state | | | |
’ | | | |
| | | |
| [ | | 0 |
I | | | Transition probability
| | | |
2 | | l l



Thought Example: Ride or Walk?

o) B

Bus comes 90% of the time, Bus comes 50% of the time,
though sometimes 5 minutes late though sometimes 5 minutes late

Suppose we initially think that
each scenario is equally likely.
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We gather some data...

o) B

Bus comes 90% of the time, Bus comes 50% of the time,
though sometimes 5 minutes late though sometimes 5 minutes late

data: Bus come 1/2 times

It's now the time for the bus to arrive,
but it's not here. What do you do?
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Compute the posterior on scenarios.

o) B

Bus comes 90% of the time, Bus comes 50% of the time,
though sometimes 5 minutes late though sometimes 5 minutes late

Bayesian reasoning tells us
B is ~3 times more likely than o
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and decide if we're sure enough:

o) B

Bus comes 90% of the time, Bus comes 50% of the time,
though sometimes 5 minutes late though sometimes 5 minutes late

Bayesian reasoning tells us
B is ~3 times more likely than o
... but if we really prefer the bus,

we still might want more data.
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Results on Some Standard Problems

Metric States
Problem True IiPOMDP

Tiger 2 2.1
Shuttle 8 2.1
Network 7 4.36
Gridworld 26 7.36
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Results on Some Standard Problems

Problem True IiIPOMDP EM FFBS FFBS-
big

Shuttle 1.82 1.02

Gridworld 26 . 3.57 2.48
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Results on Some Standard Problems

o v v o= e

----------
Shue 21 182 102 35 40 10 10 10
----------
Gridworld 26 736 357 248 591 (25 51 67 A3
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Results on Standard Problems

Rewards for Cheese

Rewards
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Results on Standard Problems

Mean lteration Time Shuttle Mean Iteration Time Cheese

Mean Iteration Time Network

Mean lteration Time Tiger
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Results on Standard Problems

Mean Final State Count Network Mean Final State Count Shuttle Mean Final State Count Cheese

Mean Final State Count Tiger
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Summary of the Prior
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