Reinforcement Learning

Computerized agents—robots, automated telephone systems, cell-phone and document word-completion managers
—are all around us. Somehow, these agents must reason about the world and learn to interact with the
environment, people, and other systems in a sensible manner. In reinforcement learning (RL), the agent observes
some properties of the world, and based on its own internal model of how the world behaves, decides what actions
are most likely to maximize its expected long-term reward.

Observation, Reward

Decision
Making

Knowledge
About

System World

(Planner)

Agent

Action

Issues

Exploration vs. Exploitation:

« explore: sacrifice short term reward, gain knowledge thus
potentially getting more reward in the long run

 exploit: go for rewards now, potentially missing out on better
opportunities

Suppose there are two routes you can take to get to work: we are pretty sure that there is a long but reliable route
and a shorter route that might be guarded by an evil gremlin:

Long
Route

Probability

S

g

Time needed to get to work

What should we do? If we are only taking the route once, we might go the more reliable but longer way. However, if
we are going to use the route repeatedly, then we might try the short route to discover if the gremlin exists. Suppose
we try the shorter route and are waylaid by the gremlin. Then we can update our probability distribution:

Was there the
last time.
Always there?

Long
Route

Probability

Time needed to get to work

Through repeated trials we continuously update our beliefs about the world.

Temporal Credit Assignment: The effect of a decision may
not become apparent until long after it has been made.

Suppose now that the paths are much more complicated:

2ha

Assume we eventually find our way to work. How do we know what decisions helped us get there, and what should
we change to get there faster next time?

Reinforcement Learning in Computational and Biological Systems

Optimistic Active Learning

Marc Deisenroth (CUED), Carl Rasmussen (CUED), Jan Peters (MPI)

Decision-making under uncertainty

e unknown model of the world
e uncertain rewards
===p solution by combining Bayesian methods and Bellman's optimality criterion

goal of RL is identical to the one of optimal control: maximize long-term reward
===p gpplication of RL-based controllers to dynamical systems possible

Control application: underpowered pendulum swing up

goa! position Task: Initial approach

(1) pendulum hangs down * known dynamics

(2) swing it up e uncertain rewards

(3) balance it in inverted position « continuous state and action domains

* system is underpowered: == function approximation by Gaussian processes
direct swing up impossible » support points randomly distributed in state space

* learn global model of close-to-optimal policy

goal start

W ===

0 applied torque

ang.vel. in rad/s

angle in rad

Figure: Support points and mean function of a Gaussian process for a globally optimal policy

» random placement of points in state space

. . ===p We can use less points if we are interested in local solutions
» global (close-to) optimal solution

Relaxing the constraints

e unknown dynamics
« learn optimal policy locally on dynamically relevant manifold (where is this?)
 explore the world and update the models incrementally

Algorithmic idea:

(1) model building (offline): learn data-dependent model of unknown dynamics based on sampled trajectories

(2) Bayesian active learning scheme within initial approach: from few initial states around start point incrementally
add new states in an optimistic manner

(3) explore paths from initial state to goal state

(4) start exploitation

Optimistic Bayesian active learning

objective:
e find a dynamically relevant manifold in state space
e build value function model (based on Gaussian processes)

add points in regions with
» expected high reward

—) optimistic Bayesian active learnin
- expected high information gain P y 9

Approach:

» sequentially add states that maximize expected reward and expected information gain
« discover later, whether the added states were really good (optimistic approach: hope the best)
« automatically decide
e where to explore
» when to exploit
« automatically detect dynamically relevant manifold
» more efficient use of data than initial global solution

5 sequence of added points
) K . ° 1. red
4 ° . ° ° 2. blue
O e, ee " : . 3.green
3 2°,°4% . C e) - -."} . g.black
- o0 ® o, . o . o]
= 040 QO . 6.
g) o o ° ': ° o o ° .o Y o
@)) —2. : [¢ P .. ° * o °
- () e PY
© ° ° o
-4 ¢ . o ® °
—0 o ..
-8 | | | | ®
-3 —2 —1 0 1 2 3
angle in rad

Figure: Sequentially added points using the Bayesian active learning scheme.

control
(@)

0 1 2 3 4 5 6 7/
timeins

Figure: System trajectories when applying a Gaussian process controller based on the active learning scheme

Summary

e reinforcement learning generalizes optimal control problem by considering unknown structures

 exploit sources of uncertainty to learn more about the world

* optimistic Bayesian active learning scheme automatically balances between exploration and exploitation
* locally optimal solution requires less data (more efficient) than globally optimal solution

Robust Active Learning

Finale Doshi (CUED), Nicholas Roy (MIT)

Sometimes the agent can't afford to make mistakes, even to learn—ior

example, consider a controller for a robotic wheelchair (right). We consider a scenario in
which the agent needs to discover where the wheelchair user needs go using spoken
commands, keeping in mind that taking someone to the wrong place can be quite annoying
and disconcerting.

However, the agent can often ask for help. inmost

scenarios where robustness is needed, we can assume that there will be experts on hand to
provide advice if needed. We assume this advice is policy information, or information about
how the agent should act, because in many situations, it may be easier to specify what the
agent should do rather than how it should be reasoning. For example, the agent might ask:

“| think you might want to go to the kitchen. Should | take you there?”

The mOdel uses a planning framework known as partially observable Markov Decision Processes
(POMDPs). POMDPs consist of:

« States: the true state of the world is hidden from the agent

« Observations: what the agent actually measures, which reflect the state of the world
« Actions: how the agent can interact with the world

» Probability distributions that govern the effects of taking each action in each state.

For the robotic wheelchair, the state of the “world” is where the user wishes to go, and it must be inferred from noisy
utterances from the voice recognition system. The dynamics of the world, that is, the noise rate and the user's habits
and preferences, must also be inferred. Accurate numerical reward feedback is often difficult to elicit from a user, so
the agent must gather this information from the policy queries.

State of True

the World
World

Belief over Belief over
World the World

Dynamics State Dynamics

Observation

AlgOrI’[h MIC apprOaCh begins with a probability distribution over all possible states of the world.

Reasoning takes place in two steps:
 Action Selection:
» Finding the optimal action is intractable, so the agent considers the least risky action.
* If the risk is too large, the agent asks for help.
 Belief Update: once the agent takes an action:
* It receives an observation that changes its belief about what the user wants.
o If it asked for help, it must incorporate this information into its model of the world.

Bayes' risk action selection: Let Q(b,a) the value—or expected long-term reward—of taking action a if the
agent believes b. Then the loss of action a is defined to be:

L(a)=0Q(b,a)=0Q(b,a’)

where a' is the best action to take. The equation above assumes that the agent knows the value of taking a
particular action. If instead the agent only has a probability distribution over models m (each with a different value
function), then the risk of an action is its expected loss, and the least risky action is:

a=argmin,c, (0, (b,,a)=Q,(b,.a’,)) p(m)

M

If the risk is too large, the agent asks for help.

Belief update: the agent has two sources of information which it can use to update its belief over possible
models of the world dynamics. First, it has a history h of actions and observations (for examples, the utterances that
It hears from a voice recognition system). Under the right conditions, the agent can incorporate this information over
world models. The second source of information is the set of queries Q. These cannot be incorporated in closed
form; so the agent represents the posterior with a set of samples (see cartoon below), eliminating samples that are
Inconsistent with the expert's advice.

h ey

o 05 000 ¢
p(m) p(him) — p(mlh) p(Qlm) p(mh,Q)

ReSU ItS . Below we show a simulation result that shows how our approach is robust from the very start—by

asking questions, the agent avoids the learning curve. The tables below shows a sample dialogue with the robotic
wheelchair, in which the agent learns the meaning of a new word in the presence of noisy voice recognition software.

Simulation User study

Wiean difference betwesan optimal and system rewands when learning both obsarvation and reward spaces

2 Early conversation:

User: Give me the forecast.

° Robot: I'm confused. What action should | take now?
<User indicates that the robot should provide the weather
forecast>

Robot: Showers

-0+

mean differenca in ewand

o} Later conversation:
User: What's the forecast for today?
-8 o i Robot: Do you want the weather?

active kaming User: Yup.
Robot: Showers

—100

1 | 1 | 1 | 1]
0 A 10 15 20 25 20 a5 40 45 R0
trial number

Performance of an agent that already
has a good model of the world.

Early conversation:
User: | want some tea from the kitchen.
Robot: How can | help you?
| User: The tea is in the kitchen near the coffee machine.
Diakeq: Mean difference betwssn optimal and system ewards when . y ” .
2000, Raming beih tesraten and s spaces <The system hears “copy” instead of “coffee” and is confused
about “tea” and “kitchen." >
Robot: How can | help you?

2000 _Eiw;bggg User: Go to the kitchen.
: Robot: I'm confused. What action should | take now?
;! <The user indicates “Confirm the coffee machine area” is the
- correct action. >
] Robot: Do you want to go to the coffee machine area?

e User: Yup.

|

<The system asks a few more (non-meta) questions>
TS 0 s w2 w3 40 6 & Robot: Do you want to go to the coffee machine area?
. User: Yup.

Robot: Going to the coffee machine area.

Performance of an agent that begins

with only a very vague world model. Later conversation:

User: Take me to the kitchen. <The system hears “Nick” and
‘kitchen.”>

Robot: How can | help you?

User: | want some coffee. <The system hears “copy” instead
of “coffee.”>

Robot: Do you want to go to the coffee machine area?

User: Yup.

Robot: Going to the coffee machine area.

Memories for Decisions

Maté Lengyel (CUED), Peter Dayan (Gatsby Unit, UCL)

Biological memory: a multitude of systems

Two forms of
long term memory

Explicit Implicit
(declarative) (nondeclarative)

/[\

Priming Procedural Associative learning: Nonassociative learning:

semantic okl (skills and classicaland habituation and
memory memory habits) omeg sensitization
Emotional Skeletal
FESDTSBS muSCL‘JIature
Medial temporal lobe Neocortex Striatum Amygdala Cerebellum Reflex
pathways
How do different memory systems contribute to
making better decisions in the future?
learning action selection
semantic memory:
. _ maximally g modelﬁf_) J -thrﬁ ep \{[l_r(%_n ment computationally ,
eXperience: gaw efficient U cIent statistics) expensive =, Sequential
data decisions
- computationally
data-inefficient _ episodic memory: cheap

select data points

Q: why store episodes even if semantic learning is perfect ?
A: useful for sequential decision making with computational noise.

Semantic memory:
model-based control

* |earns a model of the environment
(Bayesian updating of transition
and reward probabilities)

Episodic memory:
off-policy Monte Carlo control

* stores specific episode retrospectively
(state-action-...-reward sequence), when
reward exceeds expectations

* selects actions by recursive * selects action that yielded maximal reward
'mental simulation' (online DP) from given states
> tree search with In past episodes
combinatorial explosion

> approximations are
neceisary

computational noise!

Domain of analysis: tree-structured Markov decision processes

depth [|
D A
I |
number of actions branchilr;g factor A
t?ansih'on%ribabilitie;
stochasticity of actions A
’ ET
terminal state o.sg
. 038
variance of mzean reward S0 gy 100
O- | |

Episodic vs. semantic memory-based control

* vary complexity of the environment o _ _ i
(through hyper parameters) as 77T | adet-oased noisy |

— gpisodic

* vary amount of experience available to
semantic and episodic memory systems

e compute average performance of three controllers ol
(over distribution of environments) DE/

1. perfect model-based control — theoretical upper bound 0

3.51 - — === -
-==7"" | ==-model-based periect

5 L= - = model-based noisy |
i — gpisodic

Performance
—= (¥ 5]]
———
LT
* Ny
LY
%
L
L1
L1

AlIxa|dwod [ejuswuolIAud Bulsealoul

2. noisy model-based controller — semantic memory

3. off-policy Monte Carlo controller = episodic memory 25

Performance

— L §%

Analysis of model-based control

i . .
10,
107
107
107
- . . .
10 10 10" 10° 10"

2 4 6 B 10
Noise-to-signal ratio®

=
(]

=2

na]
o

=
@
L2
Ln

= = = model=baged perfect

0 - :
1ol] _ _ .- |=—model-based noisy [
=T — episodic
0
! .

L2

Signal-to-noise ratio

e
o2

P
(]

o
o (1]
o
=
= £n
-=,
5
n
LY
%
n
1
L]
i

100 200 300 400 500

Amount of experience

Relative performance
o
~

Performance

=& on i)

time required D
to collect it J o

5 10 15

Amount of experience

=

limited experience = ighorance noise

(can be lumped with computational noise) * episodic advantage early in learning

* lasts longer for more complex
environments

A=8, B=10, D=2, a=1 A=80, B=100, D=10, a=1

—
a—y

.
hJIIFI m&n

=
="

=
="

bt
&
=]
P
o
o

=
(=7

=

o

= = aad =
SRR
ok s
[

= =

h.JI'.'l hJIfl h.J!fl
LN
o

__nt=100 ;=100

Buisealoul

-

8sIou |[euoljeindwod

0.4}

Mormalized performance
MNormalized performance

=
a
o
fa

{] L] i i i] i i i il i i {] ke i i i i i i i i i i i
0 10 20 30 40 50 Eﬂl 70 80 90 100 0 10 20 30 40 50 60 70 B8O 80 100
Amount of experience Amount of experience

>
Increasing environmental complexity

* computational noise more adverse in learning

Summary
=>A
"
QD
g— ‘consolidation’
S . >
= pOCAMPUS model-based
£ control
GEJ neocortex
-
o ?
= > | >
@ ‘competing habitization
= memory | >
‘D systems’ ;
| » caching-based co
= striatum
S
>
learning

