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Abstract

We often seek to identify co-occurring hidden features in a set of observations. The Indian Buffet Process
(IBP) provides a non-parametric prior on the features present in each observation, but current inference
techniques for the IBP often scale poorly. The collapsed Gibbs sampler for the IBP has a running time cubic
in the number of observations, and the uncollapsed Gibbs sampler, while linear, is often slow to mix. We
present a new linear-time collapsed Gibbs sampler for conjugate likelihood models and demonstrate its
efficacy on large real-world datasets.

More generally, our method, which maintains a posterior within the sampler to increase efficiency, is
applicable to any bilinear model with a Gaussian likelihood (or other conjugate likelinood).

Bilinear Models

Bilinear models are common in machine learning.

X=UV+E

data = matrix product + error

Examples:

Indian Buffet Process with linear likelihood

X=/ZA+E

Probabilistic PCA

T=WX+E

Probabilistic Matrix Factorization

X=UV+E

Factor Analysis

Y=LX+E
Suppose

- We can compute P(X|Z) ,
- We can compute P(A|X,2)
- We cannot compute P(Z,A|X)

but it's expensive

We develop a fast sampler for inference in these models.

The Indian Buffet Process

The Indian Buffet Process (IBP) is a non-parametric prior on binary matrices—useful as a general tool in
latent feature models. The generative process proceeds as follows: Customers 1...N enter an “infinite
buffet” one at a time. Customer n

« Samples a previously sampled dish based on its popularity.

« Samples Poisson( alpha / n) new dishes.

OO0

It has some nice properties:
« Observations are exchangeable.

* |nfinite features, but finite datasets contain a finite number of features.

Accelerated Gibbs Sampling for the Indian Buffet Process (and more!

Finale Doshi-Velez and Zoubin Ghahramani, University of Cambridge

Windowing the Model

For large datasets, we do not want to look at all of the data at once. We consider doing (principled) inference
on only a subset of the data. Note: this is not blocked sampling—we still only consider one element of Z at a

time!
Data Features Feature
Matrix Present Values
X V4 A

Gibbs Sampling

Uncollapsed Gibbs Sampling explicitly

samples both Z and A (we experiment with a Zow
'semi-collapsed' sampler which samples Z and A

but integrates out new rows of A when

considering whether to add a new feature).

- Advantage: Each iteration is fast to compute. Zo
- Disadvantage: Often slow to mix.

Collapsed Gibbs Sampling integrates out A,
so only Z must be sampled.

- Advantage: Faster to mix.

- Disadvantage: Inference no longer scales!

Accelerated Sampling keeps a posterior on A,

P(A|Z.y,X.) SO that we may sample values in Zow
Z,, without knowing the values of X_,,. Once we

have finished sampling within Z,,, the posterior

Is updated for sampling on a new window of

observations.

- Mixes like the collapsed sampler.
- Runtime like an uncollapsed sampler.

Formal Derivation

Given a posterior P(A | Z_, X ), we can sample Z without looking at the data X :

Bayes it
P( —1|Z - )OC Ryl Conglltlon on |
uic and integrate Observations
Pz =1Z_)P(X|Z) out A inclzlepe'r&degt
given A |
P(Z,=1 z_nk>fAP<X|z,A> (A)dA
P(zZ,=1Z ,)] P(X,Z,, A)P(X_|Z , A)P(A)dA
P(Z,=1Z )] ,P(X,Z, >P<A|z X )dA~__
Bayes
Rule
We now have an exact method for computing P(Z.k|Z-nk,X) that depends only on X,
1. Initialise some Z, feature posterior
2. For each window of observations W
Get the Remove W's Perform Reconstruct
feature contribution to the inference posterior with
posterior posterior onZ, new Z

Key Consideration: How many observations should we consider at once?

« Depends on the cost of computing P(A|X,Z) and P(X|Z,A); for IBP with linear-Gaussian model, the

optimal window is 1.

« However, considering larger groups implies fewer updates to P(A|Z,X) and slower loss of numerical

precision.

Experiments on Synthetic Data

Effective number of independent samples p mpl n Simula ted Data

Data was generated from the prior with
- D=10,

- N ={50,100,250, 500}.

We ran 5 chains for 1000 iterations

to evaluate the mixing of each of the
samplers.

per sample

umber of independent samples

ctive n

Effe

Mixing was measured by the effective

_____________________________________

Per—lteration Runtime on Simulated Data

C llay p edbe
= Semi-collapsed Gibbs|
+A elerated Gibbs

A Collapsed Gibbs
- # - Semi—collapsed Gibbs T
—&— Accelerated Gibbs

Per—Iteration Runtime (s)

number of samples per sample.
(Always less than one; measures how
independent samples are.)

200 250 300 350
MNumber of Observations

Mixing similar to
collapsed sampler

10
MNumber of Observations

Runtime similar to semi-
collapsed sampler

Experiments on Realworld Data

We applied the 3 samplers to several realworld data sets. The accelerated sampler achieved likelihoods
similar to the collapsed sampler orders of magnitude faster.
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Effect of Window Size on Training Likelihood for the Yale dataset

Effect of window size ?
_W =1
. BEE | A3 u
From a series of tests on the Yale —W=10
dataset, the window size has little effect T W=30 ]
on the performance. However, the larger e |

windows take longer to process.

Joint Probability of Training Data

Conclusions

- Maintaining a posterior within a sampler allows us to perform fast inference in an important class of
bilinear models
- In particular, our approach allows us to scale inference to large Indian Buffet Process models.

.. code is available on my website!




