Accelerated Gibbs Sampling for the Indian Buffet Process

Finale Doshi-Velez, Cambridge/MIT
Zoubin Ghahramani, Cambridge
Motivation

Bilinear models of the form

\[X = UV + E \]

\text{data} = \text{matrix product} + \text{error}

are very common in machine learning.
Examples

Factor Analysis

\[Y = LX + E \]
Examples

Factor Analysis
\[Y = LX + E \]

Probabilistic PCA
\[T = WX + E \]
Examples

Factor Analysis
\[Y = LX + E \]

Probabilistic PCA
\[T = WX + E \]

Probabilistic Matrix Factorization
\[X = UV + E \]
Examples

Factor Analysis
\[Y = LX + E \]

Probabilistic PCA
\[T = WX + E \]

Probabilistic Matrix Factorization
\[X = UV + E \]

Indian Buffet Process with a linear likelihood
\[X = ZA + E \]
Motivation

- We are interested in doing large-scale Bayesian inference in these models (focus on the IBP for now):

 \[X = ZA + E \]

- Suppose
 - We can compute \(P(X|Z) \), but it's expensive
 - We can compute \(P(A|X,Z) \)
 - We cannot compute \(P(Z,A|X) \)

- We develop a fast sampler for inference in these models.
Indian Buffet Process

Customers enter an “infinite buffet” one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(α / n) new dishes.

😊
Indian Buffet Process

Customers enter an “infinite buffet” one at a time and

• Sample a previously sampled dish based on its popularity.
• Sample Poisson(\alpha / n) new dishes.
Indian Buffet Process

Customers enter an “infinite buffet” one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(\(\alpha / n \)) new dishes.
Indian Buffet Process

Customers enter an “infinite buffet” one at a time and

- Sample a previously sampled dish based on its popularity.
- Sample Poisson(alpha / n) new dishes.
Indian Buffet Process

Result is a non-parametric prior on feature assignments—a general tool for many latent feature models—with some nice properties:

- Observations are exchangeable.
- Infinite features, but finite datasets contain a finite number of features.
Full Model

Data Matrix X

Features Present Z

Feature Values A

K = N = D + ε
Full Model

Data Matrix X

Features Present Z

Feature Values A

Note: this is not Blocked Gibbs Sampling!
The Graphical Model

\[Z_w \rightarrow X_w \rightarrow A \]

\[X_w \{ \text{grid} \} = Z_w \{ \text{grid} \} \ldots \]

\[X_w \{ \text{grid} \} \sim Z_w \{ \text{grid} \} \ldots \]
Basic Sampling

First sample $Z_w | X, A, Z_{-w}$
Basic Sampling

First sample $Z_w|X,A,Z_{-w}$ and then $Z_{-w}|X,A,Z_w$
Basic Sampling

First sample $Z_w|X,A,Z_{-w}$ and then $Z_{-w}|X,A,Z_w$ and then $A|Z,X \ldots$
Basic Sampling

First sample $Z_w|X,A,Z_{-w}$ and then $Z_{-w}|X,A,Z_w$ and then $A|Z,X$ and then $Z_w|X,A,Z_{-w}$...
Basic Sampling

Advantage: Each iteration is fast to compute.
Disadvantage: Often slow to mix.
Collapsed Gibbs Sampling

Since we can compute $P(X|Z)$, integrate out A
Collapsed Gibbs Sampling

Since we can compute $P(X|Z)$, integrate out A
Collapsed Gibbs Sampling

Sample each Z in turn, as before
Collapsed Gibbs Sampling

Sample each Z in turn, as before
Collapsed Gibbs Sampling

Advantage: Faster to mix.

Disadvantage: Inference no longer scales!

\[
Z_w \quad X_w
\]

\[
Z_{-w} \quad X_{-w}
\]
Our solution: Accelerated Sampling

Keep a posterior on A. Observations stay independent!
More formally: Consider one element

\[P(Z_{nk}=1 | Z_{-nk}, X) \propto \]

\[P(Z_{nk}=1 | Z_{-nk}) P(X | Z) \]
\[P(Z_{nk}=1 | Z_{-nk}) \int_A P(X | Z, A) P(A) dA \]
\[P(Z_{nk}=1 | Z_{-nk}) \int_A P(X_n | Z_n, A) P(X_{-n} | Z_{-n}, A) P(A) dA \]
\[P(Z_{nk}=1 | Z_{-nk}) \int_A P(X_n | Z_n, A) P(A | Z_{-n}, X_{-n}) dA \]
More formally: Consider one element

\[P(Z_{nk} = 1 | Z_{-nk}, X) \propto \]

\[P(Z_{nk} = 1 | Z_{-nk}) P(X|Z) \]
\[P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X|Z, A) P(A) dA \]
\[P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X_n|Z_n, A) P(X_{-n}|Z_{-n}, A) P(A) dA \]
\[P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X_n|Z_n, A) P(A|Z_{-n}, X_{-n}) dA \]
More formally: Consider one element

$$P(Z_{nk} = 1 | Z_{-nk}, X) \propto$$

$$P(Z_{nk} = 1 | Z_{-nk}) P(X | Z)$$

$$P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X | Z, A) P(A) \, dA$$

$$P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X_n | Z_n, A) P(X_{-n} | Z_{-n}, A) P(A) \, dA$$

$$P(Z_{nk} = 1 | Z_{-nk}) \int_A P(X_n | Z_n, A) P(A | Z_{-n}, X_{-n}) \, dA$$
More formally: Consider one element

\[P(Z_{nk}=1|Z_{nk}, X) \propto \]

\[
P(Z_{nk}=1|Z_{nk}) P(X|Z) \\
P(Z_{nk}=1|Z_{nk}) \int_A P(X|Z, A) P(A) dA \\
P(Z_{nk}=1|Z_{nk}) \int_A P(X_n|Z_n, A) P(X_{-n}|Z_{-n}, A) P(A) dA \\
P(Z_{nk}=1|Z_{nk}) \int_A P(X_n|Z_n, A) P(A|Z_{-n}, X_{-n}) dA
\]
More formally: Consider one element

\[P(Z_{nk} = 1|Z_{-nk}, X) \propto \]

\[P(Z_{nk} = 1|Z_{-nk}) P(X|Z) \]

\[P(Z_{nk} = 1|Z_{-nk}) \int_A P(X|Z, A) P(A) dA \]

\[P(Z_{nk} = 1|Z_{-nk}) \int_A P(X_n|Z_n, A) P(X_{-n}|Z_{-n}, A) P(A) dA \]

\[P(Z_{nk} = 1|Z_{-nk}) \int_A P(X_n|Z_n, A) P(A|Z_{-n}, X_{-n}) dA \]
Accelerated Gibbs Sampling

1. Initialise some \(Z \), feature posterior

2. For each window of observations \(W \)

Considerations: how many observations should we consider at once? Depends on the cost of computing \(P(A|X,Z) \) and \(P(X|Z,A) \), numerical errors.

Get feature posterior \(P(A|X,Z) \) \n
\[\rightarrow \]

Remove \(W \)'s effect to get \(P(A|X_w,Z_w) \) \n
\[\rightarrow \]

Perform inference on \(Z_w \) \n
\[\rightarrow \]

Reconstruct \(P(A|X,Z) \) with new \(Z_w \)
Details for the IBP Model

If the prior on A, noise is Gaussian, then

- Posterior on A is Gaussian.
- Posterior can be updated with rank-one updates.
- Optimal window is 1.

Also, intelligently choosing to represent Gaussians in information form \((h, \Sigma^{-1})\) or covariance form \((\mu, \Sigma)\) helps maintain numerical precision. Details in the paper.
Experiments on Synthetic Data

Data generated from the prior; $D=10$, $N = \{50, 100, 250, 500\}$.

- Mixing similar to collapsed sampler
- Runtime similar to semi-collapsed sampler
Experiments on Smaller Datasets

D=36, N = 1000

Images: Joint Probability vs. Time

Reach mode orders of magnitude faster!

D=1024, N = 722

Emoticons: Joint Probability vs. Time
Experiments on Larger Datasets

D=1598, N = 2600

D=161, N = 10000

Standard samplers become impractical...
Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
Or to take expectations against a set of variables, and by integrating collapse them?
Returning to an age-old question...

To marginalize or not marginalize, that is the question:
Whether 'tis more tractable for the sampler to suffer the hills and valleys of local optima,
Or to take expectations against a set of variables, and by integrating collapse them?

In answer: of a third example...
Conclusions

• Maintaining a posterior within a sampler allows us to perform fast inference in an important class of models.
• In particular, our approach allows us to scale inference to large Indian Buffet Process models.

... code available on my website:
http://mlg.eng.cam.ac.uk/finale/wiki
Effect of Window Size

Effect of Window Size on Training Likelihood for the Yale dataset

Joint Probability of Training Data

Time (s)

-6
-5.5
-5
-4.5
-4
-3.5
-3
-2
-1
0
1
10
100
1000
10000
100000
1000000
Experiments on Real Data

![Image of original and reconstructed parts of faces]
EEG Dataset