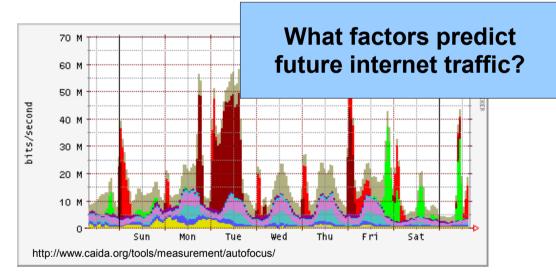
Infinite Dynamic Bayesian Networks

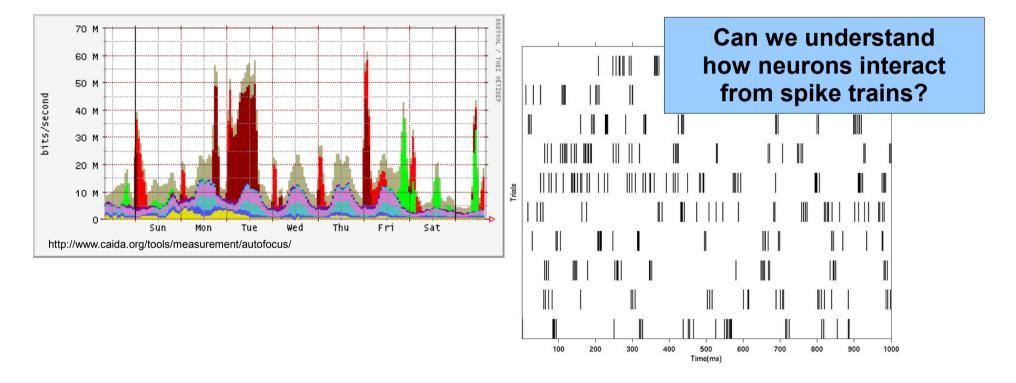
Finale Doshi-Velez David Wingate Joshua Tenenbaum Nicholas Roy

ICML 2011

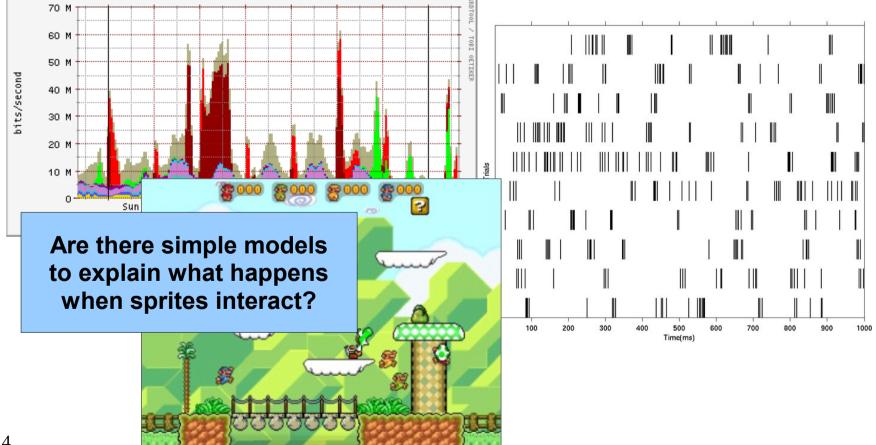
Time series data often has complex structure we wish to understand...



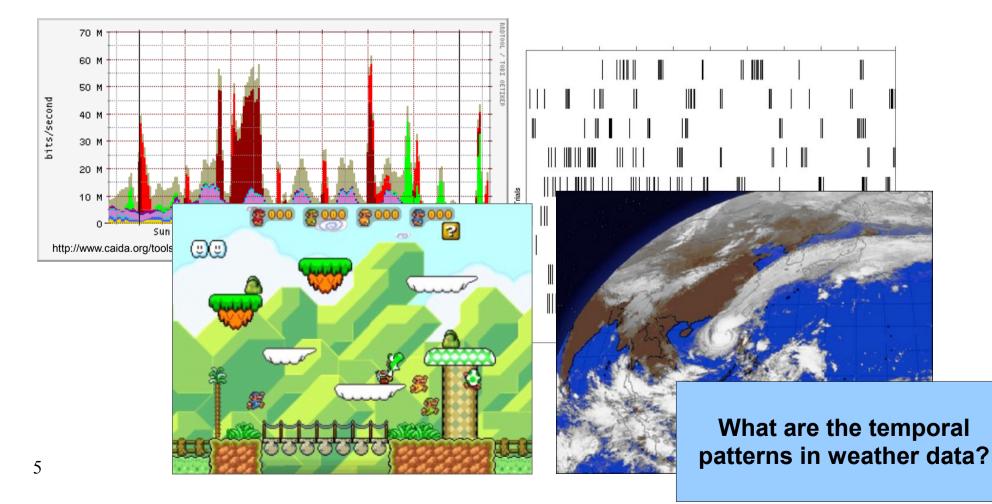
Time series data often has complex structure we wish to understand...



Time series data often has complex structure we wish to understand...

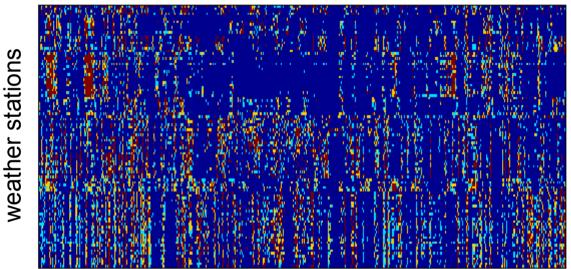


Time series data often has complex structure we wish to understand...



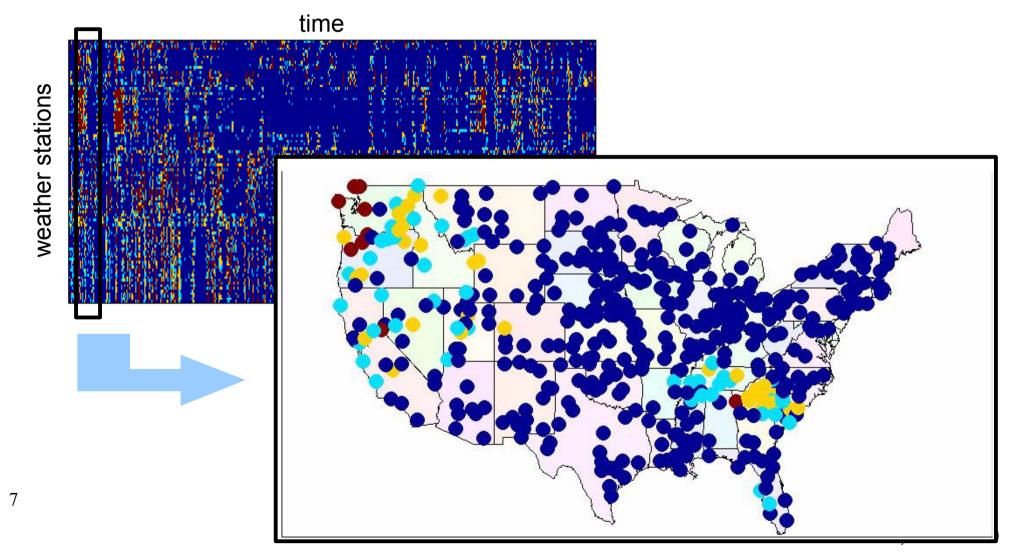
But finding that structure isn't always obvious...

time



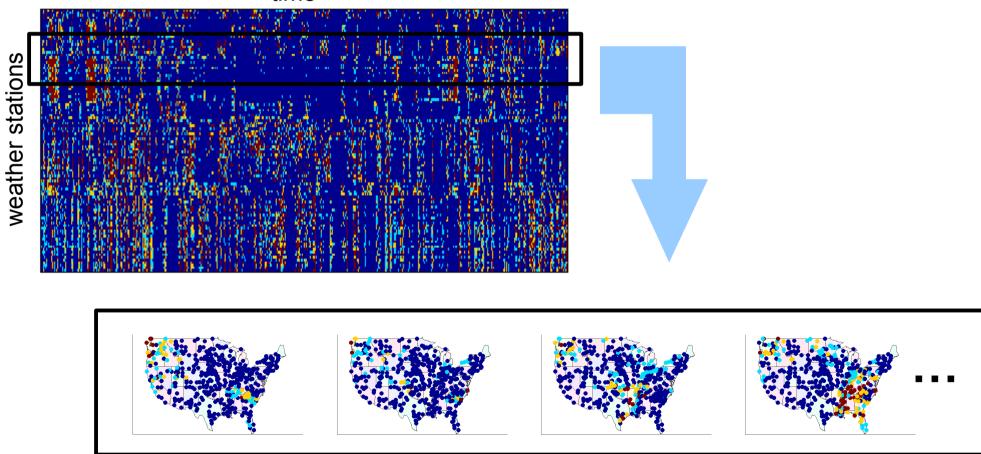
478 weather stations4 discrete precipitation valuesData from US HCN, 1980-1989

But finding that structure isn't always obvious...

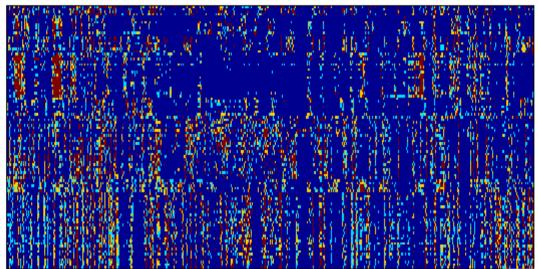


But finding that structure isn't always obvious...

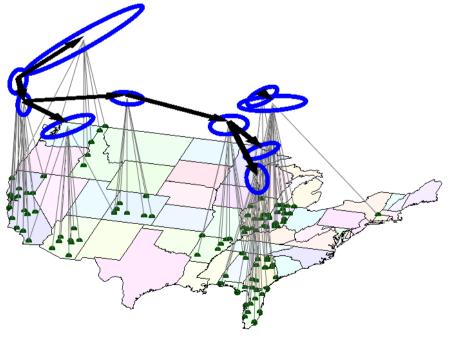
time



time



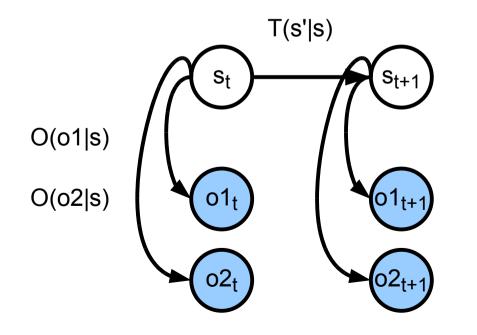
How can we go from no structural information to discovering causal patterns?



weather stations

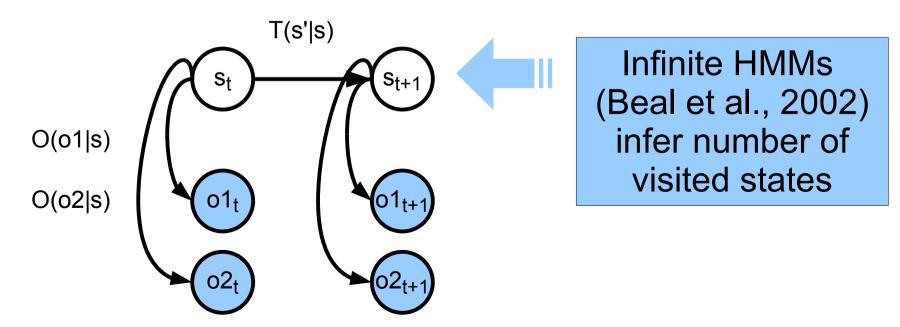
There are several ways we might try to encode the structure:

• Hidden Markov Models (HMMs): one latent factor



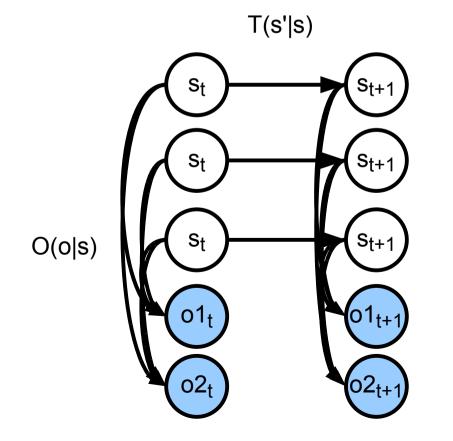
There are several ways we might try to encode the structure:

• Hidden Markov Models (HMMs): one latent factor



There are several ways we might try to encode the structure:

- Hidden Markov Models (HMMs): one latent factor
- Factorial HMMs: many latent factors, special structure



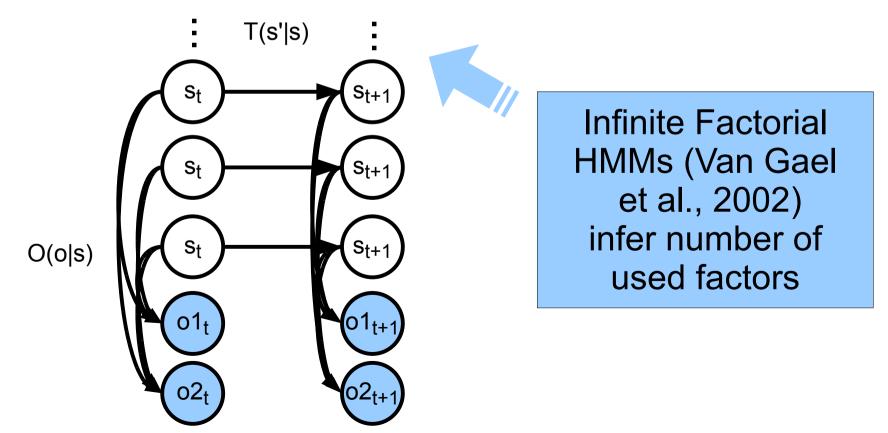
12

There are several ways we might try to encode the structure:

Hidden Markov Models (HMMs): one latent factor

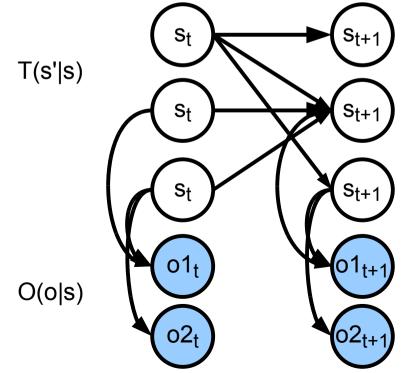
13

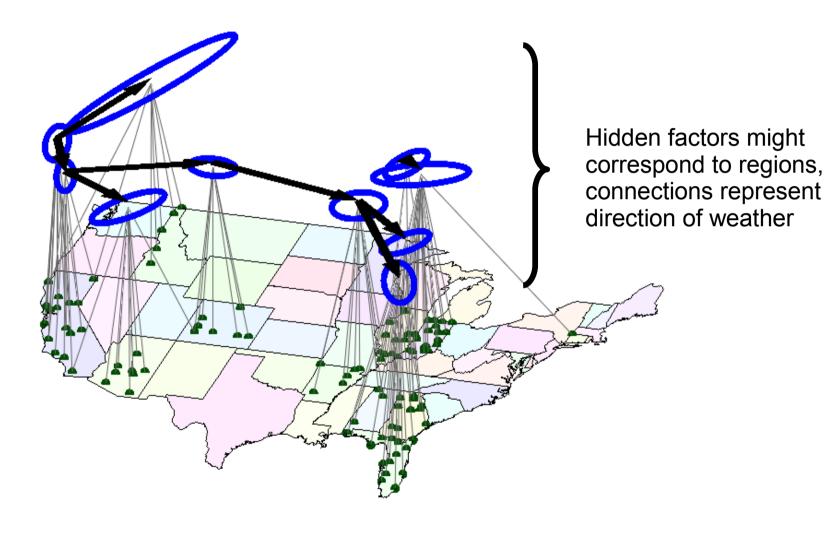
• Factorial HMMs: many latent factors, special structure

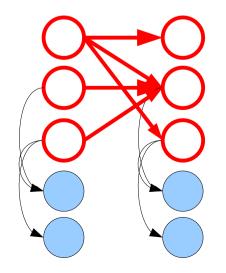


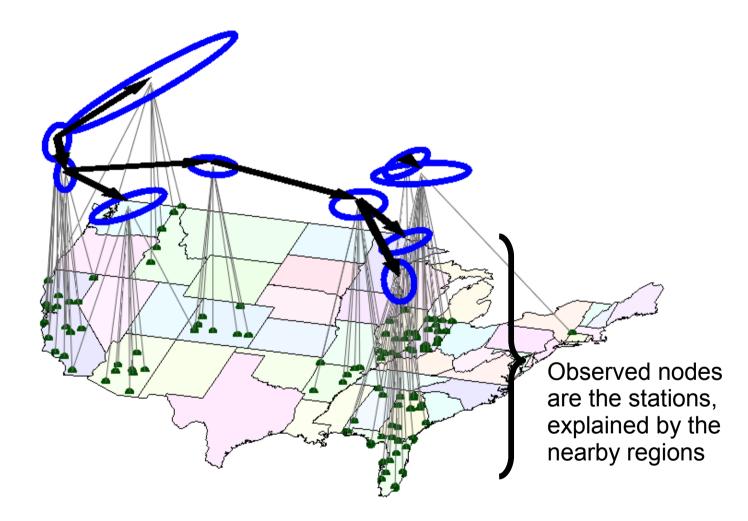
There are several ways we might try to encode the structure:

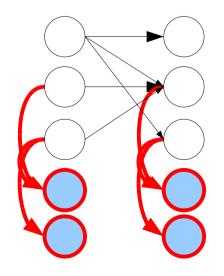
- Hidden Markov Models (HMMs): one latent factor
- Factorial HMMs: many latent factors, special structure
- Dynamic Bayes Nets: many factors, general structure

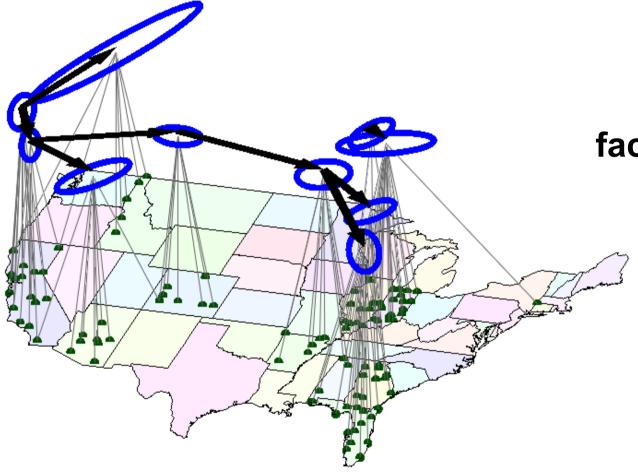




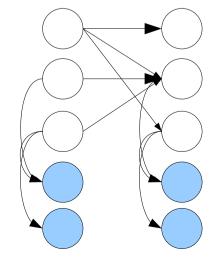








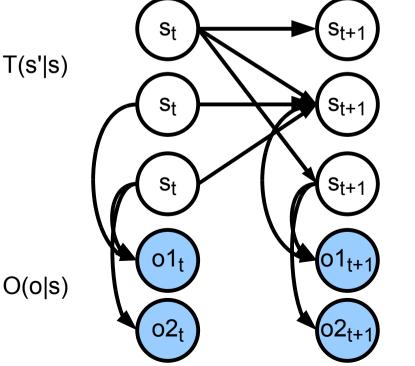
Key Question: how many factors do we need?



There are several ways we might try to encode the structure:

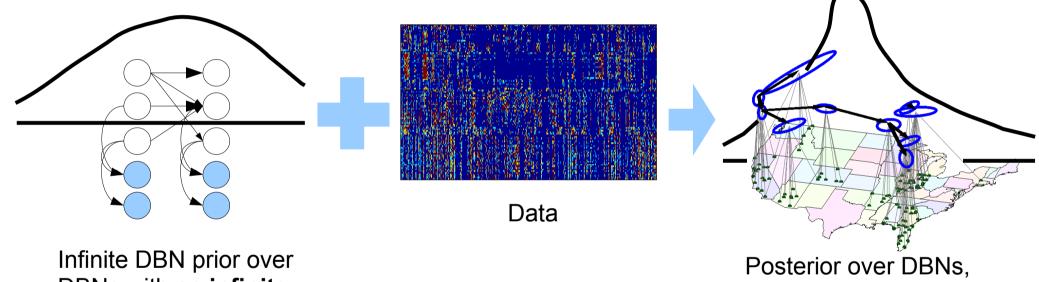
- Hidden Markov Models (HMMs): one latent factor
- Factorial HMMs: many latent factors, special structure
- Dynamic Bayes Nets: many factors, general structure

T(s'|s)



Our contribution: Infinite DBNs to infer number of used factors for a general **DBN** structure

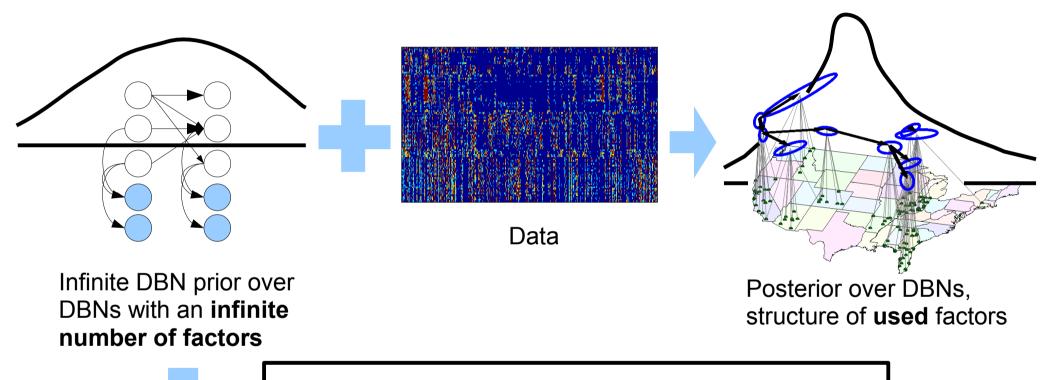
Using Nonparametric Bayes: Distributions over Infinite DBNs



DBNs with an infinite number of factors

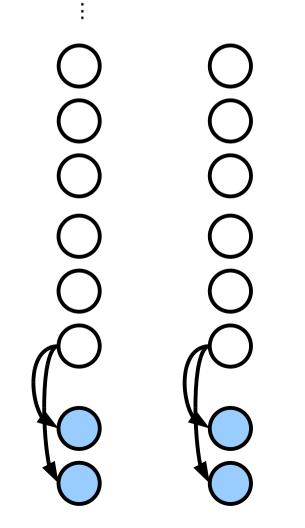
structure of **used** factors

Using Nonparametric Bayes: Distributions over Infinite DBNs



- Number of latent factors used
- State of each factor at each time
- Causal structure for transitions and emissions Parameters adjust bias towards fewer factors/more states or more factors/fewer states.

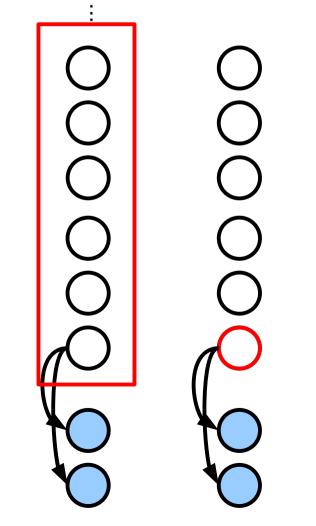
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



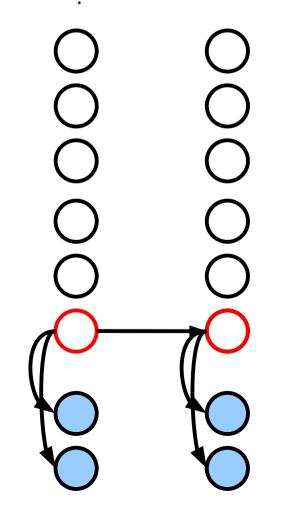
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!

Suppose the apriori probability of a factor choosing being a parent of factor k was p_k

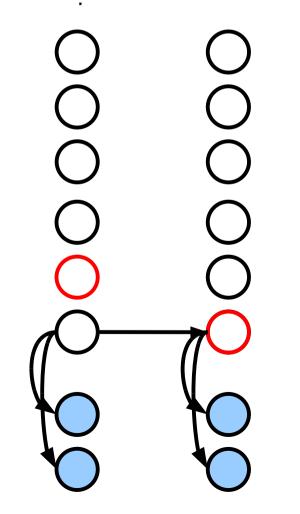
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



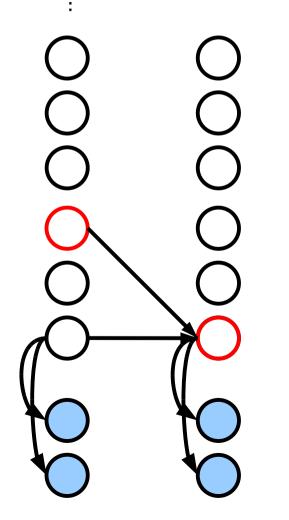
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



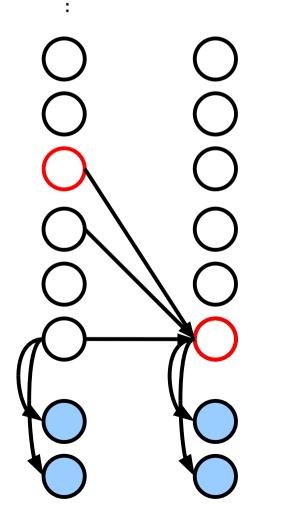
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



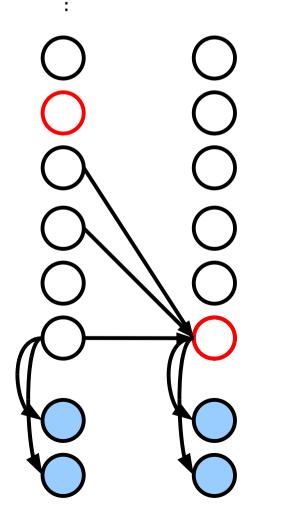
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



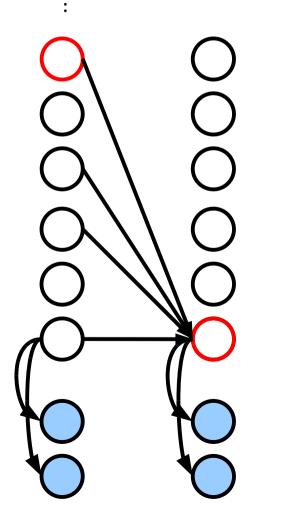
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



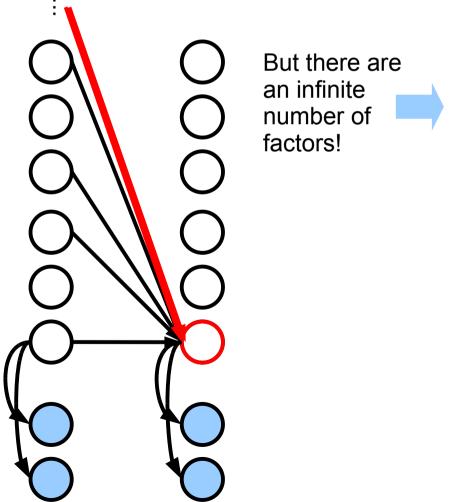
A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!



Which means k has an infinite number of parents!

A finite amount of data must be explained by a finite number of parameters – easy to run into trouble!

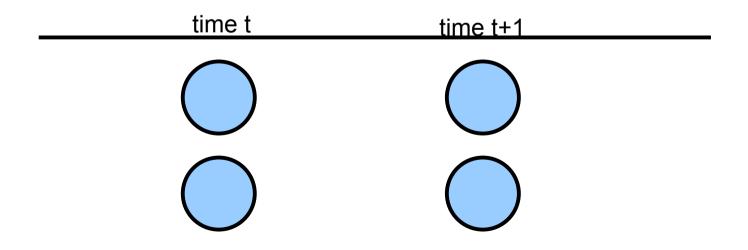
But there are an infinite number of factors!

Which means k has an infinite number of parents!

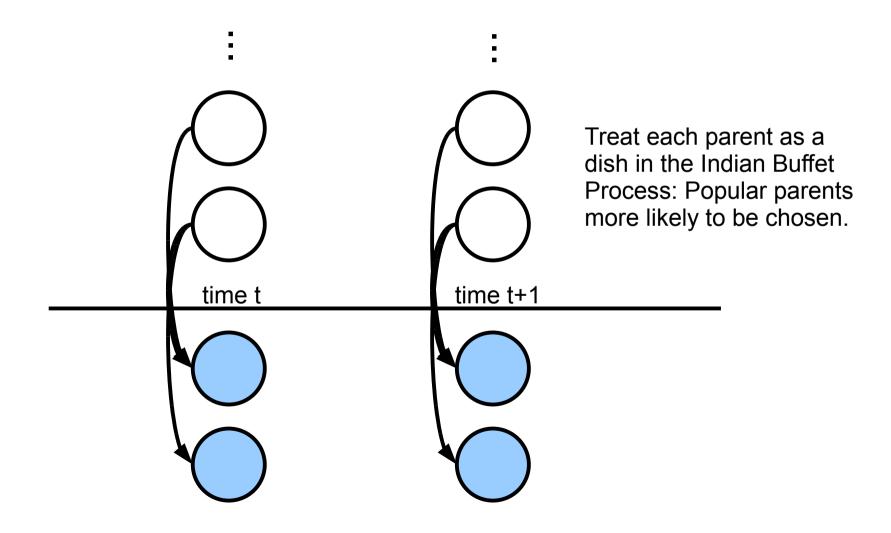
Our Approach: let children pick parents

- Will imply parents have infinite children
- But only factors affecting observed nodes matter

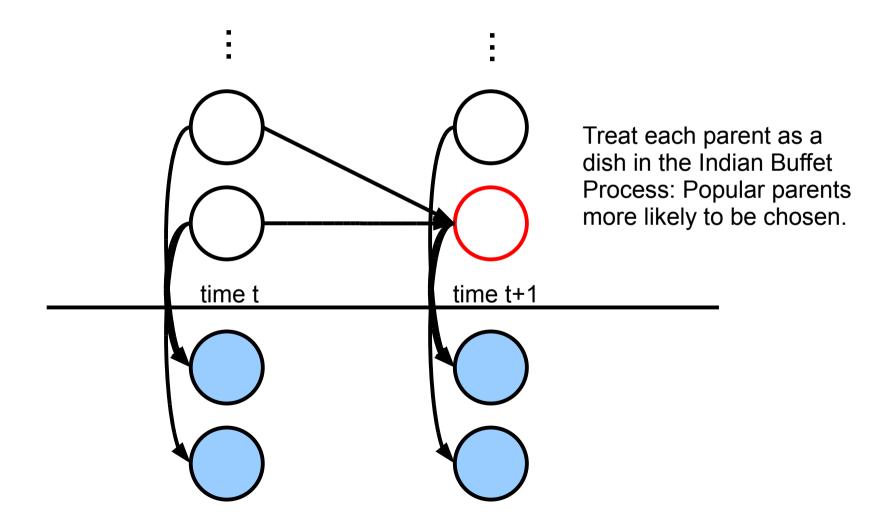
The iDBN Generative Process



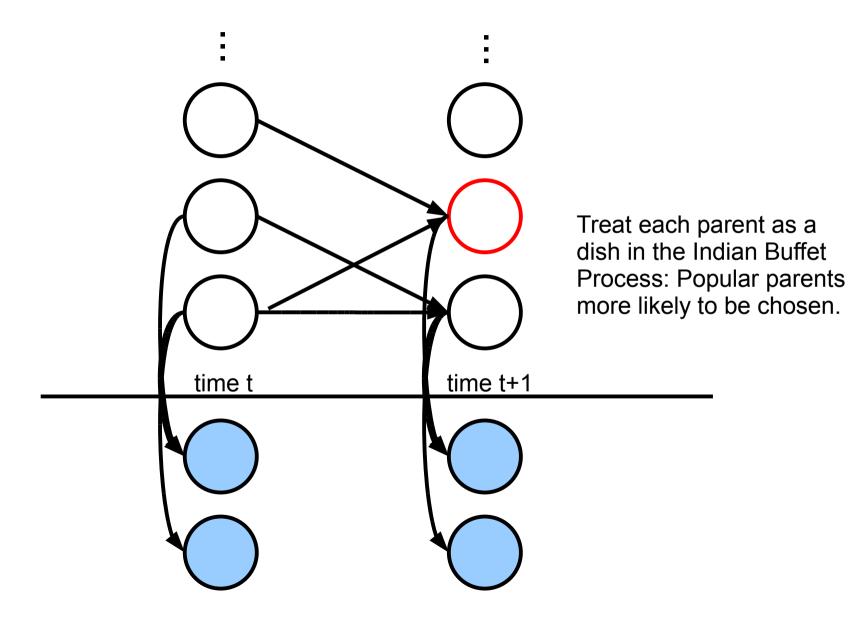
Observed Nodes Choose Parents



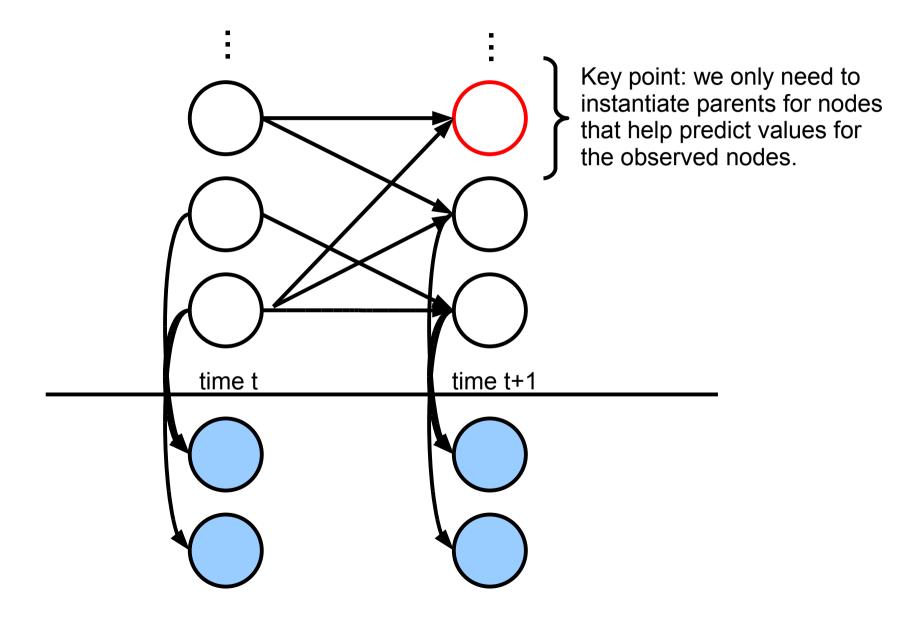
Hidden Nodes Choose Parents

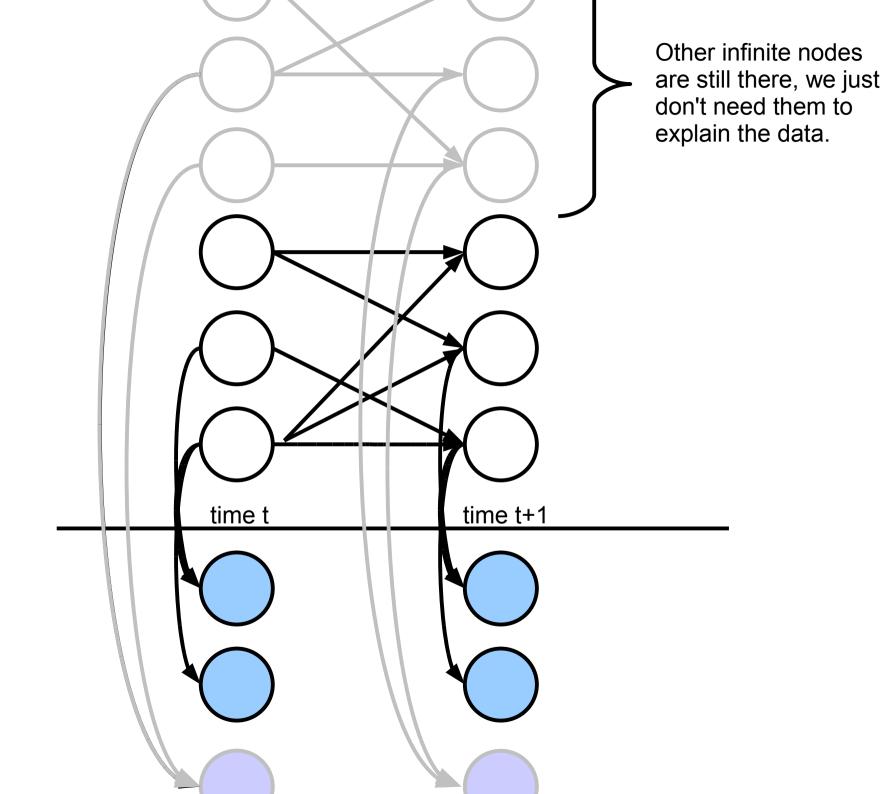


Hidden Nodes Choose Parents

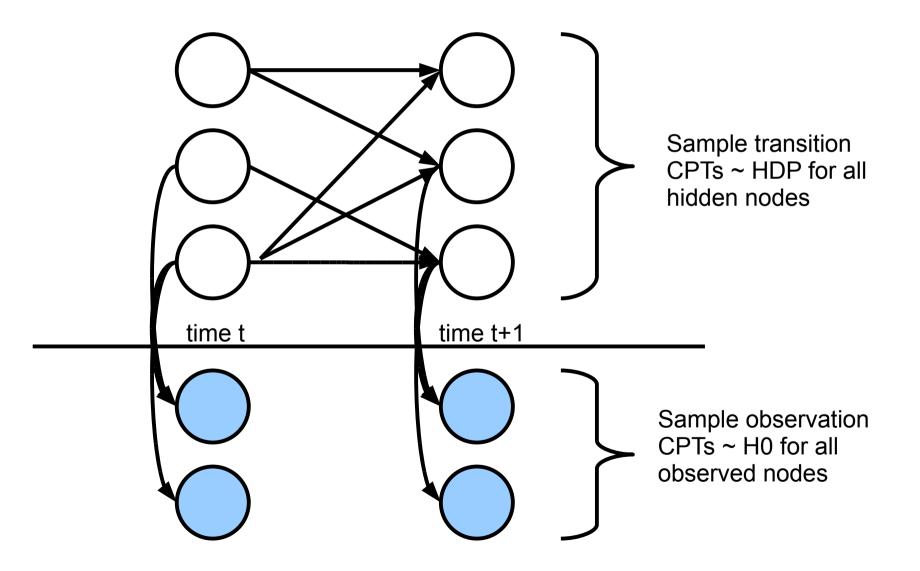


Hidden Nodes Choose Parents

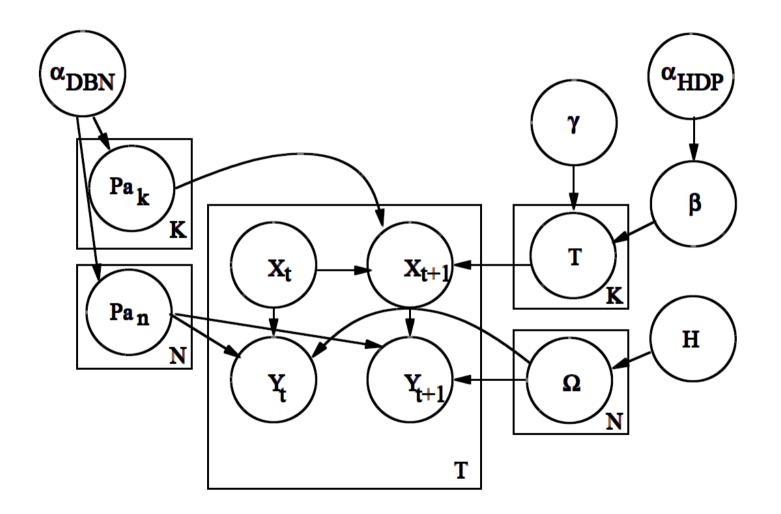




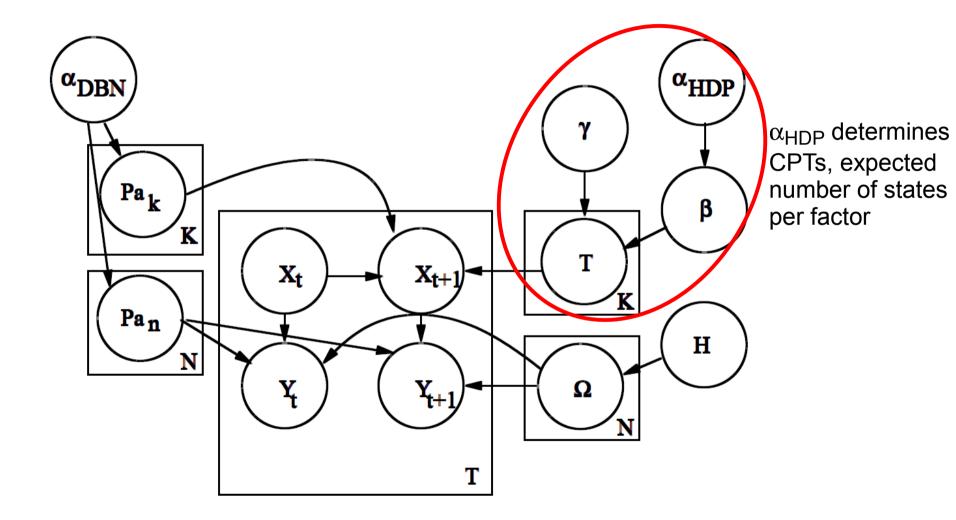
Instantiate Parameters



Summary of the Prior

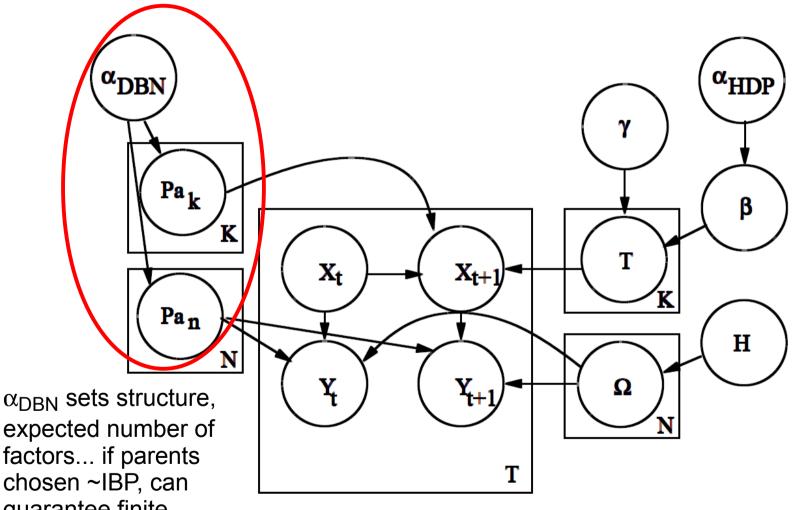


Summary of the Prior



40

Summary of the Prior



expected number of factors... if parents chosen ~IBP, can guarantee finite factors to explain finite data 41

Inference

General Approach: Blocked Gibbs sampling with the usual tricks (tempering, sequential initialization,etc.)

Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling
Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling
Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial
Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial
Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$	Factored frontier – Loopy BP
Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death

Inference

General Approach: Blocked Gibbs sampling with (tempering, sequential initialization, etc.)

Common to all DBN inference

Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling	
Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling	
Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial	
Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial	
Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$	Factored frontier – Loopy BP	
Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death	

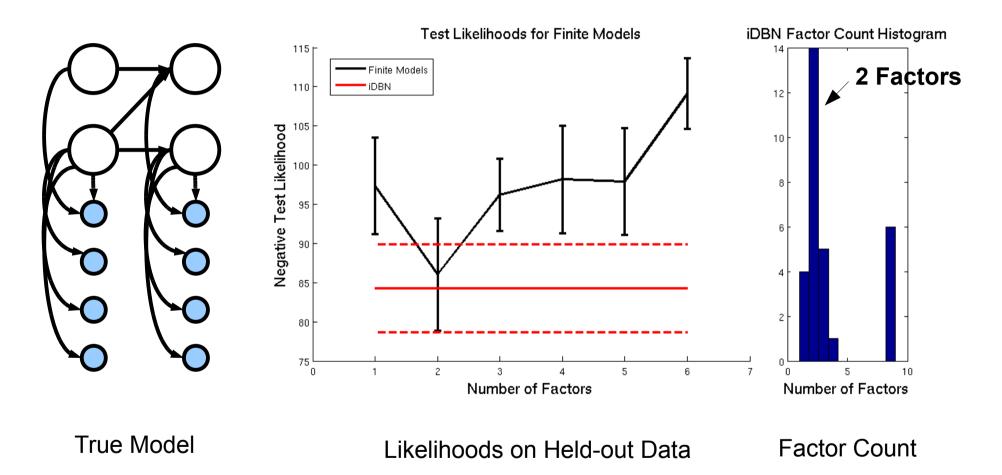
Inference

General Approach: Blocked Gibbs sampling with (tempering, sequential initialization, etc.)

Common to all DBN inference

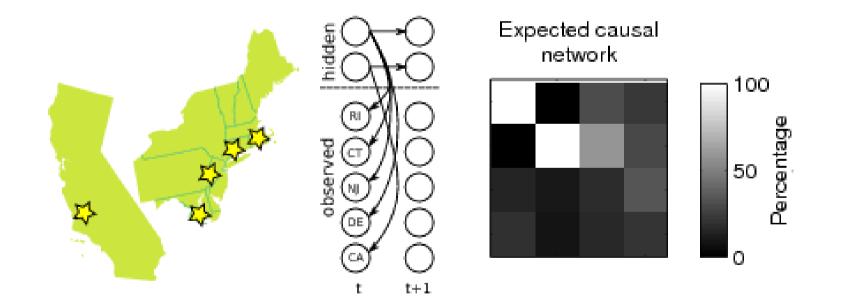
44			Specific to iDBN only 5% computational overhead!
	Add / delete factors	$p(P_{a_n} P_{a_k}, X, \beta)$	Metropolis-Hastings birth/death
	Resample state sequence	$p(X P_{a_n}, P_{a_k}, \beta, T, \Omega, Y)$) Factored frontier – Loopy BP
	Resample observations	$p(\Omega P_{a_n}, X, \beta, Y)$	Dirichlet-multinomial
	Resample transitions	$p(T P_{a_k}, X, \beta)$	Dirichlet-multinomial
	Resample factor-observation connections	$p(P_{a_k} P_{a_n}, X, \beta)$	Gibbs sampling
	Resample factor-factor connections	$p(P_{a_n} P_{a_k}, X, \beta)$	Gibbs sampling

Results: Toy Example



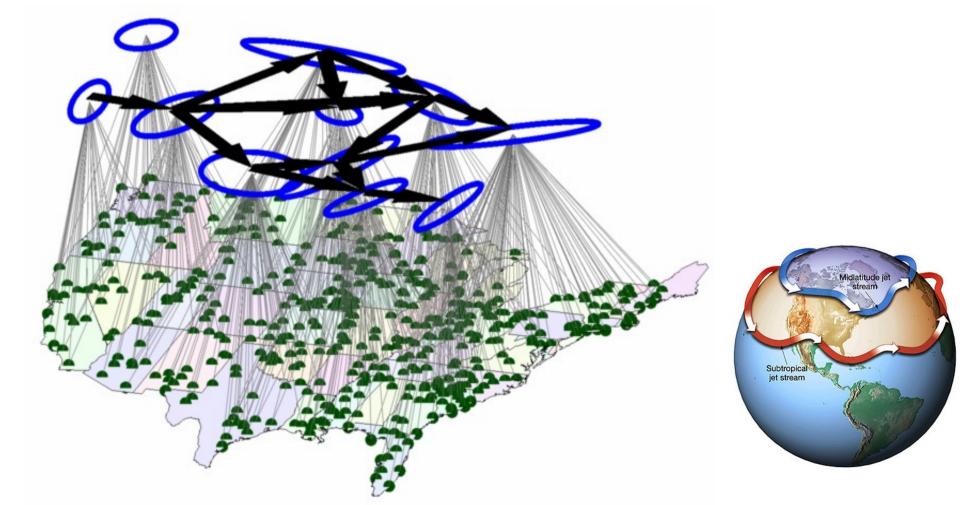
Returning to Weather Example: Small Dataset

A model with just five locations quickly separates the east cost and the west coast data points.



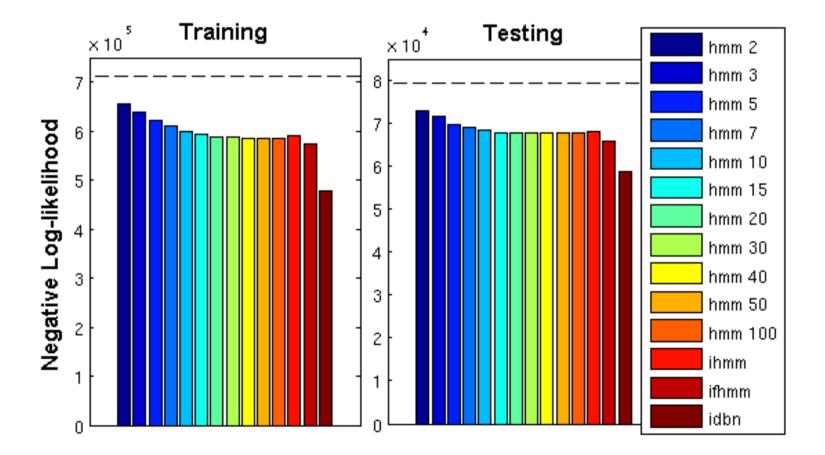
Weather Example: Full Dataset

On the full dataset, we get regional factors with a general west-to-east pattern (the jet-stream).



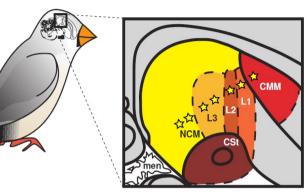
Weather example: Full Dataset

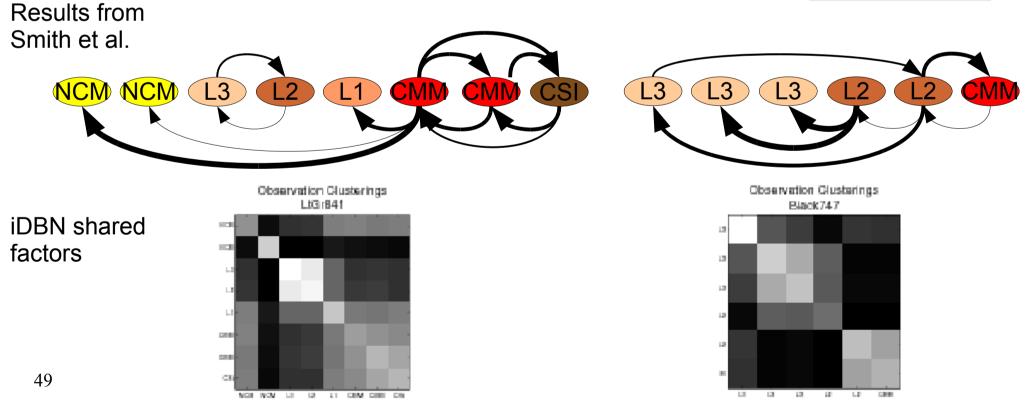
Training and test performance (lower is better)



Zebra Finch Example

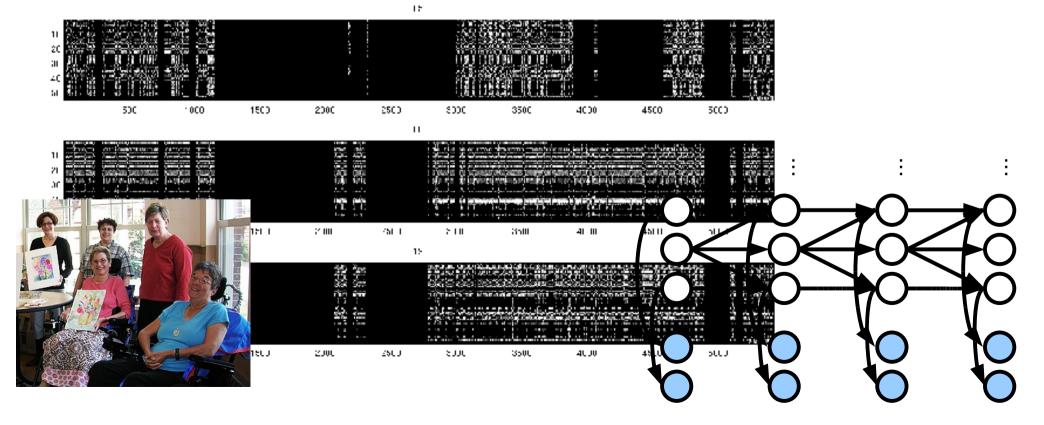
Given electrode readings (Smith et al., 2006), infer functional connectivity.





Summary and Future Work

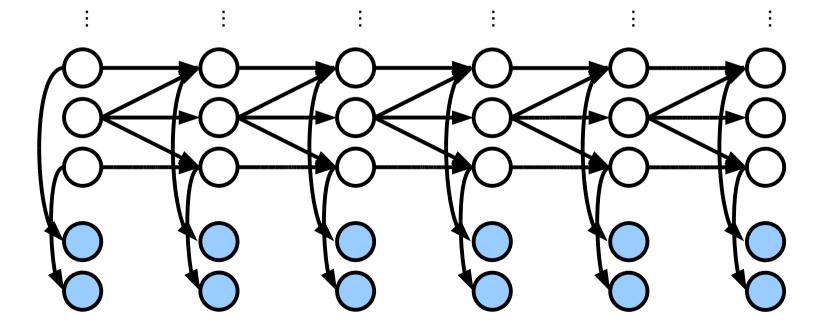
- Summary: We presented the iDBN prior, which allows us to infer the structure of general time-series models, showed it found interesting structure in weather, zebra-finch data.
- What's next: improving inference/model knobs, application to patient monitoring in an eldercare setting.



Summary and Future Work

• Summary: We presented the iDBN prior, which allows us to infer the structure of general time-series models, showed it found interesting structure in weather, zebra-finch data.

• Future work: more control in the priors, improving inference, and adding control (e.g. for use in reinforcement learning).



Results on Other Domains

Negative Test Likelihood		Factors Discovered			
DBN	iFHMM	iDBN	DBN	iFHMM	iDBN
174.0 ± 8.2	165.2 ± 3.0	156.2 ± 3.0	5	12.8 ± 0.2	2.4 ± 0.2
255.6 ± 7.1	286.5 ± 2.9	216.2 ± 10.0	7	12.0 ± 0.0	4.0 ± 0.4
181.7 ± 16.0	154.3 ± 1.6	151.4 ± 2.8	4	9.0 ± 1.2	4.2 ± 1.0
142.4 ± 2.7	133.1 ± 2.1	136.0 ± 2.8	1	15.9 ± 0.1	18.1 ± 6.2
				3.1 ± 0.1	29.5 ± 3.6
	DBN 174.0 ± 8.2 255.6 ± 7.1 181.7 ± 16.0 142.4 ± 2.7	DBNiFHMM 174.0 ± 8.2 165.2 ± 3.0 255.6 ± 7.1 286.5 ± 2.9 181.7 ± 16.0 154.3 ± 1.6 142.4 ± 2.7 133.1 ± 2.1	$\begin{array}{cccccccc} DBN & iFHMM & iDBN \\ 174.0 \pm 8.2 & 165.2 \pm 3.0 & 156.2 \pm 3.0 \\ 255.6 \pm 7.1 & 286.5 \pm 2.9 & 216.2 \pm 10.0 \\ 181.7 \pm 16.0 & 154.3 \pm 1.6 & 151.4 \pm 2.8 \\ 142.4 \pm 2.7 & 133.1 \pm 2.1 & 136.0 \pm 2.8 \end{array}$	DBNiFHMMiDBNDBN 174.0 ± 8.2 165.2 ± 3.0 156.2 ± 3.0 5 255.6 ± 7.1 286.5 ± 2.9 216.2 ± 10.0 7 181.7 ± 16.0 154.3 ± 1.6 151.4 ± 2.8 4 142.4 ± 2.7 133.1 ± 2.1 136.0 ± 2.8 1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Growth of Hidden Factors and Observed Nodes

Growth of Hidden Factors with Observed Nodes

