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Time series data often has complex structure we 
wish to understand...

Learning Time-Series Models

http://www.caida.org/tools/measurement/autofocus/

What factors predict
future internet traffic?
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Time series data often has complex structure we 
wish to understand...

Learning Time-Series Models

http://www.caida.org/tools/measurement/autofocus/

Can we understand
how neurons interact

from spike trains?
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Time series data often has complex structure we 
wish to understand...

Learning Time-Series Models

http://www.caida.org/tools/measurement/autofocus/

Are there simple models
to explain what happens
when sprites interact?
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Time series data often has complex structure we 
wish to understand...

Learning Time-Series Models

http://www.caida.org/tools/measurement/autofocus/

What are the temporal
patterns in weather data?
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Example: Rainfall Data

But finding that structure isn't always obvious...
time
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478 weather stations
4 discrete precipitation values
Data from US  HCN, 1980-1989
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Example: Rainfall Data

But finding that structure isn't always obvious...
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How can we go from 
no structural information 
to discovering 
causal patterns?

Example: Rainfall Data
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Current Approaches

There are several ways we might try to encode the structure:
● Hidden Markov Models (HMMs): one latent factor
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Current Approaches

There are several ways we might try to encode the structure:
● Hidden Markov Models (HMMs): one latent factor
● Factorial HMMs: many latent factors, special structure

Infinite Factorial
HMMs (Van Gael

 et al., 2002)
infer number of

used factors
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Current Approaches

There are several ways we might try to encode the structure:
● Hidden Markov Models (HMMs): one latent factor
● Factorial HMMs: many latent factors, special structure
● Dynamic Bayes Nets: many factors, general structure
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Example: Rainfall Data

Hidden factors might
correspond to regions,
connections represent
direction of weather
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Example: Rainfall Data

Observed nodes
are the stations,
explained by the 
nearby regions
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Example: Rainfall Data

Key Question: 
how many

factors do we need?
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Current Approaches

There are several ways we might try to encode the structure:
● Hidden Markov Models (HMMs): one latent factor
● Factorial HMMs: many latent factors, special structure
● Dynamic Bayes Nets: many factors, general structure
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Our contribution:
Infinite DBNs to

infer number of used
factors for a general

DBN structure



19

Using Nonparametric Bayes: 
Distributions over Infinite DBNs

Infinite DBN prior over
DBNs with an infinite
number of factors

Data

Posterior over DBNs, 
structure of used factors



20

Using Nonparametric Bayes: 
Distributions over Infinite DBNs

Infinite DBN prior over
DBNs with an infinite
number of factors

Data

Posterior over DBNs, 
structure of used factors

Infer:
● Number of latent factors used
● State of each factor at each time
● Causal structure for transitions and emissions

Parameters adjust bias towards fewer 
factors/more states or more factors/fewer states.
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Why this is tricky...

A finite amount of data must be explained by a finite number 
of parameters – easy to run into trouble!

...
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Why this is tricky...

A finite amount of data must be explained by a finite number 
of parameters – easy to run into trouble!

...

Suppose the apriori probability of
a factor choosing being a parent of
factor k was pk 
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Why this is tricky...

A finite amount of data must be explained by a finite number 
of parameters – easy to run into trouble!

...

But there are 
an infinite 
number of 
factors!  

Which means k 
has an infinite 
number of 
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Why this is tricky...

A finite amount of data must be explained by a finite number 
of parameters – easy to run into trouble!

...

But there are 
an infinite 
number of 
factors!  

Which means k 
has an infinite 
number of 
parents!  

Our Approach: let 
children pick parents

● Will imply parents have
  infinite children
● But only factors affecting 
  observed nodes matter
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The iDBN Generative Process

... ...

time t time t+1
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Observed Nodes Choose Parents

... ...

time t time t+1

Treat each parent as a 
dish in the Indian Buffet
Process: Popular parents 
more likely to be chosen.
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Hidden Nodes Choose Parents

Treat each parent as a 
dish in the Indian Buffet
Process: Popular parents 
more likely to be chosen.

... ...

time t time t+1
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Hidden Nodes Choose Parents

... ...

time t time t+1

Key point: we only need to
instantiate parents for nodes
that help predict values for
the observed nodes.
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time t time t+1

Other infinite nodes
are still there, we just
don't need them to
explain the data.
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Instantiate Parameters

time t time t+1

Sample observation
CPTs ~ H0 for all
observed nodes

Sample transition
CPTs ~ HDP for all
hidden nodes
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Summary of the Prior
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Summary of the Prior

αHDP determines
CPTs, expected 
number of states
per factor
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Summary of the Prior

αDBN sets structure, 
expected number of 
factors... if parents 
chosen ~IBP, can 
guarantee finite 
factors to explain 
finite data
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Inference

Resample factor-factor connections

Add / delete factors

Resample state sequence

Resample observations

Gibbs sampling

Metropolis-Hastings birth/death

Dirichlet-multinomial

Dirichlet-multinomial

Factored frontier – Loopy BP

General Approach: Blocked Gibbs sampling with the usual tricks 
(tempering, sequential initialization,etc.) 

Gibbs sampling

Resample transitions

Resample factor-observation connections
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Inference

Resample factor-factor connections

Add / delete factors

Resample state sequence

Resample observations

Gibbs sampling

Metropolis-Hastings birth/death

Dirichlet-multinomial

Dirichlet-multinomial

Factored frontier – Loopy BP

General Approach: Blocked Gibbs sampling with the usual tricks 
(tempering, sequential initialization,etc.) 

Gibbs sampling

Resample transitions

Resample factor-observation connections

Specific to iDBN
only 5% computational

overhead!

Common to all
DBN inference
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Results: Toy Example

True Model Likelihoods on Held-out Data Factor Count

2 Factors
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Returning to Weather Example: 
Small Dataset

A model with just five locations quickly separates 
the east cost and the west coast data points.
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Weather Example: Full Dataset

On the full dataset, we get regional factors with a 
general west-to-east pattern (the jet-stream).
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Weather example: Full Dataset
Training and test performance (lower is better)
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Zebra Finch Example

Given electrode readings (Smith et al., 
2006), infer functional connectivity.

Results from 
Smith et al.

iDBN shared 
factors

L3 L3 L3 L2 L2 CMMNCM NCM L3 L2 L1 CMM CMM CSI
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Summary and Future Work
● Summary: We presented the iDBN prior, which allows us to 
infer the structure of general time-series models, showed it 
found interesting structure in weather, zebra-finch data.
● What's next: improving inference/model knobs, application 
to patient monitoring in an eldercare setting.

... ... ... ...
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Summary and Future Work
● Summary: We presented the iDBN prior, which allows us to 
infer the structure of general time-series models, showed it 
found interesting structure in weather, zebra-finch data.
● Future work: more control in the priors, improving inference, 
and adding control (e.g. for use in reinforcement learning).

... ... ... ... ... ...
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Results on Other Domains

                       Negative Test Likelihood             Factors Discovered
                   DBN       iFHMM        iDBN   DBN    iFHMM  iDBN
NW Star      174.0 ± 8.2 165.2 ± 3.0 156.2 ± 3.0   5         12.8 ± 0.2  2.4 ± 0.2
NW Tree      255.6 ± 7.1 286.5 ± 2.9 216.2 ± 10.0 7         12.0 ± 0.0  4.0 ± 0.4
NW Ring     181.7 ± 16.0 154.3 ± 1.6   151.4 ± 2.8   4          9.0 ± 1.2  4.2 ± 1.0
Spike Train 142.4 ± 2.7 133.1 ± 2.1   136.0 ± 2.8   1         15.9 ± 0.1 18.1 ± 6.2
Jungle        14.8 ± 1.4   13.9 ± 1.5     14.2 ± 1.6   6         3.1 ± 0.1 29.5 ± 3.6
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Growth of Hidden Factors and 
Observed Nodes
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