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Motivation: Learning for Control

Real-life problems repeat, but not exactly.



  

Latent Task Parameterizations
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Latent Task Parameterizations

● We model related tasks as a 
parametrized family of MDPs.

● Each task is an instance 
obtained by fixing the 
parameters (we know when 
this instance changes).

● The MDP parameters are 
never observed: must be 
inferred from data.



  

Formalization of the Problem

● Data is a sequence of state transitions:

where b is the “batch” or particular instance
● The dynamics are related through a shared set 

of basis functions and batch-dependent weights

(xn
b ,a ,Δ xn

b) , b∈(1. ..B)

Δ xn
b
∼∑

k

K

wkab f ka(xn
b ,θ)+ϵn

b

ϵn
b∼N (0 ,σ2)
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● Data is a sequence of state transitions:

where b is the “batch” or particular instance
● The dynamics are related through a shared set 

of basis functions and batch-dependent weights

(xn
b ,Δ xn

b) , b∈(1. .. B)
The weights wkb represent the 

minimum amount of information 
that we need to learn per instance.
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Placing Priors

● Data is a sequence of state transitions:

where b is the “batch” or particular instance
● The dynamics are related through a shared set 

of basis functions and batch-dependent weights

Batch-specific
Latent parameter

w1ab = 1
wkab ~ N(0,σw)

Finite number
of bases

K ~ Geom(p) Shared
basis functions

fka ~ GP(θ)

(xn
b ,a ,Δ xn

b) , b∈(1...B)

... this is essentially the Semiparametric Latent Factor Model (Teh, Seegar, Jordan 2005)



  

Approach

● Given batch data from many instances, we 
learn the number of bases (K) and define a 
posterior over the functions fka().

● Then, given data from a new instance b', we 
only need to filter over the batch-specific latent 
parameters wkab'.



  

A Few Details: Marginal Likelihood

Batch training: Integrating out the bases fka() for each 
action a, we get the marginal likelihood 

where

● ΔX is an Nx1 vector of the differences     

● W is the KxB matrix of the weights

● A(b, n) = 1 if the nth data point came from batch b; 0 
otherwise.

Inference: MH on W, RJ-MCMC on K.    

P(Δ X∣W , X )=N (0 , K (X , X )⋅(AT W T W A))



  

Toy Example: 1D functions
Training Data



  

Toy Example: Test Time



  

Quick Interlude: Why GPs?

We did an initial exploration of what form of 
basis functions could be used to approximate a 
single batch Cartpole/Acrobot well.
– Obviously, if we include terms from the physics, we 

could make very good predictions. 

– We found that we needed 8-10 Fourier bases (and 
even more polynomial bases) to get decent 
predictions... perhaps too general.

– GPs let us create application-specific bases.  

(yes, we did our homework)



  

Cart-Pole Example

4-D domain:

 - Inputs: x, x, θ, θ

 - Outputs: x, x, θ, θ

Instances vary the 
weight and the 
length of the pole.

. ... ..

. .



  

Varying Length



  

Varying LengthNo extra bases added



  

Varying Length One basis added



  

Varying Mass



  

Varying Mass



  

Varying Mass No bases added



  

Varying Mass One basis added



  

Varying Mass and Length: 
3 Bases Added



  

Conclusions and Future Work

● We demonstrated our latent parametrization 
approach on a sample problem, cartpole.

● Currently modifying approach so that the latent 
parameters are shared across all actions and 
outputs, making inference more efficient.

● Next steps: Close the control loop by (1) pre-
computing belief-space policies and (2) filtering 
over weights for a new instance.



  

HiP-MDP

Laying out the model...
● We can model this as a HiP-MDP:

where

: state space                       : parameter space

: action set                          : parameter pdf

            : dynamics               : discount factor       

            : reward function



  

The Details: Inference

● For the weight values       , we use MH, with 
acceptance threshold:

● where 
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