Transfer Learning by Discovering Latent Task Parameterizations

NIPS Workshop on Bayesian Nonparametric Models For Reliable Planning And Decision-Making Under Uncertainty

December 8th 2012

Finale Doshi-Velez George Konidaris

Motivation: Learning for Control

Real-life problems repeat, but not exactly.

Latent Task Parameterizations

• We model related tasks as a parametrized family of MDPs.

Latent Task Parameterizations

- We model related tasks as a *parametrized family of MDPs.*
- Each task is an *instance* obtained by fixing the parameters (we know when this *instance* changes).

Latent Task Parameterizations

- We model related tasks as a parametrized family of MDPs.
- Each task is an *instance* obtained by fixing the parameters (we know when this *instance* changes).
- The MDP parameters are never observed: must be inferred from data.

Formalization of the Problem

• Data is a sequence of state transitions:

$$(x_n^b, a, \Delta x_n^b), b \in (1...B)$$

where b is the "batch" or particular instance

• The dynamics are related through a *shared* set of basis functions and batch-dependent *weights*

$$\Delta x_n^b \sim \sum_{k}^{K} w_{kab} f_{ka}(x_n^b, \theta) + \epsilon_n^b$$

$$\epsilon_n^b \sim N(0, \sigma^2)$$

Formalization of the Problem

Placing Priors

• Data is a sequence of state transitions:

... this is essentially the Semiparametric Latent Factor Model (Teh, Seegar, Jordan 2005)

Approach

- Given batch data from many instances, we learn the number of bases (K) and define a posterior over the functions f_{ka}().
- Then, given data from a new instance b', we only need to filter over the batch-specific latent parameters $w_{kab'}$.

A Few Details: Marginal Likelihood

Batch training: Integrating out the bases f_{ka} () for each action *a*, we get the marginal likelihood

 $P(\Delta X|W,X)=N(0,K(X,X)\cdot(A^TW^TWA))$ where

- ΔX is an Nx1 vector of the differences
- *W* is the *K*x*B* matrix of the weights
- A(b, n) = 1 if the nth data point came from batch b; 0 otherwise.

Inference: MH on W, RJ-MCMC on K.

Toy Example: 1D functions Training Data

Toy Example: Test Time

Quick Interlude: Why GPs?

(yes, we did our homework)

We did an initial exploration of what form of basis functions could be used to approximate a *single* batch Cartpole/Acrobot well.

- Obviously, if we include terms from the physics, we could make very good predictions.
- We found that we needed 8-10 Fourier bases (and even more polynomial bases) to get decent predictions... perhaps too general.
- GPs let us create application-specific bases.

Cart-Pole Example

4-D domain:

- Inputs: x, x, θ, θ
- Outputs: \dot{x} , \ddot{x} , $\dot{\theta}$, $\ddot{\theta}$

Instances vary the weight and the length of the pole.

Varying Length

No extra bases added Varying Length

Varying Length

One basis added

Varying Mass

Varying Mass

Varying Mass and Length: 3 Bases Added

Conclusions and Future Work

- We demonstrated our latent parametrization approach on a sample problem, cartpole.
- Currently modifying approach so that the latent parameters are shared across all actions and outputs, making inference more efficient.
- Next steps: Close the control loop by (1) precomputing belief-space policies and (2) filtering over weights for a new instance.

HiP-MDP

Laying out the model...

• We can model this as a HiP-MDP:

$$< S, A, \Theta, T, R, \gamma, P_{\Theta} >$$

where

- S: state space
- A: action set
- $T(s'|s, a, \theta)$: dynamics

- Θ : parameter space
- P_{Θ} : parameter pdf
 - γ : discount factor
- $R(s'|s, a, \theta)$: reward function

The Details: Inference

• For the weight values w_{kb} we use MH, with acceptance threshold:

$$a = \min(1, \frac{P(Y|W')P(w_{kb}'|W_{-kb})}{P(Y|W)P(w_{kb}|W_{-kb})})$$

• where

$$P(w_{kb}|W_{-kb}) = N(w'_{kb}; 0, \sigma_w^2)$$