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Abstract

We are often interested in explaining data through a set of hidden factors or features. When the number of
hidden features is unknown, the Indian Buffet Process (IBP) is a nonparametric latent feature model that
does not bound the number of active features in dataset. However, the IBP assumes that all latent features
are uncorrelated, making it inadequate for many realworld problems. We introduce a framework for
correlated nonparametric feature models, generalising the IBP. We use this framework to generate several
specific models and demonstrate applications on realworld datasets.

Motivation

Observations can often be explained by a set of features, but we don't know a priori how many features
there are.
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We propose a general framework for creating a nonparametric correlated feature model.

The Indian Buffet Process

The Indian Buffet Process (IBP) is a non-parametric prior on binary matrices—generally useful for latent
feature models. The generative process proceeds as follows:
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(1) We sample an infinite number of Beta(a,1) variables v{,vo,vs... ‘
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(2) The probability of a feature k i is given by e =] |, v
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Each feature has some observation parameters ag

associated with it.

(3) Each observation samples features based on their probabilities

Properties

« QObservations are exchangeable.

« Features are independent.

* Finite number of features in a finite dataset.

Aside: The Dirichlet Process (DP) is a distribution on distributions, where the probability of a category ag is
given by T = kal  (1=v))

General Framework

Desiderata for a correlated non-parametric feature model:
* A finite dataset should contain a finite number of latent features with probability one.
» Features and data should remain exchangeable.

 Correlations should capture motifs, or commonly occurring sets of features.

Our approach: introduce correlations through a hierarchical structure.

High level graphical model: correlations are
iIntroduced in the feature-assignment matrix Z by
adding a layer of hierarchy: Z now depends on
two other variables C and M. As in the IBP
model, the features Z and some parameters A
define the distribution on the data X.

We can think of C as a set of category
-assignments that determines what higher-level
categories observation n contains. The
connection-assignment variable M defines how
categories relate the the hidden features Z.

For C and M, we consider binary matrices C and M which relate to Z through matrix product:

Features Categories Feature-Category
Present Present Connections
Z C M

Sufficient conditions on f, C, and M to satisfy the desiderata:

 C is generated by some nonparametric process NP1 that associates each observation with a finite number of
categories with probability one.

* M is generated by some nonparametric process NP2 that associates each category with a finite number of
features with probability one.

o f is a (potentially stochastic) link function such that
- znk = f(cnTmg)
— if chTmy = 0 then z, = 0 with probability one.

Specific Variants

The DP-IBP is a structured clustering model in which each
observation belongs to a single cluster, but features can be
shared between clusters:

«C ~CRP
M~ IBP
* Znk = CnTMk

The expected number of features grows as O(log(log(N)) as the
number of observations grows.

Demonstration: we show a toy blocks world example that
contains four features (see true features) that come in particular
groupings (see true clusters). The inference recovers the
clusters and features.
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The IBP-IBP allows each observation to belong to multiple
categories. Thus, observations consist of sets of sets:

«C ~IBP
M~ IBP
* Znk = (CnTmMg ) >0

The noisy-or IBP-IBP extends the IBP-IBP by allowing features
to be absent even if their parent categories are active:

«C ~IBP
M~ IBP
e Zk ~ Bernoulli(1—q

T
Cn mk)

Demonstration: we show a similar blocks world example, except
now the data was generated using an underlying noisy-or IBP-
IBP model. Inference is more difficult and the data is more
complex in this model, but the features and clusters are still
largely recovered.
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DP-IBP blocks world demonstration
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noisy-or IBP-IBP blocks world demonstration
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Experiments on Realworld Data

‘We compared the 3 structured models (DP-IBP, IBP-IBP, noisy-or IBP-IBP) to the DP and the IBP on five
realworld datasets:

* UN: 15 development statistics from 155 countries

* India: 14 socioeconomic statistics from 398 households

« Joke: 500 user ratings of 30 jokes

* Gene: 226 gene expression levels from 251 subjects

» Robot: 23 tags for 750 images taken from a robot-mounted camera

The UN, India, Joke, and Gene datasets contained non-negative real-valued values. We used an
exponential prior on A and assumed that the data had some additional Gaussian noise &:

X=ZA+¢
A ~ Exponential( A )
e~N(0,opn)

The robot data was binary-valued. We used the Bernoulli likelihood:

P(Xnd=1|Zpg=1)=1-m
P(Xnd=1]4Zng =0) =1

Quantitative results: overall, the simple DP mixture often had the best performance. The DP-IBP
generally had the best performance among the features based models (including the IBP).
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Qualitative results: the DP-IBP discovered interesting structures that the flat DP or IBP models could not.

Typical sample from robot data Typical sample from UN data
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Conclusions o

- We presented a framework for designing correlated nonparametric feature models using hierarchies.

- These models describe deep structures in the data, which may provide interesting explanatory power
beyond what can be described by flat models like the DP.

- More powerful inference and tailored likelihood functions are needed to apply these models to realworld
applications.




