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ABSTRACT

Many estimation problems involve sensors which can be ac-

tively controlled to alter the information received and utilized

in the underlying inference task. In this paper, we discuss

performance guarantees for heuristic algorithms for adaptive

sensor control in sequential estimation problems, where the

inference criterion is mutual information. We also demon-

strate the performance of our tighter online computable per-

formance guarantees through computational simulations. The

guarantees may be applied to other estimation criteria includ-

ing the Cramér-Rao bound.

Index Terms— Sequential decision procedures, sequen-

tial estimation, tracking

1. INTRODUCTION

Active sensing is motivated by modern sensors which can be

controlled to observe different aspects of an underlying prob-

abilistic process. For example, if we use cameras to track

people in buildings, we can steer the camera to focus or zoom

on different people or places; in a sensor network, we can

choose to activate and deactivate different nodes and different

sensing modalities within a particular node; or in a medical

diagnosis problem we can choose which tests to administer to

a patient. In each of these cases, our control choices impact

the information that we receive in our observation, and thus

the performance achieved in the underlying inference task.

A commonly used performance objective in active sensing

is mutual information (MI) (e.g., [1]). Denoting the quantity

that we are aiming to infer as X and the observation result-

ing from control choice u as zu, the MI between X and zu is

defined as the expected reduction in the entropy produced by

the observation [2], i.e., I(X; zu) = H(X) − H(X|zu) =
H(zu) − H(zu|X).1 Since H(X) is independent of the con-

trol choice u, choosing u to maximize I(X; zu) is equivalent

This work was supported by MIT Lincoln Laboratory through ACC

PO#3019934.
1Note that when we condition on a random variable (such as a yet unre-

alized observation) the conditional entropy involves an expectation over the

distribution of that random variable.

to minimizing the uncertainty in X as measured by the con-

ditional entropy H(X|zu).
In different problems, the collection of subsets of obser-

vations from which one may choose can have a dramatically

different structure. One common structure involves selection

of any K-element subset of a set of observations, e.g., the sub-

set of sensors to activate in a sensor network application. An-

other structure is one in which there is a single sensor which

can operate in one mode at each time increment; the resulting

selection structure is one in which we may choose a single el-

ement from each of a series of observation sets, each of which

corresponds to a different time instant.

Recent work [3] has applied results from [4] to estab-

lish that, when the selection structure is such that any sub-

set of observations with cardinality ≤ K may be chosen, the

greedy heuristic (which at each stage chooses the observation

which maximizes the MI with X conditioned on the already

selected observations) achieves a total MI of within a con-

stant multiple (1 − 1/e) ≈ 0.632 of the optimal subset of

observations. Our analysis extends this to the larger class of

problems involving sequential processes, providing the sur-

prising result that in sequential problems, under quite general

assumptions one may select the control for the current time

instant neglecting future observation opportunities, and still

have performance ≥ 0.5× the optimal. Furthermore, the on-

line computable bounds demonstrated in Section 2.3 can be

significantly stronger in certain circumstances. In the interest

of space, most proofs are omitted; details can be found in [5].

The guarantees we develop are based upon submodularity,

the same property exploited in [3, 4, 6]. Submodularity cap-

tures the notion that as we select more observations, the value

of the remaining unselected observations decreases, i.e., the

notion of diminishing returns.

Definition 1. A set function f is submodular if f(C ∪ A) −
f(A) ≥ f(C ∪ B) − f(B) ∀ B ⊇ A.

It was established in [3] that, assuming that observations

are independent conditioned on the quantity to be estimated,

MI is a submodular function of the observation selection set.

The simple result that we will utilize from submodularity is

that I(x; zC |zA) ≥ I(x; zC |zB) ∀ B ⊇ A.
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2. A SIMPLE PERFORMANCE GUARANTEE

To commence, consider a simple problem involving two

time steps, where at each step we must choose a single

observation from a set (e.g., in which mode to operate a

sensor). The goal is to maximize the information obtained

about an underlying quantity X . Let {o1, o2} denote

the optimal choice for the two stages, i.e., that which

maximizes I(X; zu1
1 , zu2

2 ) over possible choices for

{u1, u2}. Let {g1, g2} denote the choice made by the

greedy heuristic, where g1 = arg maxu1
I(X; zu1

1 ) and

g2 = arg maxu2
I(X; zu2

2 |zg1
1 ) (where conditioning is on the

random variable zg1
1 , not on the resulting observation value).

Then the following analysis establishes a performance

guarantee for the greedy algorithm:

I(X; zo1
1 , zo2

2 )
(a)

≤ I(X; zg1
1 , zg2

2 , zo1
1 , zo2

2 )
(b)
= I(X; zg1

1 ) + I(X; zg2
2 |zg1

1 )
+ I(X; zo1

1 |zg1
1 , zg2

2 )
+ I(x; zo2

2 |zg1
1 , zg2

2 , zo1
1 )

(c)

≤ I(X; zg1
1 ) + I(X; zg2

2 |zg1
1 )

+ I(X; zo1
1 ) + I(x; zo2

2 |zg1
1 )

(d)

≤ 2I(X; zg1
1 ) + 2I(X; zg2

2 |zg1
1 )

(e)
= 2I(X; zg1

1 , zg2
2 ) (1)

where (a) results from the nondecreasing property of MI,

(b) is an application of the MI chain rule, (c) results from

submodularity (assuming that all observations are indepen-

dent conditioned on X), (d) from the definition of the greedy

heuristic, and (e) from a reverse application of the chain rule.

Thus the optimal performance can be no more than twice that

of the greedy heuristic, or, conversely, the performance of the

greedy heuristic is at least half that of the optimal.2

Theorem 1 presents this result in its most general form;

the proof directly follows the above steps. The following as-

sumption establishes the basic structure: we have N sets of

observations, and we can select a specified number of obser-

vations from each set in an arbitrary order.

Assumption 1. There are N sets of observations,
{{z1

1 , . . . , zn1
1 }, {z1

2 , . . . , zn2
2 }, . . . , {z1

N , . . . , znN

N }}, which
are mutually independent conditioned on the quantity to
be estimated (X). Any ki observations can be chosen out
of the i-th set ({z1

i , . . . , zni
i }). The observation sets are

visited using the greedy algorithm in an order specified by a
sequence (w1, . . . , wM ) where wi ∈ {1, . . . , N} ∀ i (i.e., in
the i-th stage we select a previously unselected observation
out of the wi-th set).

2Note that this is considering only open loop control; we will discuss

closed loop control in Section 3.

The abstraction of the observation set sequence

(w1, . . . , wM ) allows us to visit observation sets more than

once (allowing us to select multiple observations from each

set) and in any order. The greedy heuristic operating on this

structure is defined below, followed by the general form of

the guarantee.

Definition 2. The greedy heuristic operates according to the
following rule:

gj = arg max
u∈{1,...,nwj

}
I(X; zu

wj
|zg1

w1
, . . . , zgj−1

wj−1
)

Theorem 1. Under Assumption 1, the greedy heuristic in
Definition 2 has performance guaranteed by the following ex-
pression:

I(X; zo1
w1

, . . . , zoM
wM

) ≤ 2I(X; zg1
w1

, . . . , zgM
wM

)

where {zo1
w1

, . . . , zoM
wM

} is the optimal set of observations, i.e.,
the one which maximizes I(X; zu1

w1
, . . . , zuM

wM
) over the possi-

ble choices for {u1, . . . , uM}.

The proof of the theorem can be found in [5], where it is

also shown that the bound is tight.

2.1. Comparison to matroid guarantee

The prior work using matroids [6] provides another

algorithm with the same guarantee for problems of this

structure. However, to achieve the guarantee on matroids it

is necessary to consider every observation at every stage

of the problem. Computationally, it is far more desirable

to be able to proceed in a dynamic system by selecting

observations at time k considering only the observations

available at that time, disregarding future time steps (indeed,

countless previous works, such as [1] do just that). The

freedom of choice of the order in which we visit observation

sets in Theorem 1 extends the performance guarantee to this

commonly used sequential selection structure.

2.2. Online version of guarantee

Modifying step (c) of Eq. (1) (or the corresponding step of

the proof of Theorem 1), we can also obtain an online perfor-

mance guarantee, which will often be substantially tighter in

practice (as demonstrated in Section 2.3). The online bound

can be used to calculate an upper bound for the optimal re-

ward starting from any sequence of observation choices, not

just the choice made by the greedy heuristic in Definition 2,

(g1, . . . , gM ). The online bound will tend to be tight in cases

where the amount of information remaining after choosing

the set of observations is small.

Theorem 2. Under the same assumptions as Theorem 1, for
each i ∈ {1, . . . , N} define k̄i = min{ki, ni − ki}, and for
each j ∈ {1, . . . , k̄i} define

ḡj
i = arg max

u∈{1,...,ni}−{ḡl
i|l<j}

I(X; zu
i |zg1

w1
, . . . , zgM

wM
) (2)
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Then the following two performance guarantees, which are
computable online, apply:

I(X;zo1
w1

, . . . , zoM
wM

)
≤ I(X; zg1

w1
, . . . , zgM

wM
)

+
N∑

i=1

k̄i∑
j=1

I(X; zḡj
i

i |zg1
w1

, . . . , zgM
wM

) (3)

≤ I(X; zg1
w1

, . . . , zgM
wM

)

+
N∑

i=1

k̄iI(X; zḡ1
i

i |zg1
w1

, . . . , zgM
wM

) (4)

2.3. Example of online guarantee

Suppose that we are using a surface vehicle travelling at a con-

stant velocity along a fixed path (as illustrated in Fig. 1(a)) to

map the depth of the ocean floor in a particular region. As-

sume that, at any position on the path (such as the points de-

noted by ‘	’), we may steer our sensor to measure the depth

of any point within a given region around the current posi-

tion (as depicted by the dotted ellipses), and that we receive a

linear measurement of the depth corrupted by Gaussian noise

with variance R. Suppose that we model the depth of the

ocean floor as a Gauss-Markov random field with a 500×100
thin membrane grid model where neighboring node attrac-

tions are uniformly equal to q. One cycle of the vehicle path

takes 300 time steps to complete.

Defining the state X to be the vector containing one ele-

ment for each cell in the 500×100 grid, the problem can be

seen to fit into the structure of Assumption 1 (with wi = i and

ki = 1 ∀ i). The selection algorithm simply selects at each

stage the most informative observation conditioned on the ob-

servations previously chosen. A single observation of the cell

directly beneath the sensing platform is used as initialization

to obtain a full rank information matrix.

Fig. 1(b) shows the accrual of reward over time as well

as the bound on the optimal sequence obtained using The-

orem 2 for each time step when q = 100 and R = 1/40,

while Fig. 1(c) shows the ratio between the achieved perfor-

mance and the optimal sequence bound over time. The graph

indicates that the greedy heuristic achieves at least 0.8× the

optimal reward. The tightness of the online bound depends

on particular model characteristics: if q = R = 1, then the

guarantee ratio is much closer to the value of the offline bound

(i.e., 0.5).

2.4. Exploiting diffusiveness

In problems such as object tracking, the kinematic quantities

of interest evolve according to a diffusive process, in which

correlation between states at different time instants reduces

as the time difference increases. Intuitively, one would ex-

pect that a greedy algorithm would be closer to optimal in
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(c) Factor of optimality from online guarantee

(a) Region boundary and vehicle path

Fig. 1. (a) shows region boundary and vehicle path (counter-

clockwise, starting from the left end of the lower straight seg-

ment). When the vehicle is located at a ‘	’ mark, any one

grid element with center inside the surrounding dotted ellipse

may be measured. (b) graphs reward accrued by the greedy

heuristic after different periods of time, and the bound on the

optimal sequence for the same time period. (c) shows the

ratio of these two curves, providing the factor of optimality

guaranteed by the bound.

situations in which the diffusion strength is high. In [5], we

explore an extension of Theorems 1 and 2 which exploits dif-

fusiveness in order to obtain tighter guarantees (in the offline

form of Theorem 1, as well as in the online computable form

of Theorem 2). In the interest of space we omit details from

this presentation.

3. CLOSED LOOP CONTROL

The analysis in Sections 2 and 2.4 concentrates on an open

loop control structure, i.e., it assumes that all observation

choices are made before any observation values are received.

Greedy heuristics are often applied in a closed loop setting,

in which an observation is chosen, and then its value is

received before the next choice is made.
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The performance guarantee of Theorem 1 applies to the

expected performance of the greedy heuristic operating in a

closed loop fashion, e.g., in expectation the closed loop

greedy heuristic achieves at least half the reward of the

optimal open loop selection. We refer the reader to [5] for a

proof of this result. We emphasize that this performance

guarantee is for expected performance: it does not provide a

guarantee for the change in entropy of every sample path. An

online bound cannot be obtained on the basis of a single

realization, although online bounds can be calculated through

Monte Carlo simulation (to approximate the expectation).

There is no guarantee relating the performance of

the closed loop greedy heuristic to the optimal closed

loop controller, as the following example illustrates.

One exception to this is linear Gaussian models, where

closed loop policies can perform no better than open loop

sequences, so that the open loop guarantee extends to closed

loop performance.

Example 1. Consider the following two-stage
problem, where X = [a, b, c]T , with a ∈ {1, . . . , N},
b ∈ {1, . . . , N + 1}, and c ∈ {1, . . . , M}. The prior
distribution of each of these is uniform and independent. In
the first stage, we may measure z1

1 = a for reward log N , or
z2
1 = b for reward log(N + 1). In the second stage, we may

choose zi
2, i ∈ {1, . . . , N}, where

zi
2 =

{
c, i = a

d, otherwise

where d is independent of X , and is uniformly distributed on
{1, . . . , M}. The greedy algorithm in the first stage selects
the observation z2

1 = b, as it yields a higher reward (log(N +
1)) than z1

1 = a (log N ). At the second stage, all options have
the same reward, 1

N log M , so we choose one arbitrarily for a
total reward of log(N +1)+ 1

N log M . The optimal algorithm
in the first stage selects the observation z1

1 = a for reward
log N , followed by the observation za

2 for reward log M , for
total reward log N + log M . The ratio of the greedy reward
to the optimal reward is

log(N + 1) + 1
N log M

log N + log M
→ 1

N
, M → ∞

Hence, by choosing N and M to be large, we can obtain an
arbitrarily small ratio between the greedy closed-loop reward
and the optimal closed-loop reward.

4. GUARANTEES ON THE CRAMÉR-RAO BOUND

While the preceding discussion has focused exclusively on

mutual information, the results are applicable to a larger class

of objectives, including the log determinant of Fisher infor-

mation, from which a guarantee may be derived for the poste-

rior Cramér-Rao bound (PCRB), defined in [7]. If we denote

by CA
X the PCRB matrix (i.e., the inverse of the Fisher infor-

mation) for estimating X using the set of observations zA, the

result of Theorem 1 can be used to show that:

|CG
X | ≤ |C∅

X |
√

|CO
X |

|C∅
X |

where CG
X is the PCRB matrix for X using the observations

chosen by the greedy heuristic, and CO
X is the PCRB matrix

using the optimal choice of observations (where the objec-

tive is the determinant of the Fisher information). Again, we

defer proof of the result to [5]. The ratio |CG
X |/|C∅

X | is the

fractional reduction of uncertainty (measured through covari-

ance determinant) which is gained through using the selected

observations rather than the prior information alone. Thus

the result provides a guarantee on how much of the optimal

reduction you lose by using the greedy heuristic. The deter-

minant of the error covariance of any estimator of X using

the data zG is lower bounded by |CG
X |.

5. CONCLUSION

The performance guarantees presented in this paper provide

theoretical basis for simple heuristic algorithms that are

widely used in practice. The guarantees apply to both open

loop and closed loop operation, and are naturally tighter for

diffusive processes. Substantially stronger online guarantees

can be obtained for specific problems through computation

of additional quantities after the greedy selection has been

completed.
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