Exact MAP Activity Detection in fMRI Using a
GLM with an Ising Spatial Prior

Eric R. Cosman, Jr.!, John W. Fisher III', and William M. Wells III*+2

! Massachusetts Institute of Technology,
Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
ercosman@mit.edu, {fisher,sw}@csail.mit.edu
2 Harvard Medical School, Brigham and Women’s Hospital,
Department of Radiology, Boston, MA, USA

Abstract. Previous work [5] has shown how Ising spatial priors [I] can
be incorported into fMRI analysis in a principled manner by using Mu-
tual Information as a statistic for protocol-related activity. The activa-
tion image with maximum a posteriori (MAP) probability can then be
computed exactly in polynomial time by reduction to a Min-Cut/Max-
Flow Problem [4]. In this work, we show that an Ising prior can be applied
in the same manner using a standard, linear activation model.

1 Introduction

The functional imaging literature contains a number of methods aimed at lim-
iting false detection of protocol-related brain activity in fMRI by taking ad-
vantage of the well-known fact that adjacent regions of the brain are likely to
act in unison. These methods involve one or more of the following approaches:
noise reduction by spatial smoothing of the fMRI time-series to “average out”
spatially-white noise [2J6l8], regularization of voxel-specific activation statistics
[2J5], and/or adjustment of voxel-independent activation statistics to reflect the
size of apparent, surrounding activity clusters [6]. Specifically, [5] introduces
a Bayesian approach for regularizing voxel-specific, non-parametric activation
statistics in which an Ising spatial prior on protocol-dependent activity is inte-
grated with an information-theoretic activity detector. By reduction to a Min-
Cut/Max-Flow Problem [4], the maximum a posteriori (MAP) estimate of ac-
tivity over the whole brain can be computed ezactly in polynomial time by the
Ford-Fulkerson method. This integration hinges on the interpretation of Mutual
Information as an approximation of the log-likelihood ratio of a hypothesis test
that assesses the statistical independence of a BOLD signal and an experimental
protocol.

In this paper, we show that standard activation statistics, such as F-statistics,
are derived from the log-likelihood ratio of a subset hypothesis test under classi-
cal, linear models of the BOLD signal. Consequently, the same exact MAP activ-
ity detection mechanism can be used with such General Linear Models (GLMs),
thereby controling false positive rates in a principled, Bayesian manner.
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2 The General Linear Model

An MRI experiment produces a set of time series {y; € RT :i =1,...,V}, each
of which measures the BOLD signal over T epochs in one of the V' voxels com-
prising the imaged brain volume. Under the General Linear Model (GLM), it is
assumed that the BOLD signal is a linear combination of protocol-dependent
components (the columns of matrix H), confounding signals due to cardio-
pulmonary operations (the columns of matrix D), and Gaussian noise [8]. For
the special case of white noise, the GLM is written

y;i = Hn; + D¢ + e; e; ~ N(0,0%1) i.id. i=1,...,V (1)

where n;, €; are weight vectors on the columns of the design matriz G = [H D).
Under this model, classical activation statistics, such as the F statistic, can
be derived from the log-likelihood ratio for a two-sided, subset hypothesis test
{Hy :m; =0, Hy : m; # 0}, whereby we reject the null hypothesis (that there
is no protocol-related neural activity) with an arbitrary threshold + and the
decision rule:

maxy, ¢, -2 N(yi; Hn; + D&;,0*I) “m:
maxg; o2 N(yi; D&ia O'QI)

” v (2)

“ ”

H
Ai = > 0 (3)

Ai = log

We optimize the numerator first, stacking n;, §; into a single weight vector ;:

0= 2% log N (y;; Gy, 021)

0= d logN(yi;GCZ',a?I) 0 d (_ llo |0_21| B \\yi—Géi\lz

0= dg ||y G¢ill? do? & 2

0= L GC+ CGGe) 0= g (3loge + 5SE) Ty
0==-2Gy;+(G'G+GG)¢; (_ n _ |lui- Géill”

¢i=(G'G)'Gy 2 ly-cear™

n

By analogous optimization of the denominator, we get the following expression
for the log-likelihood ratio, in which Px = X (X’'X) !X’ (idempotent and
symmetric) denotes a projection onto the column space of a matrix X:

N(yi; GEi,630) _ (T/2me)"/? (T/2me)T/?
N(yi; D€;,62I)  ||lyi — GC||T ) ||lyi — DE||T
T y;,(I-Ppy

=—lo
2 8 y;(I — Pg)y;

A = log
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Since the F-statistic F; typically used for this test is a monotonic function of \;,
the likelihood ratio test and F-test are equivalent:

_ Yi(Pe— Pp)yi/(g—d)

y;(I — Pa)y:/(T - g)
_ (T - 9) —-y'(I - Peg)y+y'(I- Pp)y

F;

~ Fy_qr_g under Hy [7] (6)

g—d y'(I - Pg)y
Fi—g_d(exp{T}1> (7)
T g—d
= log (L% F 11
w=giox (50 1) 0

where g = rank(G) and d = rank(D). We can use Equation [§ to compute the
threshold ~, on the log-likelihood ratio A; corresponding to a test of size a (or
vice versa):

T g—d
’ya = 5 IOg (HFa;gd"T‘q + 1) (9)

Furthermore, the threshold v for the classical likelihood ratio test can be in-
terpreted in a Bayesian framework as the prior log-odds of detection. Using a
simple prior p(Hy) = 1—p(H1) on the competing hypotheses, and assuming that
parameters 0, are fixed but unknown with flat priors p(0y | Hy) o ¢, we get the
following MAP decision rule:

“ ”

H
r%3Xp(‘917H1 ly) > meaXp(%’Ho ly:) (10)
1 0

maxg, p(y; | 61, Hi) “H” log p(Ho
maxg, p(y; | 6o, Ho) p(Hy

~—

Ai = log gl (11)

~—

3 An Ising Model for Neural Activity

We are motivated to use an Ising Markov Random Field [1] as prior on assess-
ments of neural activity, by the fact that neural activity and its sequel, the
activity-dependent BOLD signal. We refer to h = hq,... ,hy as an activation
map, where h; € {0,1} is the assessment of (in)activity at voxel i, such that
h; =0 and h; = 1 correspond to hypotheses Hy and Hy, respectively, as defined
using a GLM as in Section[2. An Ising prior on the activation map h quantifies
the notion that adjacent voxels are likely to act in unison by assigning greater
probability to configurations with a greater number of homogeneous second-
order cliques (since adjacent voxels are defined to be neighboring). In this work,
we augment the prior with singleton clique potentials that penalize the total
number of voxels declared active:
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p(hl, 8) = Z(j exp Jyzh N (12)

1=1 g~

= Z0.7) exp{—y-#{hi =1} + - NHC(h)} (13)

where NHC(h) gives the number of homogeneous cliques in configuration h,
Z (7, ) is the partition function, and j ~ i denotes that voxel j is a neighbor of
voxel ¢. Conditioned on the activation map, the BOLD signals y,; are mutually
independent across voxels. Therefore, the likelihood of the data y is

%4

Y P(yil61i, hi = 1)
0o,01,h) = i60i, 01i, i) E716) 7 7 14
p(ylo, 01, h) l;[1 p(yilos, 01 gp Tor, hr = 0)h— (14)

Choosing a flat prior p(6y, 61 | h) « ¢ on the configuration of GLM parameters
under each hypothesis, and taking v and 3 as known hyperparameters, we get
the following MAP estimation criteria:

h, 00,0, = arg max log p(h, 00,61 |y, 7, 5) (15)
h 0(] 01

p yz |0117 i = 1)h‘

= arg max lo
hg90791 & H ( ‘ 902, h - 0)

T +logp(h|vy,8)  (16)

Since h; is binary-valued, it is clear from Equation that the posterior is
increased by maximizing 0y; and 6y; for each voxel independently. Therefore,
6,0, are the maximum likelihood estimates derived as in Equation ), and the
MAP estimate for the activation map is given by

h = arg maXZ ( (ylwmz:l)—’y) +5Z5(hi—hj) (17)

Yil0oi, hi = 0) g
Vv
= arg max S i =) +B8Y 6(hi—hy) (18)
i=1 inj

4 Reduction to the Minimum-Cut Problem

Since the activation map h can assume 2 values, direct search for the optimal
configuration h is computationally intractible. However, Greig et al. [4] showed
that the search can be reduced to the Minimum-Cut/Maximum-Flow Network
Problem, which can be solved in polynomial time by the Ford-Fulkerson method
(or Preflow Push algorithms). We review this reduction with minor modifica-
tion. Construct a capacitated network with V42 vertices, comprising i=1, ... ,V
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voxels, a source s, and a sink ¢. Let the graph have the following edges and cor-
responding capacities:

(s,1) Coi = N — 7 if \yj—y>0
(Zvj) and (Za]) Cij = Cji = ﬂ if 1 N]

For any activation map h, let A={s}U{i:h; =1} and I = {t} U {i: h; =0}
define a two-set partition of the network verticies. The set of edges with a vertex
in A and a vertex in I is called a cut, and its capacity C(h) can be written as
follows:

C(h) = Z Z Ckl (20)

keA lel

1%
= [ himax(0,y =)+ (1= h;)max(0, A\ =) +B8Y 1=d(h;—h;) | (21)

i~]

This expression differs from the log-posterior log p(h,éo,éﬂy,%ﬂ) (Equation
I8) by a term which does not depend on h. Therefore, the MAP esimation is
equivalent to finding the minimum cut in the network. Voxels are active in MAP
estimate if they are on the source size of the minimum cut. Otherwise, they are
inactive.

5 Experiments

Figure [l| shows the effect of varying the strength (G of the spatial prior, for
a given threshold 7,. Activation maps are shown overlaying two axial slices
(at the level of the Sylvian fissure) from a word-association task, where the
strength of a spatial prior g = 0,0.5, 1,2, 3 increases from left to right. A simple
GLM was used in which H is an encoding of the protocol, and the confounder
subspace is empty D = 0. The equivalent test size for the threshold 7, is a =
1 x 1077. For each f3, voxels declared active in the MAP activation map are
colored white. The fMRI data were not pre-processed or pre-smoothed, so that
the effect of the spatial prior could be observed in isolation. Figures2 and [3 show
how the running time for MAP estimation varies with the hyperparameters.
The estimation was performed with a MATLAB implementation of the Ford-
Fulkerson method. Specificially, we implemented the Edmonds-Karp algorithm,
using depth-limited, depth-first search to find the shortest, feasible augmenting
paths). The MRI was aquired during a motor and auditory protocol and contains
V = 23187 voxels.

Figure ] shows how running time increases with the threshold «, which
we varied such that the number of above-threshold voxels N = size(4) =
100, 250, 1000 across runs. We also varied 8 = 1,2, 3 for each setting of -, which
respectively corresponded to classical tests of size @ = 6 x 107193 x 1077,6 x
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Fig. 1. Activation maps overlay two axial slices (at the level of the Sylvian fissure) from
a word-association task, where the strength of a spatial prior g = 0,0.5, 1, 2, 3 increases
from left to right, and the equivalent test size for the threshold 4 is & =1 x 1077.

1072, For this and other datasets, the running time varied approximately lin-
early with NV over this range. This is related to the fact that the Ford-Fulkerson
method proceeds by sequentially augmenting feasible paths (i.e. those which can
accomodate more flow) from the source s to the the sink ¢. Since the number of
above-threshold voxels N (typically small relative to the total number of voxels)
determines the number of edges emanating from the source s, the number of
augmenting steps is roughly proportional to V.

Figure [3] shows that the same running time data varies roughly linearly as a
function of § = 1,2,3. Again, this was typical over a number of fMRI datasets.
Naturally, for increasing 3, the network capacity increases monotonically, and
with it, the number of long-range interactions and flow-augmenting steps.

6 Discussion

Inspection of the reduction in Section [ clarifies the relationship between classi-
cal, voxel-independent fMRI analysis, and Bayesian analysis with an Ising prior.
In both approaches, the log-likelihood ratio A; is computed at each voxel in-
dependently. Furthermore, in the Bayesian approach, voxels are initially parti-
tioned into sets A and I (Active and Inactive) according to the decision rule
Ai — > 0, which is equivalent to that from the classical likelihood ratio test.
Therefore, MAP estimation proceeds by first partitioning the data according to
the classical, likelihood-ratio test, decision rule with threshold -, and then ad-
justing the partition to account for the Ising prior. Moreover, the hyperparameter
~ has a number of interpretations: (1) as a penalty for declaring a voxel active,
(2) as corresponding to the size « of the classical, voxel-independent test, and
(3) as the prior log-odds of detection in a simple, voxel-independent, Bayesian
framework.
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Fig. 2. Running Time as a function of the number of above-threshold voxels N =
size(A) = 100, 250, 1000, for 5 =1,2,3
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Fig. 3. Running Time as a function of strength of the Ising prior § = 1,2,3, for
N = size(A) = 100, 250, 1000

The results of varying 3 (Figure[d]) highlight the fact that the application of
the Ising spatial prior is not simply a statistically-principled erosion operation.
With increasing 3, voxels which might be rejected at level « in a classical, voxel-
independent test, may be declared active due to their proximity to other strongly
active voxels. Of course, since the theshold typically exceeds the log-likelihood
of most voxels, the primary effect of the Ising prior is to control the number of
false detections by removing spatially-isolated activations.
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Estimation of hyperparameters v and [ is complicated by the absence of
ground truth activation maps. The MCMC-ML sampling approach of [3] could
be adapted (in part) to find ML estimates of these hyperparameters using exact
MAP estimates of the activation maps. However, the computational expense
of such an approach is restrictive, as evaluation of optimality for each setting
of (v,0) involves running a min-cut computation and an MCMC simulation.
Therefore, choice of optimal hyperparameters remains an open issue.

Finally, we note some possible extensions to this work. First, other classical
activation statistics, such as the t-statistics, can also be derived from a likelihood
ratio test and can thus be integrated into this framework. Furthermore, one
can employ more specialized neighborhoods and clique potentials than we have
shown. For instance, the coefficient 3;; might vary spatially according to prior
beliefs about differences in regularity within and across anatomical boundaries
derived from co-registered segmentations.
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