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Abstract

We propose a principled framework to model persistent
motion in dynamic scenes. In contrast to previous efforts
on object tracking and optical flow estimation that focus on
local motion, we primarily aim at inferring a global model
of persistent and collective dynamics. With this in mind, we
first introduce the concept of geometric flow that describes
motion simultaneously over space and time, and derive a
vector space representation based on Lie algebra. We then
extend it to model complex motion by combining multiple
flows in a geometrically consistent manner. Taking advan-
tage of the linear nature of this representation, we formulate
a stochastic flow model, and incorporate a Gaussian pro-
cess to capture the spatial coherence more effectively. This
model leads to an efficient and robust algorithm that can
integrate both point pairs and frame differences in motion
estimation. We conducted experiments on different types of
videos. The results clearly demonstrate that the proposed
approach is effective in modeling persistent motion.

1. Introduction
Modeling and analysis of motion patterns in video is an

important topic in computer vision. While extensive efforts
have been devoted the problem of local motion estimation,
such as tracking individual objects or estimating the optical
flow between two consecutive frames, research on model-
ing persistent motion patterns has received less attention.
Persistent motions are ubiquitous. In many applications,
such as scene understanding and crowd surveillance, one
is primarily interested in collective and persistent motion
patterns rather than the motions associated with individual
entities. Figure 1 depicts the frames in three different video
sequences. In such scenes, characterizations such as the ve-
hicles are moving towards bottom right corner with a slight
rotation and the athletes are running along a circular path
are more pertinent than the velocities of individual objects.

In modeling persistent motion, our primary goal is to in-
fer a global model of collective behavior over space and
time. Whereas we can extract persistent motions base on

Figure 1. This figure shows the frames respectively captured in
three different dynamic scenes that exhibit obvious persistent mo-
tion patterns: the flow of water in a spring, cars running on a high
way, and athletes running along a circular path.

trajectories or optical flow fields using existing local esti-
mation techniques, this approach is challenged by various
practical difficulties as we discuss in section 2. In addi-
tion, current methods do not provide a natural mechanism
for aggregating potentially sparse observations over space
and time into a collective model. This arises from their nar-
row focus on temporally and spatially local motion (e.g. the
velocity of a particular object or at a particular time). While
enforcing smoothness may be useful in reducing the esti-
mation error of local motion, it doesn’t help to truly capture
the global motion patterns. In this paper, we address this
problem by exploring a new methodology under the notion
of geometric flows. It allows the incorporation of observed
motions that may be separated spatially and temporally into
a globally consistent model. Moreover, this model can be
efficiently and robustly estimated without explicit reliance
on continuous tracking or optical flow estimation.

For introducing a new representation, we first review two
conventional ways to describe motion. The first is to repre-
sent the motion of an object by its trajectory, that is, over
a narrow path through space and time. Alternately, one
might use a geometric transform to describe how a region
deforms at a particular instance of time. While this cap-
tures the common behavior of an entire region, it only does
so over a small temporal window. This motivates the need
to establish a temporally and spatially global representation
that unifies trajectories and geometric transforms. Conse-



quently, we introduce the notion of geometric flow, which
characterizes a motion pattern as both a collection of trajec-
tories driven by common rules and a continuous geometric
transform process.

The geometric flow originates from the concept of flow
in differential geometry. It describes motion as a continu-
ous geometric transform constrained by global consistency.
Each family of geometric flows is associated with a Lie al-
gebra, i.e. a vector space comprised of the infinitesimal gen-
erators of the flows, and each geometric flow can be param-
eterized by a vector in this space. A Lie algebraic represen-
tation allows decomposing a flow into a linear combination
of base flows, thus greatly simplifying statistical estimation.
Furthermore, we extend this representation to describe com-
plex flows using triangle mesh and derive a consistent sub-
space of the joint Lie algebra to preserve the consistency
between the flows associated with adjacent triangle cells.

With the Lie algebraic representation, learning persistent
motion patterns reduces to linear coefficient estimation. In
particular, we estimate the coefficients by integrating two
types of observations: point pairs and frame sequences.
Here, point pairs are extracted by associating SIFT feature
points between two consecutive frames. Additionally, we
directly utilize frame-to-frame differences by taking advan-
tage of the linear isomorphism between the flow space and
the space of frame differences, without the need to explicitly
solve for optical flows. Taking observation errors into ac-
count, we formulate a generative stochastic model of flows,
and incorporate a Gaussian process as a prior on the flow
parameters so as to capture the global coherence more ef-
fectively. The stochastic formulation is then generalized to
admit multiple concurrent flows through an MRF.

The main contributions are summarized as follows:
(1) we introduce geometric flow to model persistent mo-
tions that unifies trajectories and geometric transforms
through their intrinsic connections, (2) we derive a Lie al-
gebraic representation that simplifies the modeling of flows,
and (3) we formulate a stochastic model that integrates dif-
ferent types of observations for robust motion estimation.

2. Related Work
Existing work on motion analysis can be roughly cate-

gorized into two groups. The first group [4, 7, 19] relies
on tracking of individual objects. The set of trajectories de-
rived from the tracking algorithm are then used to construct
a statistical model enabling further motion analysis. De-
spite extensive efforts [13, 20] such analysis under difficult
conditions (e.g. crowded scenes, low-resolution) remains
challenging for lack of reliable and persistent multi-object
tracking algorithms. Errors in track association are common
and can bias results. The second group are based on anal-
ysis of dense maps of optical flow [1, 16, 17, 18]. These
methods suffer due to the sensitivity of optical flow estima-

tion to occlusions, noise, and varying illumination. Again,
for complex scenes, state-of-the-art methods [6, 12, 14] are
challenged to attain reliable estimates in practice.

The work presented in this paper is distinguished from
both tracking and optical flow estimation in two aspects:
(1) Our work targets a different goal, that of deriving gener-
alizable motion patterns that capture the underlying regular-
ities over space and time, while previous work mainly focus
on accurate estimation of local velocities (e.g. the velocity
of individual objects or points at a particular time). (2) Our
framework has a global parametric model in its heart that
allows spatially and temporally separated observations be
incorporated into the estimation of motion models, while
in most previous work, only local information is utilized in
estimating each velocity.

Recently, there have been some efforts devoted to ex-
ploiting global motion patterns. Ali and Shah [2] proposed
a force field model for tracking individuals in crowded
scenes. Jacobs et al [8] proposed a method to learn location-
specific prior to assist object tracking. While global motion
patterns were explored in these papers, they used these pat-
terns to help tracking individuals rather than taking them
as the main subject of modeling. Moreover, the models of
global patterns were tailored to specific applications, and it
is unclear whether they can be generalized to other cases.
In contrast, our approach is a generic methodology, which
can be readily applied to a broad range of scenarios.

The most relevant work to this paper is our earlier work
in [10], which proposed to use Lie algebra for motion mod-
eling. However, the framework has been substantially ex-
tended in this paper. The differences lie in two aspects:
(1) The representation of geometric flow in this paper is
based on the decomposition of the infinitesimal generators,
which is very general and can be applied to modeling vir-
tually any continuous flows. In comparison, [10] relies on
a particular form of matrix parameterization, restricting its
application to affine fields. (2) We explore the intrinsic re-
lation between flows and image sequences that it generate.
Using this relation, we derive a method that can directly es-
timate flows by decomposing the image differences without
the need of making point correspondence. Instead, [10] em-
ploys a tracker to acquire short-time tracks as input.

3. Theory of Geometric Flow
In this section, we first discuss the concept of geometric

flow, including its connections with trajectories, geometric
transforms and velocity fields. We then construct a Lie al-
gebraic representation based on the infinitesimal generators
of a flow and further extend it to multiple flows combined
in a geometrically consistent way.

There are two primary representations used for motion
description. Trajectory-based descriptions, often used in
person or vehicle tracking systems, collect the kinematic



Figure 2. Conceptually, a flow can be obtained in either of the fol-
lowing two ways: (1) By inspecting the full motion of a collection
of points whose initial locations differ, we get a set of trajecto-
ries, or (2) By integrating the geometric transforms terminating at
different times t, we get a continuous transform process, which de-
scribes how the region changes over time. In this sense, geometric
flows unify trajectory sets and continuous geometric transforms.
Conversely, from a flow one can derive the trajectory starting at
x, defined by F (x)(t) := F (x, t) or a geometric transform termi-
nated at time t, defined by Ft(x) := F (x, t).

state of an individual object over time, typically indepen-
dent of other objects in the scene. Geometric transforms,
often used in object alignment and image registration ap-
plications, describe the transformation of points over an en-
tire region. Whereas trajectory representations describe the
motion of a single point over a long time duration, geomet-
ric transforms describe the motion of all points over a spa-
tial region, but only over a short time window. While use-
ful for many applications, by themselves they are lacking
when used for modeling persistent flows as neither simulta-
neously describes motion over both space and time.

To develop a methodology for inferring global motion
patterns over space and time, we unify the descriptions
above in a function F that governs the motion of each point
in a region over time. Given the initial position x and time
duration t, F yields the location of the point at time t. Math-
ematically, a geometric flow must satisfy two identities:

F (x, 0) = x. (1)

F (F (x, t1), t2) = F (x, t1 + t2). (2)

Eq.(1) simply states that at time t = 0 the point is at its
initial position while Eq.(2) states that the geometric flow
is associative, i.e. that a point moving along the flow for
time t1 and then for time t2 is equivalent to moving for time
t1 + t2. Note that t can be negative, allowing “backward
tracing”. Figure 2 illustrates a geometric flow and its con-
nections with trajectories and geometric transforms.

3.1. Flow and Velocity Field

Consider a point driven by a geometric flow F that starts
at y and suppose it passes x at time t, i.e. F (y)(t) = x.

The velocity of the point at t can be obtained by taking
the derivative of F (y). A geometric flow has an impor-
tant property with regards to velocity: Given any x in the
flow domain, any point driven by the flow passes through
x with the same velocity independent of its initial location.
The property implies that each geometric flow F induces a
time-invariant velocity field, denoted by VF , which can be
expressed by

∂F (x, t)

∂t
= VF (F (x, t)). (3)

Alternately, given a velocity field VF , one can reconstruct
the flow F by solving the differential equation in Eq.(3).
This is equivalent to the process of generating the trajecto-
ries with the velocities specified by VF . The Fundamental
Theorem of Flows [9] states that under mild conditions, each
velocity field induces a unique geometric flow.

3.2. Lie Algebraic Representation

The notion of geometric flow leads naturally to a Lie al-
gebraic representation. Consider a transform F∆t derived
from a flow F . As it induces motion in each point along
the velocity given by VF (x), we have F∆t(x) ' TV,∆t :=
x + VF (x)∆t, when the time interval ∆t is sufficiently
small. Due to the associativity in Eq.(2), we can express
each derived transform Ft as a composition of many short
time transforms as Ft = F∆t ◦ · · · ◦ F∆t. Taking the limit
as ∆t→ 0 results in the following equation:

Ft = lim
N→∞

(TVF ,
t
N

)N . (4)

This central result in Lie algebra theory connects geometric
transforms to the driving velocity field. Intuitively, it re-
flects the observation that a geometric transform is formed
by accumulating the small changes due to the underlying
velocity field. Hence, the velocity field VF is often called
the infinitesimal generator.

Let G be a transformation group, the set of all infinites-
imal generators of the transforms in G constitutes a vector
space, called the Lie algebra associated with G, denoted by
Lie(G). As each infinitesimal generator induces a geomet-
ric flow, Lie(G) gives rise to a family of geometric flows,
of which the induced transforms all lie in G.

Suppose Lie(G) is an L-dimensional vector space.
Given a basis (E1, . . . , EL), the infinitesimal generator of
each flow in the corresponding family can be decomposed
into a linear combination of the basis and uniquely charac-
terized by a coefficient vector α = [α1, . . . , αL]T , as

VF =

L∑
l=1

αlEl. (5)

The vector α is called the Lie algebraic representation of
the flow F with respect to the given basis and describes the
F as a combination of basic motion patterns.



A Lie algebraic representation has two advantages: (1)
The functional form F of a geometric flow is in general
nonlinear. As many statistical models presume an under-
lying vector space, this complicates a statistical model of
flows. Exploiting the linear nature of the infinitesimal gen-
erator, the Lie algebraic representation largely overcomes
such difficulties. (2) Geometric constraints of a flow which
typically restrict the induced transforms to a particular sub-
group are often nonlinear in functional form. Such con-
straints become linear with the Lie algebraic representation
as each subgroup of transforms is described by a linear sub-
space of the Lie algebra.

3.3. Flow Stitching and Consistent Subspace

We extend the Lie algebraic representation via flow
stitching in order to model the complex motion patterns one
observes in natural scenes. Specifically, we partition the
scene using a triangle mesh with m cells and n vertices,
and attach each cell with a flow from a basic flow family.
Collectively, the local flows defined within each mesh ele-
ment form a global flow. It can be shown that, in the limit
of a large number of mesh elements, such a representation
can describe all diffeomorphic flows.

Suppose the basic flow family is associated with a
K-dimensional Lie algebra, with a basis (B1, . . . , BK).
Then the local flow of the i-th cell can be represented
by a K-dimensional Lie algebraic representation βi =
[β1
i , . . . , β

K
i ]T . Thus, the velocity field induced by this lo-

cal flow is given by VFi
(x) =

∑K
k=1 β

k
i Bk(x).

Local flows may generate different velocities at shared
vertices, however, consistency across mesh elements can
be imposed by an additional subspace constraint as we de-
scribe here. Consider a vertex x shared by the i-th and j-th
cells. In general, VFi

(x) may not equal VFj
(x), leading to

discontinuities at a cell boundary. To avoid such inconsis-
tencies, we require that the local flows yield the same ve-
locities at shared vertices, i.e. VFi(x) = VFj (x), resulting
in the consistency constraints of the local coefficients as

K∑
k=1

(βki − βkj )Bk(x) = 0. (6)

As the consistency constraints are linear, they give rise to a
subspace of the joint Lie algebra, called the consistent sub-
space. In general, its dimension dC in depends on the
choice of both the basic flow family and the mesh topology.

4. Stochastic Model Estimation
With the Lie algebraic representation, the estimation of a

geometric flow F naturally reduces to the estimation of the
coefficients of its infinitesimal generator VF with respect
to a given set of basis (E1, . . . , EL). This also simplifies

incorporating a motion prior. In the following, we present
a robust and efficient algorithm to estimate the flows from
noisy observations. We first discuss the generative model
of observations and the prior model of geometric flows, re-
spectively. Subsequently, we combine these two parts to
derive a joint model for flow estimation.

4.1. Generative Model of Observations

Consider a geometric flow F , whose infinitesimal gen-
erator is VF =

∑L
l=1 α

lEl. We model the position of a
point at time t by a random variableXt and add a Brownian
motion Bt to model noisy deviations arising in real scenes.
This leads to the stochastic flow as

FG : dXt = VF (Xt)dt+ GdBt. (7)

Here, G is a coefficient matrix. Let xt be a sample trajec-
tory of the stochastic process FG, whose position at time t
is known. Then, if |∆t| is sufficiently small, we have

p(xt+∆t|xt) ∼ N (xt + VF (xt)∆t,ΣG|∆t|), (8)

where N denotes the Gaussian distribution, and ΣG =
GGT . Note that while the geometric flow model is global,
it can be efficiently estimated based on a collection of local
observations extracted over the entire scene. In this paper,
we utilize two types of observations, as described below.

1. Point pairs. We first extract SIFT feature points[11]
in each frame, and then establish the correspondence be-
tween the feature points in consecutive frames by compar-
ing their descriptors. Each pair of the positions of matched
points is called a point pair. Following Eq.(8), we derive the
generative likelihood of a point pair (x,x′) based on FG as

p((x,x′)|FG) = N

(
x′ − x

∣∣∣∣∣
L∑
l=1

αlEl(x),ΣG∆t+ Σs

)
.

(9)
where ∆t is the time interval between consecutive frames,
and Σs is the covariance matrix of measurement noise.

2. Image sequences: Each image sequence is denoted
by IS = (It0 , . . . , ItJ ), where Iti is the frame captured at
time ti. As the stochastic flow is a Markov process, we have

p(IS |FG) =

J∏
j=1

p(Itj |Itj−1 ;FG). (10)

Assuming that observed pixels are independent conditioned
on the previous frame, we get

p(Itj |Itj−1 ;FG) =
∏

x∈DI

p(Itj (x)|Itj−1 ;FG). (11)

Here Itj (x) is the pixel value of Itj at location x, and
DI is the set of all observed pixel locations in the flow



Figure 3. Each pixel in current frame is modeled as generated by
moving a source pixel along the flow to current position. To get
its distribution, we first trace the pixel backward along the flow to
obtain the distribution of source point location, and then map it to
the distribution of pixel values through the image. The additional
term σ2

p is to capture the measurement noise of pixel values.

domain. Through back tracing (see Figure 3), we obtain
p(Itj (x)|Itj−1 ;FG) = N (Itj−1(x)− µx, σ

2
x), with

µx = ∇Itj−1
(x)TVF (x)∆t, (12)

σ2
x = ∇Itj−1(x)TΣG∇Itj−1(x)∆t+ σ2

p. (13)

Note here that Eq.(13) suppresses the influence of the pix-
els with high contrast neighborhood. Using this result to-
gether with Lie algebraic representation, we can further ex-
pand each factor in Eq.(11) as

p(Itj (x)|Itj−1
;FG) =

N

(
Itj (x)− Itj−1

(x)

∣∣∣∣∣−
L∑
l=1

αlµ(l)
x , σ2

x

)
. (14)

Here, µ(l)
x = ∇Itj−1(x)TEl(x)∆t. Point pairs and image

sequences are complementary in flow estimation. While the
changes in smoothly varying region can be reliably captured
by pixel differences, the motion in high contrast area can
be more effectively captured by the point pairs that are ex-
tracted using SIFT detectors.

4.2. Gaussian Process Prior

Persistent flows in natural scenes exhibit complex yet
spatially coherent variations. Effective modeling of such
flows requires a fine-grained mesh that may compromise the
spatial coherence. Consequently, we incorporate a Gaussian
process (GP) [15] as a prior on flows to enforce long-range
spatial coherence while retaining modeling flexibility.

Let ci be the circumcenter of the i-th cell, and βi =
[β1
i , . . . , β

K
i ]T be the associated local Lie algebraic repre-

sentation. The covariance function is defined over the local
representations, such that

cov(βki , β
k
j ) = σ2

β exp

(
−1

2

||ci − cj ||2

σ2
gp

)
. (15)

Figure 4. This graphical model incorporates the generative likeli-
hood of each observation (discussed in section 4.1) and the GP-
prior of the flows (discussed in section 4.2). In addition, each
observation entry is associated with a label variable zi and an in-
lier indicator gi. The label variables are connected to each other
through an MRF, while the distribution of gi is specified by a con-
fidence value ci, i.e. the prior probability of gi = 1.

This leads to a Gaussian prior N (0,Gβ) of the concate-
nated local representation, in which Gβ is an mK × mK
matrix. Recall that under consistency constraints, we can
write β = Uα with a dC-dimensional coefficient vector α.
Hence, the GP-prior of a consistently stitched flow can be
further derived as p(α) = N

(
0, (UTG−1

β U)−1
)

.

4.3. Robust Estimation of Concurrent Flows

From Eq.(9) and (14), we see that the likelihood of both
point pairs and image sequences has a similar form, in
spite of their different generation processes. We can write
them uniformly as products of N (yi|Eiα,Σi). The triple
(yi,Ei,Σi) is called an observation entry.

Multiple coexisting flows are common in natural scenes.
Consequently, we need not only estimate each individual
flow, but also determine its spatial domains. In doing so, we
model the scene with M flow models, including a “back-
ground flow” with its Lie algebraic representation fixed to
zero. In addition, we associate each observation entry with a
hidden variable zi for assigning that observation to a partic-
ular flow. An MRF among zi is incorporated to encourage
assigning the same label to observations that are spatially
closed to each other. Moreover, the errors due to mismatch
of point pairs or the gradient computed across sharp bound-
ary may severely bias estimation results. Therefore, we in-
corporate a binary variable gi for each observation entry,
which indicates whether the observation is an inlier.

The graphical model of the joint probabilistic framework
is shown in figure 4. The estimation is done via variational
EM based on a mean-field approximation of the posteriori.
The algorithm iteratively re-estimates the flow coefficients



using the relabeled observation entries, re-assigns each ob-
servation to the updated models, and updates the inlier prob-
abilities. Graphcut[5] is used for re-labeling in the varia-
tional E-steps.

5. Experiments

In contrast to much of the prior work on motion analysis
where accurate estimation of local velocities is the major
concern, this paper aims at discovering the persistent pat-
terns. Hence, the capability of being generalized to model
unseen frames is an important aspect to examine. To test
this ability, we conducted experiments on videos from Dyn-
Tex database [3] and UCF Crowd Analysis database [1].
These videos represent a wide spectrum of dynamic scenes.

5.1. Experiment Settings

We use consistently stitched flows to model the motion
patterns in each video. Each flow is established on a triangle
mesh that covers the entire scene and parameterized by the
Lie algebraic representation. To generate the triangle mesh,
we first make a rectangle mesh with 5 rows and 6 columns,
and divide each rectangle cell into two triangles. Affine flow
family is chosen as the basic flow family for describing the
motion within each cell. This family is associated with a
6-dimensional Lie algebra. While we found that this setting
suffices to obtain good results on the testing videos, gener-
ally there is no restriction to the choice of basic flow family
and mesh topology. One can also use other flow families
with our framework to model more complex motion. The
representation dimension (the dimension of the consistent
subspace) is L = 84, which is much smaller than that of the
dense velocity map. In addition, we use GP-Prior to enforce
long-range spatial coherence, where σgp is set to 100.

We use multiple concurrent flows to model a dynamic
scene, including one that corresponds to the static back-
ground. The number of flows in each scene is given. To
initialize the algorithm, we manually specify a “seed area”
for each flow, and the observations contained in these areas
are used to estimate the initial flow models. Besides, we
set the prior confidence of inlier to 0.9 for each observa-
tion entry. Flow segmentation, inlier probabilities, and flow
models are then iteratively updated until convergence.

To compare our approach with traditional local motion
estimation methods, we implement an optical flow estima-
tion algorithm with multi-scale search and local smooth-
ness. Moreover, we adapt the algorithm to incorporate mul-
tiple frames in estimation for fair comparison. This is ac-
complished by assuming a time-invariant velocity v at each
location, and integrating the term ||∂I∂t + vT∇I||2 for every
pair of consecutive frames into the objective function. The
design parameters of the optical flow, including the local
search range and the coefficients in the smoothness terms,

are optimized by cross validation.

5.2. Collective Behavior of Moving Objects

The algorithms are first evaluated on the scenes that com-
prise groups of moving objects, such as people and vehicles.
To test the generalization performance, for each video, we
first manually trace 20 trajectories, whose nominal dura-
tion is 100 frames, as ground truth, and then use the first
20 frames to estimate the motion models. These models
are then used to simulate the trajectories starting from the
initial positions as those in the manually traced ones. The
performance is measured by the deviation of the simulated
trajectories from the ground truth.

Figure 5 shows the results. The results shown in the first
row are obtained on a scene with cars moving along a high
way. We see that the optical flow is over-fitted to the short-
time behavior of individual cars: (1) it only extracts mo-
tion in the places where cars are passing by during first 20
frames; (2) the velocity map lacks spatial coherence. For
the same example, geometric flow accurately capture the
collective behavior of the cars, while preserving spatial co-
herence. Note that the subtle variation of the moving direc-
tion of the cars is precisely captured in the flow model.

We also evaluate the trajectory prediction performance,
observing that the predicted trajectories simulated on the
optical flow field quickly deviate from the ground truth;
while the ones yielded by geometric flow are much more
accurate. The plotted error curves indicate that the average
deviation due to the optical flow is more than 8 times larger
than that due to the geometric flow.

The second row shows the scene with a crowded group
of athletes running along a circular path. Similar observa-
tions are obtained in this example. Again, due to its local
focus, the motion field produced by optical flow lacks spa-
tial coherence and doesn’t generalize well, while geometric
flow yields much better generalization performance.

5.3. Continuous Motion Patterns

The tests are also done on modeling continuous motion
patterns, such as flowing water and deforming objects. In
Figure 6, the first column shows a mountain spring com-
prised of several sections with different motion patterns. To
model this spring, we use four concurrent flows. The second
column shows a disc rotating in a very high speed, whose
appearance is severely blurred. The water transparency and
the blurred texture on the disc lead to great challenges for
motion estimation. In the face of such difficulties, optical
flow performs poorly, resulting in meaningless motion pat-
terns. Nonetheless, the geometric flow still works well. The
subtle variation of the water flowing direction is precisely
modeled while the spatial coherence is well preserved. The
rotation of the disc in the right column is also successfully
captured by the geometric flow.



Figure 5. The first row shows the scene with cars moving on a high way; the second row shows a group of athletes running along a circular
path. In each row, from left to right, the first two pictures show the results obtained using optical flow and geometric flow respectively. The
estimated motion patterns are visualized as velocity fields. The third picture shows a subset of the trajectories predicted by the models.
The blue curves are those yielded by geometric flow, while the red ones are yielded by optical flow. The ground-truth trajectories are also
shown, which are in green color. The fourth picture compares the trajectory-prediction errors quantitatively.
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Figure 6. In this figure, the first column shows the results obtained
on modeling the flowing water in a mountain spring. The second
column shows that on a rotating disc. The bottom row are two
charts, giving the average fitting errors and generalization errors
obtained from the corresponding example.

As there are no discrete targets that can be tracked in
these scenes, we use frame prediction to measure the per-
formance. Concretely, we generate the frames from their
preceding frames based on the predicted motion, which are
then compared with the actual frames, in terms of average
pixel-wise frame prediction error. The performance is mea-

Figure 7. The trajectory prediction errors with different types of
observations. The left and right charts are respectively obtained
from the scene with moving cars and that with running athletes.

sured respectively for training frames and testing frames,
which respectively reflect the fitting accuracy and general-
ization performance. We see that while the geometric flows
fit slightly less accurately to the training frames, their gen-
eralize remarkably better than the optical flow.

5.4. The Roles of Different Factors

Observations: To study how the use of different observa-
tions affects the performance, we test three settings: (1)
only using image frames, (2) only using SIFT pairs, and
(3) using both. Figure 7 compares the trajectory predic-
tion errors under these settings, as well as that due to opti-
cal flow estimation. The results show that these two types
of observations have relative strength in different scenes.
Point pairs perform better in the scenes with structured ap-
pearance where they can be accurately located; while pixel
differences are more reliable for the scenes with smooth
textures. However, in either case, the combination of both
leads to further improvement, which reflects their comple-
mentary nature.
GP-Priors: We test the framework with different values of
σgp to study how GP-prior influences the estimation. In Fig-



Figure 8. The figure shows the motion patterns of the bottom-right part of the mountain spring estimated under different settings. From left
to right, the results are obtained by optical flow, geometric flows with σgp set to 0, 100, and 10000 respectively.

ure 8, we see that the motion pattern becomes more coherent
as σgp increases. When σgp approaches infinity, local flow
of every cell is restricted to be the same, resulting in a uni-
formly affine field. When σgp approaches zero, long-range
consistency is no longer enforced. While the result obtained
under this setting is less coherent than that with GP utilized,
it still preserves the coherence within each cell and the con-
sistency between neighboring cells, and thus is better than
that of the optical flow.
Training Frames: In general, for both geometric flows and
optical flows, the generalization performance increases as
one uses more frames to estimate the model. However, own-
ing to its intrinsic geometric structure, geometric flows can
reliably capture the underlying motion patterns with much
less training frames, while for optical flow, it requires one
third of the entire sequence as training frames to achieve
comparable generalization performance.

6. Conclusion

We developed a new model of persistent motion based
on geometric flow that establishes a global perspective of
the dynamics, and introduced the Lie algebraic representa-
tion that simplifies the model estimation. The comparative
experiments conducted on a variety of dynamic scenes show
that the presented approach achieve remarkably better gen-
eralization performance than optical flow estimation.
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