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Abstract—We consider the problem of detecting and localizing a
material release utilizing sparse sensor measurements and formu-
late the problem as one of abrupt change detection. Methods which
rely on single-sensor detection require dense deployment to achieve
adequate coverage; costly sensors preclude such approaches. Fur-
thermore, localization requires the fusion of multiple sensor mea-
surements. Fusion in sparse sensor configurations is dependent on
the knowledge of the dynamics of particle dispersion, which is,
itself, problematic due to the inherent randomness on the wind
field. We consider the efficacy of using an approximate dynamic
model with coarse parameter estimates for the detection and lo-
calization of material releases. Specifically, we consider propaga-
tion models consisting of diffusion plus transport according to a
Gaussian dispersion model. Assuming a known wind field, uncon-
strained intersensor communication, and a centralized processor,
we derive optimal inference algorithms and provide a hybrid detec-
tion-localization hypothesis-testing framework with linear growth
in the hypothesis space. We then analyze the probability of detec-
tion, time-to-detection, and localization performance as a function
of the number of sensors. Furthermore, we examine the impact on
performance when the underlying dynamical model deviates from
the assumed model. This detailed analysis provides the basis for
the design of more sophisticated algorithms for 1) performing ro-
bust detection followed by refined nonlinear parameter estimation
which provides enhanced localization, and 2) distributed architec-
tures aimed at conserving communication resources in which de-
tections within local clusters are used to trigger more intensive in-
tercluster communication to improve detection and localization.

Index Terms—Distributed detection, localization, sensor net-
works.

I. INTRODUCTION

WE consider the problem of detecting and localizing a ma-
terial release utilizing sparse sensor measurements and

cast the problem as one of abrupt change detection. The under-
lying objective is one which appears in a variety of applications.
In any distributed sensor network application, questions arise as
to how the network should be configured to monitor the given
environment as well as how the sensor measurements should be
combined in an informative manner. In addition, as the number
of sensors increase with the size of the region being monitored,
one needs to address how to distribute computation and reduce
costly communication.

It is frequently the case that only a sparse set of sensors can
be deployed to monitor an area. Typically, these sensors are sen-
sitive to local regions and as such yield only a myopic view of
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the environment when used in isolation. These issues compli-
cate the monitoring problem and impact the ability to rapidly
detect releases. However, by exploiting a dynamic model it is
possible to combine measurements from several sensors so as
to improve detection, time-to-detection, and localization beyond
that obtained using a single sensor.

As our goal is primarily detection and localization, we do not
attempt to model the full complexity of the system dynamics.
Instead, we strive to model only as much of the physics as is
necessary to achieve reasonable performance. We use coarse ap-
proximations to the true system parameters to derive optimal
inference algorithms assuming this parametrization is accurate
and then utilize the sensor measurements to provide enhanced
estimation of these parameters. In our simulation experiments,
we characterize the performance for a set of sensor configura-
tions and analyze how much deviation from the assumed coarse
model can be tolerated without detrimental effects to our per-
formance criteria. This analysis imparts a method for assessing
how accurately we need to know the parameter set for initial
detection. We use the initial detection as a trigger for refined
nonlinear parameter estimation with the goal of enhanced lo-
calization performance.

Additionally, our analysis provides the foundation for a dis-
tributed architecture in which clusters of sensors perform op-
timal local fusion to monitor subregions. Local processing of
subregions is then aggregated across clusters in order to mon-
itor a wider geographic region. However, this costly communi-
cation between sensor clusters only occurs after a local detec-
tion rather than at every time step as in the centralized version
of the inference algorithm. Because missed detections are very
costly in this application, we set the cluster thresholds to pro-
duce a higher probability of detection and, thus, higher false
alarm rates, and rely on the subsequent more accurate global
processing to filter some of these detections by having a more
conservative threshold. Our base analysis provides simple, ap-
proximate methods for determining local and global thresholds.

Previous methods considered Bayesian approaches to biolog-
ical or chemical release detection. Nofsinger and Smith describe
a method of using ensemble Kalman filtering for solving the in-
verse problem of localizing in 2-D a chemical plume occurring
at a known release time in the absence of wind [1]. Nofsinger
and Cybenko explore detecting and tracking a chemical plume
in a known wind field using multiple hypothesis tracking (MHT)
combined with a customized plume predictor in [2]. Zhao and
Nehorai discuss plume modeling and detecting and localizing a
moving source using a nonrecursive dynamic model and gener-
alized likelihood ratio test (GLRT) [3]. Beyond the methods of
previous work, we develop a recursive inference algorithm with
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Fig. 1. Sparse sensors, indicated by � symbols. Contours indicate particle den-
sity following a localized release at a single time instant.

robust detection and enhanced localization performance through
a communication sensitive hierarchical architecture triggered by
early detection. Our approach is described for the case of single
releases, but the system is capable of handling multiple releases
(see Section VI).

II. PROBLEM FORMULATION

The problem of detecting a localized release is illustrated
in Fig. 1. Particle sensors, indicated by black circles, are dis-
tributed sparsely over a region of interest where the measure of
sparsity is relative to the rate of diffusion. Particle concentra-
tions at time are indicated by shaded contours where
is the time of the release. In a sparse sensor network, it is gener-
ally the case that there is a delay in observability of the event.

The goal, then, is to intelligently combine sensor measure-
ments distributed both temporally and spatially to first detect
the release in a timely manner and secondarily to localize the re-
lease in space and time. The two goals are distinct in that reason-
able detection may be obtained from early measurements while
localization generally relies on measurements aggregated over
a longer time period. Bayesian filtering approaches provide a
framework for this type of problem, presuming that the model
parameters are available and intersensor communication is pos-
sible. We adopt a standard abrupt change methodology [4]–[6]
where the standard state space equations are modified to include
a term representing a localized event whose effects persist over
time. This results in a hybrid detection-localization hypothesis
framework.

Given a sparse sensor configuration and uncertainty regarding
the underlying dynamics (e.g., rate of diffusion, knowledge of
the wind field), it is generally the case that optimal inference
under an assumed parametrization degrades in both detection
and localization performance as compared to the matched case.
Our results indicate that inference using a mismatched model
yields reasonable detection performance at the cost of precise
localization. This detection robustness allows for a more sophis-
ticated inference procedure in which initial detections are used
to trigger nonlinear least squares estimation of parameters so as
to improve localization performance.

When we increase the size of the sensor network under exam-
ination and place costs on communication, it is advantageous
to consider a distributed approach comprised of clusters per-
forming local fusion along with a global decision maker. Our
analysis provides the basis for a) understanding how to dis-
tribute computation in order to reduce costly communication
and b) exploring the resulting performance tradeoffs.

A. Bayesian Approaches for Localization

Given a sparse sensor network, it is appropriate to consider
a model of a comparable level of spatial granularity. In partic-
ular, we use a spatially and temporally discrete model in which
we partition space into a set of cells and define the state of the
system at time to be the vector of mean particle concen-
trations in the set of cells. A certain subset of these cells have
sensors which provide noisy observations of the particle con-
centration in these locations.

Accurately describing the spatial and temporal distribution of
particles released into an environment is a challenging problem
due to the inherent randomness of the wind velocities in tur-
bulent flow. The concentration of the particles, , satisfies the
continuity partial differential equation (PDE) [7].

We simplify the dynamic model by idealizing the abrupt
change to be an instantaneous point source which leads to a
common approximation to solving the continuity PDE, namely
the Gaussian puff model [7]

(1)
Here, is the mean concentration at location
at time , are the components of
the mean wind velocity at time , is the initial release con-
centration, are the coordinates of the release location,
and are the diffusion coefficients which account for
the randomness of the wind field (see [7] for a complete deriva-
tion of this approximation).

We derive our elementary algorithm assuming that are
known, then examine the algorithm’s robustness relative to er-
rors in our knowledge, and finally devise a nonlinear estimation
algorithm to refine our estimates of these quantities.

Our state, , is taken to be the vector of cell particle
concentrations. We consider , a discrete time index,
and form a mapping, , of mean particle concentration
from one time step to the next parameterized by the mean wind
field . The concentration mapping and wind field
are determined by the cell-localized Gaussian diffusion kernels

and wind vector , respectively. We write the
system equations as

(2)

(3)

As described in [5] and [6], for example, the term is in-
serted into the standard state space equations to account for an
abrupt change to a system. In this application, we take
to be an impulse of particles in cell at discrete time of mag-
nitude . Other parameters of these equations include the
process noise, the measurement noise, and a binary
matrix with ones in sensor cells to relate the state to the noisy
particle concentration measurements . Both the process and
measurement noise are assumed to be Gaussian and indepen-
dent of each other over all time.

By adding the abrupt change term , we incorporate
knowledge of the localized nature of the release as opposed to
accounting for the change by merely increasing the variance on
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Fig. 2. Hypothesis tree for a region with n cells at time step 3. Hypothesis h represents a release in cell c at time t.

the dynamic uncertainty. The advantage to this approach is that
it allows one to simultaneously model a release as a localized
event in time and space while capturing its persistent effects.
This leads to an efficient hypothesis testing approach. The equa-
tions presented in this section follow the development of [5].

The linearity of the system allows us to decompose the state
into a term due the background process and a term
which captures the persistent effect of the release

(4)

The utility of the decomposition is that the problem reduces to
one of detection in correlated noise. The detection formulations
are simplified by whitening the data, yielding

(5)

where is the white sequence resulting from and
is the signature of once it has been passed

through the whitening filter (specifically a Kalman filter [8]).
Thereafter, we process the resulting innovations sequence .

B. Hypothesis Testing Framework

While the preceding framework has simplified the dynamic
model, we are still left with the task of testing various release
hypotheses enumerated over space (cell index) and time. Ad-
ditionally, the model is parameterized by the unknown release
amount . We address this issue using a generalized likelihood
ratio (GLR) [8], [9] in which one substitutes the ML estimate
of for each hypothesis to approximate the Bayes optimal joint
estimation of all parameters. This allows us to formulate and
analyze a set of enumerated hypotheses which both detect and
localize a release.

Referring to (5), we can construct an indexed set of hy-
potheses, , based on release cell location and time , to
which we compare the null hypothesis of no release,

(6)

(7)

It is well known that the sufficient statistics for this particular
hypothesis test are the correlation between the signal

and the output normalized by the inverse covariance
of the residual [9]

(8)

and the normalized energy of the signal

(9)

resulting in a log-likelihood of

(10)

See Appendix A of [10] for a derivation.
We simplify the analysis in the following way. We model

hypotheses restricted to there being one and only one release,
which leads to linear growth in the hypothesis tree rather than
exponential. Even though we have simplified the hypothesis
space under consideration, the formulation still allows for de-
tection in the multiple release situation because the inference
procedure will try to explain the measurements by some hypoth-
esis. In Section VI, we discuss the scenarios in which our cur-
rent formulation (with minor extensions) can handle multiple
detections and how this procedure is simplified by considering
a distributed formulation.

The resulting hypothesis tree after three time steps is shown
in Fig. 2. Because of the growing size of the tree, in practice,
a sliding window is used to implement the inference algorithm.
This is well justified for two reasons. The first is that it takes
some time for releases to propagate to the nearest sensor. The
second is that, after a period of time, additional measurements
do not contribute significantly to the probability of a detection
in a given cell at a specific time. Therefore, there is little need
to look further back in time. Specifically, the window enforces
that only hypotheses of a release occurring a maximum of
timesteps in the past are considered.

Conditioned on hypothesis , is Gaussian with
mean and variance [10]. Consequently, the
ML estimate of is

(11)
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and the resulting log-likelihood ratio is

(12)

If one takes and to be the values that maximize and
define

(13)

and denotes as the hypothesis that a release has occurred
regardless of time or location, then the likelihood ratio test for
detection is simply

(14)

where the value of is set using Neyman–Pearson criterion to
specify a fixed probability of false alarm, .

III. EMPIRICAL RESULTS

We present a series of experiments in which we examine the
utility of using multiple sensors. The first set of experiments
uses a known mean wind field to characterize probability of de-
tection, time to detection, and localization in time and space as
a function of the number of sensors. We consider the case of
pure diffusion (zero mean wind field) in these experiments in
order to illustrate some of the localization results. Note that the
performance of the inference procedure would be similar in the
presence of a known wind bias. The other two sets of exper-
iments examine the efficacy of the inference procedure as the
model deviates from that assumed by the inference procedure.
In the second experiment, a sequence of increasing wind biases
are incorporated into the dynamic model, but not into the in-
ference procedure. In the third experiment, random variations
are generated on the mean wind field provided to the simula-
tion while the inference procedure only uses knowledge of the
mean wind field. For both of these model mismatch scenarios,
we analyze the impact on detection probabilities for four and 16
sensor configurations as well as localization performance.

The conclusions of this analysis are twofold. First, we see that
detection is robust to inaccuracies in our knowledge of the wind
field although localization can be poor. This conclusion leads
to the modification of our inference procedure to include a non-
linear least squares parameter estimation stage after detection to
refine our knowledge of the system parameters so as to improve
localization (see Section IV). Second, our analysis shows that
in the sparse network configuration, groupings of four sensors
performing local fusion are sufficient for detection and local-
ization. This suggests a clustered approach to distributed pro-
cessing over wider geographic regions. We discuss such an ap-
proach in Section V.

A. Simulation Parameters

We consider a release in the center of a room under various
sensor configurations, consisting of one, two, four, and 16 sen-
sors, as given in Fig. 3. This release location is the point whose
distance to the nearest sensor is the same in all sensor configu-
rations. The symmetry of the configurations serves to simplify
the analysis of the results.

Fig. 3 shows the sensors overlaid on a 13 13 cell area of
interest. However, to reduce edge effects, the data is simulated

Fig. 3. Sensor configurations for 1 f4g, 2 f4; g, 4 f4; ; �g, and 16
f4; �; ; �g sensors.

over an area of 25 25 cells. A sensor is assumed to observe
the average particle concentration throughout the entire cell in
which it is located. The standard deviation of the noise on the
measurements is ten particles per cell area.

The particle concentrations are propagated using a Gaussian
kernel with a diffusion coefficient of . This
choice of diffusion kernel makes the sensor network sparse be-
cause the diffusion is slow relative to the sensor density (see
simulation snapshots in Fig. 4). The process noise standard de-
viation is taken to be 100 particles per cell area. Initially, we
restrict ourselves to a pure diffusion model in order
to avoid the effects of wind which could blow the particles to-
wards or away from the nearest sensor. In the case where there
is wind, the utility of having multiple sensors to better cover the
region will be apparent. For every experimental scenario, 100
Monte Carlo simulations were performed.

For all calculations involving probability of detection reliant
on the 100 samples (see Figs. 5, 10, and 17), we can use an
approximation based on the central limit theorem (CLT) [11]
to bound the probability of a given discrepancy between our
sample estimate and the true value. Take to be a Bernoulli
random variable indicating a detection for Monte Carlo sample
. Let be the true probability of detection and the sample

estimate based on samples. We can upper bound
by assuming has the largest possible variance, namely

when . This assumption results in
for and ,

where and has a normal distribution.
That is to say, with 95% confidence our sample estimates
are within 0.098 of .

The size of the sliding window, , was determined to be 14
time steps by analyzing the minimum time from the onset of
the release by which the accrual of additional information was
insignificant in the case of pure diffusion. In a sensor network
which is distributed as a regular grid, as in the 16 sensor con-
figuration used in this paper, the pure diffusion scenario will be
a worst case analysis because any wind would blow particles
more rapidly towards a sensor.

The log-likelihood ratio threshold was determined experi-
mentally to achieve a false alarm rate of 0.01 on 1500 Monte
Carlo simulations under benign conditions (i.e., no release) for
the four and 16 sensor configurations. The threshold values are
9.55 and 10.85, respectively. These values were used in all ex-
periments conducted.
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Fig. 4. Screenshots of a simulation of an aerosol release at time steps (left) 16, (middle) 20, and (right) 24 under (a) pure diffusion (�u; �v) = (0; 0), (b) wind
bias (�u; �v) = (1; 0), and (c) random variation on the wind field (�u; �v) = (1;0) +N (�0; 0:3162 � I ). The symbols indicate sensor locations in the 16 sensor
configuration. Parameters: release amount = 1e5 particles; release time = 16; release location = (13,13); st. dev of dynamic uncertainty = 100 particles per cell
area.

Fig. 5. (a) Number of detections per 100 simulation data sets and (b) time of
first detection versus release amount. Actual release was at t = 16 s.

B. Detectability

Fig. 5 shows the number of detections achieved out of 100
simulations as a function of release magnitude for various sensor
configurations. The figure demonstrates that significant gains
are made in ability to detect small release amounts going from
one to four sensors while there is only a marginal difference
in performance between four and 16 sensors. For a sufficient

release amount, all sensor configurations are able to reliably
detect.

The corresponding time to first detection for the same exper-
iment is plotted in Fig. 5. The figure shows the time of detec-
tion of a release occurring at time index 16. For smaller release
amounts, there is some performance gain obtained by using a
larger number of sensors. Note that the discrepancy in this trend
for small release amounts in the one sensor case is statistically
insignificant due to the small number of detections. The conver-
gence for large release amounts is indicative of the time required
for the release to propagate to the nearest sensor and is purely
a function of the relative distance between the release and the
sensor and, thus, sensor density relative to the rate of diffusion.
We conclude that the inner four sensors can provide sufficient
evidence of a release in both the four and 16 sensor configura-
tions earlier and more often than one or two sensors which have
not aggregated enough information.

It is important to note in Fig. 5 that, for the release scenario
described, four sensors actually marginally outperform 16 for
a fixed probability of false alarm. The reason for this is that
under pure diffusion with a release in the center, at least four
sensors will see the release in both configurations. Almost re-
gardless of the release amount, on average if the inner four sen-
sors do not detect a release the outer ring of 12 sensors will not
accrue substantial evidence to trigger a detection because of the
lower signal to noise ratio of the measurements when the release
has diffused to the outer ring. In addition, because the inference
procedure hypothesizes releases at every location, not just the
center, and the GLR tries to explain measurements by some hy-
pothesis, adding sensors increases the probability of false alarm
and, thus, requires a higher detection threshold. By only consid-
ering releases at the center, we do not observe the benefits of the
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Fig. 6. (a)–(c) Maximum likelihood ratio at every cell in region of interest for
one, two, and four sensor configurations. (d) The measurement sequence for the
four sensor configuration.

16 sensor scenario, namely more accrued information or better
spatial coverage, over that of the four sensor configuration while
still having a significantly higher threshold. With a release in a
random location, the 16 sensor configuration will have better
performance over that of fewer sensors because the release is
likely to be further from the nearest sensor in sparser configura-
tions. Also, in many wind conditions the benefit of using more
sensors becomes apparent.

C. Localization Uncertainty

In Fig. 6, we examine the hypotheses considered by the
process at time , when the release occurred at s.
At any given time, there are multiple hypotheses of releases in a
given cell, each differentiated by various times of releases. The
maximum likelihood ratio over all the hypotheses for each cell
is plotted for various sensor configurations. The actual sensor
measurements provided to the inference algorithm for the four
sensor case are plotted in the lower right-hand figure. The mea-
surements provided for each of the other sensor configurations
were a subset of those provided in the four sensor case.

This image gives a graphical representation of the likelihood
that a release occurred in any of the cell regions and, thus, il-
lustrates the degree of localizability achievable with different
sensor configurations. The results follow our intuition consid-
ering the simulations are under pure diffusion with a symmetric
sensor configuration, and as such these plots serve to validate
our model. In the one sensor case, the manifold is approximately
circular indicating that the location of the release cannot be dis-
tinguished along a ring around the sensor. The two sensor and
four sensor cases provide progressively better localization. As
expected, two sensors have difficulty distinguishing along a line
while four sensors are able to localize to a point. The degree
of shading in the plots indicates the likelihood ratio value and,
hence, the detection probability.

Note that the symmetry seen in Fig. 6 is due to the com-
bination of the release being in the center of the sensor
configurations and the model being pure diffusion. With wind
or off-center release locations, the localization manifolds are
asymmetric.

Each hypothesis has an associated time of release and max-
imum likelihood release amount, which is conveyed in Fig. 7.

Fig. 7. (a) Map of maximum likelihood estimate of the log release amount as-
sociated with maximum LR hypothesis, four sensors. (b) Map of time of release
associated with maximum LR hypothesis, four sensors.

Fig. 8. Mean and covariance of localization for various release amounts con-
ditioned on first detection based on information (a) at time of first detection and
(b) accrued until the hypothesis is almost out of the window. Dashed lines= 16
sensor configuration, solid lines = 4 sensor configuration.

Consistent with the diffusion model, hypothesized releases fur-
ther from the true release location had to occur earlier in time
and be of a larger magnitude in order to appear similar to the
actual sensor measurements.

Fig. 8 shows the localization accuracy achieved using four
and 16 sensors for various release amounts. The circles illustrate
the mean and covariance of the hypothesized location of the de-
tected release. We show the plots under two detection schemes.
The plots on the left are estimates produced at the time of first
detection. The plots on the right are produced under a system
where our goal is to alarm at the time of first detection and then
wait an allotted period of time until producing localization re-
sults. This scheme involves accruing information until the de-
tected hypothesis is almost outside the hypothesis window. We
define the term almost to be a fixed lag parameter, , which
enforces that we stop accruing information when the window
in which hypotheses of a release time steps before the time
corresponding to the initial best hypothesis are still considered.
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Fig. 9. Time to detection histograms for (a) four sensors and (b) 16 sensors for
various release amounts. Missed detections were assigned a value of 20 s as a
point of comparison between the release amounts.

This is done because after the added time of gathering informa-
tion, a hypothesis at an earlier time step (and, thus, ahead in the
hypothesis window) may be better than the initially detected hy-
pothesis. The acceptable amount of time to wait is application
dependent. Thus, the plots in Fig. 8 are indicative of the bounds
on localization performance.

Not surprisingly, the trend indicates that larger release
amounts can be localized better and regardless of release
amount, 16 sensors outperform four sensors. The one and two
sensor cases were excluded due to the poor localization results.
For smaller release amounts, 16 sensors do not gain much by
waiting to accrue additional information. However, both sensor
configurations achieve significantly better localization in the
case of larger release amounts. These results can be explained
by the fact that the signal to noise ratio at later time steps or
further from the release location is lower. Thus, the added
information accrued by the outlying sensors in the 16 sensor
case for small releases will be negligible.

In Fig. 9, histograms of the time from release until detec-
tion are plotted for the various release amount scenarios for four
and 16 sensors. Not surprisingly, for larger release amounts, the
mean and variance of the time to detection is smaller than that
of small release amounts. Because the threshold in the 16 sensor
case is higher than in the four sensor configuration, the time of
detection distribution is skewed towards slightly longer detec-
tion times in the 16 sensor cases. There are scenarios in which
it is possible for a release to be detected by the four sensor con-
figuration and not by the 16 sensor configuration. This is purely
a result of the fact that in order to maintain a , the

Fig. 10. Number of detections versus strength of x direction wind bias for
(solid) four sensors and (dashed) 16 sensors.

likelihood ratio threshold is more conservative in the 16 sensor
case and in some outlying cases this will result in lower detec-
tion though it is not the overall trend. As a point of comparison
between the release amount plots, missed detections were as-
signed a value of 20 s.

D. Effect of Model Mismatch

To analyze the effects of errors in the assumed known wind
field, the inference algorithm assumed a pure diffusion model
(i.e., zero mean wind field) while the data was produced under
various wind biases and variances (i.e., when our knowledge of
the mean wind field is biased or there are statistical variations
around the assumed mean.) The wind bias was always taken to
be straight to the right such that it tends to transport the release
between the two right-hand sensors in the four sensor configu-
ration. The wind variance was an additive spatially and tempo-
rally white Gaussian random variation on the underlying zero
mean wind field. We examine the trends for a material release
of size 1e5.

a) Probability of detection: From our experimental anal-
ysis we conclude that probability of detection is fairly robust
against inaccuracies in the assumed mean wind field. Fig. 10
illustrates this for the case of an unknown wind bias. We see
that the probability of detection drops off with increased wind
bias, but this trend is solely a function of sensor density relative
to rate of diffusion and size of wind field rather than an algo-
rithmic deficiency. That is to say, a strong wind bias will push
the cloud of material between the sensors before it has dispersed
enough to be registered. Note that following the trends of Fig. 5,
it is likely that lower release amounts would yield lower detec-
tion probabilities. Although no plot is given, for all simulated
wind variance cases, 100% of the releases were detected.

b) Localization performance: Fig. 11 summarizes the lo-
calization performance for the four and 16 sensor configurations
in three cases: nominal, unmodeled wind bias, and unmodeled
wind variance. The plots indicate the mean and standard devi-
ation of the direction localization error. In the nominal and
wind variance scenarios, this is nearly identical to the statistics
in the direction because the experiments are run under a zero
mean wind field. In the wind bias scenario, this direction rep-
resents the principal axis of the covariance (same direction as
that of the wind). The first two bars in each grouping indicate
the estimates produced at the time of first detection for four and
16 sensors, respectively. The second two bars are estimates for
four and 16 sensors after the system has accrued information.
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Fig. 11. Mean and standard deviation of localization error for 4 and 16 sensors
at time of first detection (� and o) and after accruing information (4 and �) for
three values of (a) the release amount, (b) the unmodeled wind variance, and
(c) the unmodeled wind bias.

The plots of the nominal case convey that larger release
amounts can be localized better and that 16 sensors outperform
four sensors. In addition, in most scenarios better localization
is achieved after accruing more information. These plots can be
used as a point of comparison for the model mismatch results
presented below.

Localization estimates for the unmodeled wind bias case in-
dicate that for smaller wind biases, accruing information helps
localization significantly. However, for larger wind biases the
16 sensor configuration localizes the release to the edge of the
room. This is because the inner four sensors only measure a
small amount of the release as it passes through while the outer
ring measure a much larger amount of material. The inference
procedure assumes pure diffusion, so the most likely case is that
the release was far from the inner four sensors. As a whole, these
results highlight the point that localization performance suffers
more quickly than detection performance when the wind field is
mismatched to the inference procedure.

By comparing the wind variance case with the corresponding
1e5 release amount of the nominal case, one can see that localiza-
tion performance degrades with increased unmodeled wind un-

certainty. In all wind variance cases, accruing more information
provides better localization results. As with the matched model,
the 16 sensor configuration outperforms the four sensor config-
uration. The disparity becomes less pronounced in the high vari-
ance with accrual situation. Comparing these results with those
from an unmodeled wind bias, we see that the trends for random-
ness on the wind field better mirror those of the nominal matched
case. This is because the disturbances on the propagation of par-
ticle concentrations caused by noise on the wind field are more
similar to the type of errors modeled in the dynamic equation
than the effects caused by a bias on the wind field.

IV. NONLINEAR LEAST SQUARES PARAMETER SMOOTHING

Throughout this paper, we have assumed knowledge of the
mean wind field. In practice, the wind field itself presents a chal-
lenging estimation problem. We have explored empirically how
performance degrades with increasing errors in the assumed
mean wind field and seen that detection is robust against wind
field modeling errors while localization suffers more rapidly, es-
pecially in the case of an unknown wind bias. Good detection
performance can be explained by the fact that with sufficient
signal to noise ratio at the nearest sensor, one sensor is ade-
quate for detection (see Section III-B). These results motivate
the work described in this section on nonlinear least squares re-
fining of parameter estimates.

We consider the case of an unknown (and, thus, unmodeled)
wind bias on the presumed mean wind field , where we have
seen that detection is likely while localization performance is
poor. In order to improve our estimate of release location, time,
and amount, as well as the underlying wind field, we wait to
accrue more sensor measurements until we have a window of
length containing data before and after the time of detection
and then use a Levenberg–Marquardt nonlinear least squares fit-
ting [12] of the sensor measurements to the dynamics described
by (1). We use the estimate provided by the GLR approach
as an initialization for the nonlinear optimization problem. See
Fig. 12 for a block diagram of the overall process.

The dynamic equation is nonlinear in the release location, re-
lease time, and wind field parameters and is linear in the release
concentration parameter. We use a coordinate descent approach
to minimize the difference between our parameterized Gaussian
puff model (1) and the data. We first estimate the nonlinear pa-
rameters and then use linear least squares to deter-
mine the release concentration which best fits the data given the
current parametrization.

Through our modeling choice of a windowed hypothesis
space and our analysis of window size, we have calculated
that the effects of a release more than time steps in the past
will have negligible impact on the probability of detection of
that release. Therefore, at the time of detection, , we only
consider hypotheses of releases occurring a maximum of
time steps in the past. For this reason, and the fact that the
exact time of the release is not of utmost importance, we run
parallel nonlinear least squares estimators each parameterized
by a release time . This reduces
the search space to four nonlinear parameters: release location

and wind field , and one linear parameter: release
concentration . We choose the parameter estimates associated
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Fig. 12. Block diagram of the overall system. A release of � particles is inserted into the system at time �. The physical system is driven by the known wind field
V plus noise (not necessarily white nor Gaussian) while the inference procedure only has knowledge of V . The GLR estimates of release time and location are
used as an initialization for the nonlinear least squares estimator (NLLSE) block which takes in a buffer of sensor data in order to perform parameter smoothing.

Fig. 13. Nonlinear least squares estimator (NLLSE) process is comprised of M parallel NLLSE blocks each parameterized by a release time running from ft �
M; . . . ; t g, where M is the size of the hypothesis window and t is the time of detection. We choose the parameters associated with the NLLSE block with
minimum L error residuals.

with the block with minimum error residuals. See Fig. 13
for a diagram of the NLLSE block in Fig. 12.

A. NLLSE Experimental Results

We now examine the performance improvement by using
the nonlinear least squares stage. We first note that in the
experiments we present we are fitting data simulated using
a discretized Gaussian kernel and dynamic uncertainty (i.e.,
process noise) to the continuous dynamic model of (1). This
will naturally create errors between the simulated sensor mea-
surements and the projected noise free sensor measurements
generated by providing (1) with the actual simulation param-
eters. The normalized magnitude of these errors is given as
True (residual)/ (data) in Table I and (data) is the
energy of the data sequence and (residuals) is that of the
errors between the simulated and the projected noise free sensor
measurements.

Fig. 14 shows a plot of the sensor measurements in the 16
sensor configuration for a wind bias of 0.2 in the direction.
The inference procedure assumes pure diffusion. We have seen

that in this scenario probability of detection is high. In the simu-
lation presented in this figure, detection occurs despite the mis-
matched model. The projected noise free sensor measurements
generated by providing the continuous dynamic model with pa-
rameter estimates of release location, time, and amount from
the GLR stage are shown in Fig. 14. The figure also shows the
corresponding plot for the refined NLLSE parameter estimates.
Together, the plots in Fig. 14 provide a visualization of the im-
provement in parameter estimation obtained by using the com-
bined standard GLR inference procedure along with the non-
linear least squares estimation stage.

The values of the parameter estimates from the GLR and
NLLSE stages are shown in Table I. This table also contains
the real parameters provided to the simulator which generated
the synthetic sensor measurements. From the table we see that
the re-estimation of the wind field reduces the error in our di-
rection wind bias estimate, , by 98% and results in a total wind
velocity error of 0.007. Our release location estimates are
also improved by using the NLLSE stage while there is negli-
gible change in the release amount error.
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Fig. 14. (a) Sensor measurements for the 16 sensor configuration. Beneath, plots of projected noise free sensor measurements generated by providing the contin-
uous dynamic model with (b) GLR parameter estimates and (c) NLLSE smoothed parameter estimates of release amount, time, and location as well as wind field.
Data was generated with an unknown wind bias of 0.2 in the x direction while the inference procedure assumed pure diffusion.

TABLE I
FOR AN UNMODELED WIND BIAS OF 0.2 IN THE X-DIRECTION THIS TABLE

LISTS: 1) VALUES OF TRUE PARAMETERS, 2) PARAMETER ESTIMATES FROM

THE GLR STAGE, AND 3) PARAMETER ESTIMATES FROM NLLSE STAGE

A similar set of plots and data table are provided for an un-
known wind bias of 0.5 in the direction. See Fig. 15 and
Table II.

V. DISTRIBUTED PROCESSING

The detection and localization formulation described in
the preceding sections suggests a distributed implementation.
Under the worst case time to detection scenario of pure dif-
fusion and a release in the center of a regular grid of sensors,
we have, in Section III, contrasted the performance of the
one, two, four, and 16 sensor configurations. It is clear that in
order to have reasonable localization, the one and two sensor
configurations are not sufficient. We have also demonstrated
that there is only a marginal increase in performance by having
16 versus four sensors with the given rate of diffusion. The
true benefits of 16 sensors is in better coverage of the region
being monitored as well as improved localization results in the
presence of an unknown wind when used in conjunction with
the nonlinear least squares stage. We use these conclusions in
designing a distributed processing network.

Assume that there is a large regular grid of sensors. We will
also assume that in such a configuration it is infeasible to do cen-
tralized processing of the measurements because of both con-
strained intersensor communication and computation. We di-
vide the region into overlapping four sensor clusters where each
cluster has processing capability at a chosen sensor (see Fig. 16).
In this framework, each cluster is performing the same proce-
dure as the four sensor configuration described in the previous
sections. That is to say, at every time step, each local cluster
performs joint detection-localization by formulating local hy-
potheses and then comparing

(15)

where is the local hypothesis with greatest likelihood
and is indicative of a release at time in cell . If is
greater than the local detection threshold , this cluster de-
clares a local detection. Note that each cluster maintains hy-
potheses of releases within its local region and at every time
step only three measurements must be transmitted to the fourth
sensor with the processing capability.

This overlapping network of distributed clusters fully covers
the region of interest. If a release occurs anywhere within this
large region, it will occur within at least one local cluster. There
are two cases to consider: when the release occurs in a region of
overlapping clusters or in a region solely within a single cluster.
In the case of a release in a region of overlap, there may be mul-
tiple detections (from hypotheses of releases in the overlapping
clusters). In the other case, the release is local to a single cluster,
but the effects the release will propagate to neighboring clusters.
However, it can be shown that with high probability the detec-
tion will occur in the local cluster first and that the local likeli-
hood statistic will be greater than that of the neighboring clus-
ters. This is because the neighboring clusters will be attempting
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Fig. 15. Corresponding plot to Fig. 14 for an unknown wind bias of 0.5 in the x direction. (a) Sensor data; (b) dynamics with GLR parameters; (c) dynamics with
NLLSE parameters.

TABLE II
SAME AS TABLE I, BUT FOR A WIND BIAS OF 0.5

Fig. 16. (a) 3 � 3 grid of sensors (circles) grouped into four clusters with one
processing sensor (square). (b) A release in one cluster resulting in three local
detections being transmitted to a central decision maker (triangle). Each rounded
square is a cluster, separated for clarification.

to explain the release by local hypotheses which do not include
the true location.

To provide a consolidated picture when detections occur in
multiple clusters, it is necessary to combine information from
each cluster at a centralized decision node. There are many
possible fusion architectures for how information from the dis-
tributed processing clusters should be transmitted to the central-
ized decision maker. A simple scheme is local tripwire detec-
tion in which clusters are performing local fusion and if a local

detection occurs, the distributed processors transmit all recent
sensor data to the centralized processor and the system reverts
to performing inference over the entire network in order to im-
prove localization accuracy and further filter false alarms. This
results in event-driven rather than continual incurring of costly
communication.

An even less communication and computationally complex
approach is for only the likelihood statistic of all locally detected
releases to be sent to the global decision maker, as illustrated in
Fig. 16 (right). The resources consumed in transmitting this in-
formation to the centralized processor are insignificant when the
probability of false alarm and the prior probability of a release
are both low. The centralized decision maker could then choose
the largest of the set of detected releases

(16)

However, under this scheme, the centralized decision maker is
making a detection and localization decision off of solely four
sensors. For the rest of this section, we assume that the first
architecture presented is feasible and analyze its performance
relative to purely centralized processing.

We note that in order to maintain a fixed global probability of
false alarm, the truly optimal local thresholds depend on the
details of overlap between local clusters and, thus, may not be
the same for all regions. However, we ignore these second order
effects in order to infer the performance of the global system
from that of the local clusters. Assume that the probability of
local detection, , for a single cluster is independent from
that of all other clusters. Also, assume that the probability of
centralized detection, , is independent of the local detec-
tions even though the decision is based off of the same data. We
then have that the overall probability of false alarm is given by

(17)

(18)
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Fig. 17. Receiver operator characteristic (ROC) curve for 4 sensors (solid) and
16 sensors (dashed) with a release amount of 2e4. Each data point corresponds
to the probability of detection and false alarm from 1000 background simula-
tions and 1000 release simulations for a known release amount and time and
thresholds between 4.5 to 7.5 in the four-sensor case and from 6 to 9 in the
16-sensor case.

where is the total number of local clusters. We can use the
receiver operator characteristics (ROC) of the system for the
local and centralized sensor cluster sizes (see Fig. 17) and (17)
and (18) to help us approximate how we should set the local and
centralized thresholds to maintain a specified global detection/
false alarm rate.

The four sensor local and 16 sensor centralized cluster ROC
curves are shown in Fig. 17 for a known release amount of 2e4
and known release time. We note that the apparently better per-
formance of the four sensor configuration over that of 16 sensors
can be explained by the fact that the 16 sensor configuration hy-
pothesizes over a region of 169 cells whereas the four sensor
configuration hypothesizes over a region of 25 cells. For a re-
lease of moderate size (such as 2e4) in the center of the sensor
configurations under a zero mean wind field, the outer ring of
12 sensors does not increase the probability of detection signif-
icantly over that of the inner four sensors because by the time
the release has diffused to the outer ring of sensors there is low
signal to noise ratio. However, due to the larger number of hy-
potheses, the probability of false alarm increases relative to that
of the four sensor scenario.

Because missed detections are very costly in this application,
we can set the local cluster thresholds to produce a higher proba-
bility of detection and, thus, higher false alarm rates, and rely on
the subsequent more accurate global processing to filter some of
these detections by having a more conservative threshold. How-
ever, a higher probability of detection increases the rate of costly
communication. The appropriate balancing of probability of de-
tection versus rate of costly communication is application de-
pendent and is a function of the bandwidth and computation ca-
pacity of the system, as well as the severity of missed detections.

In the centralized version, every measurement is transmitted
to the central processor at every time step. The majority of the
time these measurements will be of the background/benign sit-
uation which does not contain useful information. In the dis-
tributed case, we assume that local intracluster sensor trans-
missions are not very costly, but intercluster transmissions are
costly but rare. In this case, only local measurements are trans-
mitted to local processors at every time step and in the rare sce-
nario of a local detection, either a single likelihood statistic or a
buffer of sensor data is transmitted along the costly link to the
centralized decision maker.

One can see the significant communication savings of the de-
centralized schemes versus the centralized version by the fol-
lowing back of the envelope calculation. Let the term costly
communication refer to the communication incurred in trans-
mitting sensor data of benign conditions (i.e., no release) to the
centralized processor. In the distributed processing architecture,
this only occurs when there is a local false alarm. As an ex-
ample, we consider the scenario where there are 16 sensors and
the region is divided into four nonoverlapping local clusters. The
probability of local false alarm, , is set to 0.1 (the cen-
tralized processor further filters these false alarms to produce a
lower global rate). From the ROC plot, we see that this yields
a local probability of detection, of 0.99. We aim for a
global probability of false alarm, , of 0.01, so this requires
that the centralized false alarm rate, , be set to 0.03 when
there are four four-sensor clusters. The corresponding proba-
bility of detection, , is 0.94

centralized
costly communication

distributed costly communication

In the case of a larger sensor network with a multiscale hi-
erarchical distributed processing structure, we would see even
greater computational saving.

The actual choice of sensor cluster size and decision maker
schema is application dependent and based on aspects such as
total number of sensors, rate of diffusion, cost of local intra-
cluster communication, cost of global intercluster communica-
tion, and assumptions about the likelihood and number of po-
tential releases.

VI. DISCUSSION

We have modeled the system to hypothesize one and only
one release, which leads to a linear growth in the hypothesis
tree rather than exponential. Even though we have simplified
the hypothesis space under consideration, the formulation still
allows for detection in the multiple release situation because
the inference procedure will try to explain the measurements by
some hypothesis.

However, one may be interested in a more precise detection
and localization of multiple releases. If the releases are isolated
in space (i.e., one release has negligible effects on the other re-
lease), then our current formulation is sufficient for localizing
each release separately. Even though our hypothesis tree does
not directly model a release in cell followed by a release in
cell , if the releases are isolated then this scenario is approxi-
mately the same as the superposition of a release in cell plus
benign conditions (no release) followed by a release in cell ,
which is a modeled element of our hypothesis space. All that is
then required is for the decision maker architecture to declare
detections of multiple hypotheses which exceed the threshold.

If the effects of the multiple releases interact, we can consider
this scenario to be the same as a single spatially distributed re-
lease. Simulations we have run indicate that spatially and tem-
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porally close releases are detected and localized to the center of
the time-space mass of the releases. In order to improve local-
ization estimates of these releases, a hierarchical approach could
be implemented.

Although the distributed algorithm has to approximate the
optimal centralized inference procedure, there are some gains
to considering a distributed formulation. The distributed ap-
proach directly allows for maintaining hypotheses of multiple
releases, each occurring in separate sensor clusters. How the
global fusion center handles multiple local detections is simply
an issue of architecture design. One could imagine a scheme
where the centralized decision maker compared hypotheses of
neighboring clusters but allowed multiple detections if the re-
gions were disjoint or separated by enough distance that the ef-
fects of a release in one cluster would have dispersed enough to
be similar to the background level in the other cluster.

VII. CONCLUSION

We have presented a Bayesian state estimation approach to
the problem of detection and localization of an aerosol release.
Our approach allows for integration of measurements from mul-
tiple sensors over time. We have demonstrated the utility of this
formulation and characterized the performance of a set of sensor
configurations with regard to detection, time to detection and lo-
calization performance. We have also investigated some aspects
of model mismatch due to incorrect wind field assumptions.
From the experiments conducted, we see that model mismatch
impacts localization performance more than detectability. This
result motivates our work on estimating the true wind field and
refining release parameter estimates after a detection has oc-
curred using nonlinear least squares techniques.

The formulation presented provides a framework for an-
swering questions such as the interaction between release
amount, release location, sensor density, and sensor placement.
The appropriateness of this formulation for a given application
depends on the validity of the modeling assumptions we have
made. These assumptions include that the mean wind field is
coarsely known (nonlinear least squares techniques can be used
to further estimate the true wind field) and that the dynamic
model can be described as linear when conditioned on the wind
field. The linearity of a diffusion plus transport dynamic model
makes this framework suitable in many scenarios.

Our base algorithm integrates sensor measurements at a cen-
tralized processor. In a communication constrained sensor net-
work, this approach may become infeasible as the number of
sensors increases. By arranging sensor nodes into groups, our
approach provides the basic building blocks for a distributed
processing configuration. Our experimental analysis has moti-
vated the fact that overlapping local clusters of four sensors are
sufficient for detection. Only in the event of a detection, rather
than at every time step as in the centralized approach, are sensor
measurements transmitted along the costly intercluster commu-
nication channels. We have shown an estimation of the signifi-
cant communication cost savings of such an approach.
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