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ABSTRACT

We present an algorithm to generate samples from probability distributions on the space of curves. Traditional curve evo-
lution methods use gradient descent to find a local minimum of a specified energy functional. Here, we view the energy
functional as a negative log probability distribution and sample from it using a Markov chain Monte Carlo (MCMC) algo-
rithm. We define a proposal distribution by generating smooth perturbations to the normal of the curve, update the curve
using level-set methods, and show how to compute the transition probabilities to ensure that we compute samples from the
posterior. We demonstrate the benefits of sampling methods (such as robustness to local minima, better characterization
of multi-modal distributions, and access to some measures of estimation error) on medical and geophysical applications.
We then use our sampling framework to construct a novel semi-automatic segmentation approach which takes in partial
user segmentations and conditionally simulates the unknown portion of the curve. This allows us to dramatically lower the
estimation variance in low-SNR and ill-posed problems.
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1. INTRODUCTION

Active contours or curve evolution are image segmentation methods which track the location of a contour that divides an
image into coherent regions. The earliest implementations by Kass et al. tracked discrete marker points on the contour 1

while level set methods2, 3 were later introduced to more naturally handle topological changes and avoid the reinitialization
problems that often troubled marker-point approaches.

Curve evolution methods originated from research in the differential geometry community studying the behavior of
curves evolving in time according to a geometric partial differential equation (PDE). Let Ω ⊂ R

2 be the image domain,
I : Ω → R be a scalar-valued image, and �C : [0, 1] → Ω be a closed curve (i.e., �C(0) = �C(1)). We introduce an artificial
time variable t which parameterizes a family of curves �C(·, t). Then a geometric PDE has the form:

∂ �C

∂t
(p) = f(p) �N�C(p), p ∈ [0, 1] (1)

where f(p) is an arbitrary so-called force function and �N�C(p) is the outward unit normal to the curve.

Active contour methods are formulated by specifying an energy functional of the curve E( �C | I) and evolving the curve
according to the gradient descent of that functional. A classical energy functional is Euclidean curve length:

E(�C | I) =
∮

�C

ds (2)

with ds being the differential arc length along the curve. The resulting force function is f(p) = −κ �C(p) where κ �C is
curvature. This flow will shrink an arbitrary curve to a point without self intersection and generally has a smoothing effect
on the curve.3 Due to this property, a curve length penalty is often used as a regularization term.

Region-based energy functionals4, 5 (which separate regions using the image statistics) are widely used now due to their
robustness to noise. A commonly-used region-based energy functional is one introduced by Chan and Vese: 4

E(�C) =
∫
R(�C)

(I(x) − m0)2dx +
∫

Ω\R(�C)

(I(x) − m1)2dx + α

∮
�C

ds . (3)
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Here R(�C) is the region enclosed in �C, and m0 and m1 are mean intensities inside and outside the curve (which can be
specified a priori or learned during the curve evolution). From a statistical perspective, this functional can be viewed as
corresponding to an observation model where the true intensities inside and outside the curve are constant, and the observed
intensities are corrupted by white Gaussian noise.

Level set methods are a standard way to implement curve evolution algorithms 3 by creating a surface Ψ(x) whose
zeroth level set is the curve:

Ψ(�C(p)) = 0 ∀ p ∈ [0, 1] . (4)

By convention, we force Ψ to be negative inside the curve and positive outside the curve. We then wish to evolve Ψ in time
so that the zeroth level set tracks �C. To do this we differentiate both sides of equation (4) with respect to t. Applying the
chain rule results in:

∂Ψ
∂t

= −∂ �C

∂t
· ∇Ψ . (5)

Note that ∂ �C
∂t is only defined on the zeroth level set of Ψ. The PDE is extended to the rest of Ω by propagating the force

along the normal direction to the curve in a technique known as velocity extension. 3

Optimization-based methods typically return a single local optimum. Finding the global maximum of a non-concave
posterior distribution in general requires exhaustive search. Furthermore, a single local optimum provides little insight as
to how close the result is to the global optimum or how confident one should be in the answer. For low signal-to-noise
ratio (SNR) or ill-posed problems, this is problematic because there are many local optima, and there can even be multiple
answers which plausibly explain the data.

A common alternative is to view E( �C) as the negative log of a probability density

π(�C | I) ∝ exp(−E(�C; I)) . (6)

Rather than restricting ourselves to finding modes of the posterior, this probabilistic formulation allows us to consider
methods to draw samples from π. The randomness built into sampling methods can help avoid local minima, but perhaps
of more importance, multiple samples can help characterize multi-modal distributions and estimation uncertainty by more
fully exploring the configuration space.

Several recent approaches have applied standard probabilistic approaches to curve-based methods. Sun et al. 6 use
particle filtering to track the left ventricle in cardiac magnetic resonance (MR). De Bruijne and Nielsen 7 use particle
filtering and Juan et al.8 present a stochastic optimization method to find global minima of energy functionals. Tu and
Zhu9 use a Markov chain Monte Carlo (MCMC) method that bears similarities to the approach presented here. Their
primary focus is on finding global optima, and in fact cannot be used to draw samples from the posterior due to the lack of
detailed balance. We will show examples here of noisy images where the global maximum a posteriori estimate does not
provide a satisfactory segmentation due to the large amount of noise, whereas a constellation of samples can help provide
greater information as to likely locations for the true segmentation. Additionally, multi-modal distributions are better
represented by sampling methods, and we also demonstrate how sampling methods can be used to do partially-constrained
segmentation approaches.

In general, π( �C | I) is a complex distribution and non-trivial to sample. Here, we present an approach to iteratively
generate samples from arbitrary distributions over curves using MCMC methods. One of our key results is to understand
how to ensure that detailed balance holds when sampling from the space of closed curves (a necessity to ensure that we
asymptotically generate true samples from the posterior). We show how to adapt these sampling methods to use user input
to perform conditional simulation in order to reduce the estimation variance, and demonstrate our approach on applications
in medical imaging and geophysics.

2. FORMULATION

MCMC methods are useful for situations when one wishes to draw samples from a distribution π( �C), but it is not possible
to do so directly. Instead a so-called proposal distribution q is defined, and samples from q are accepted or rejected in such
a way as to guarantee that samples from π are generated asymptotically. MCMC methods were originally developed by
Metropolis et al.,10 and Geman and Geman11 introduced the idea to use MCMC to segment images with a Markov random
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field (MRF) statistical prior. Here our goal is to extend these methods to draw samples from a posterior distribution on
the space of curves using non-parametric representations. The advantage of sampling curves instead of from MRFs is that
curve sampling is an inherently geometric process that enables one to work explicitly in the space of shapes. This allows
one to, e.g., encode statistical properties of shape directly into the model and enables global object characteristics (whereas
MRFs are inherently localized statistical descriptions).

With MCMC methods, an ergodic Markov chain with π( �C | I) as its stationary distribution12 is constructed∗. We
can then start the chain from any state �C0, simulate it, and have the probability distribution of the state asymptotically
approach π( �C | I). The transition probability of the chain T( �C(t−1) → �C(t)) is written as the product of two terms: a
proposal distribution q(�Γ(t) | �C(t−1)) and an acceptance probability function a(�Γ(t) | �C(t−1)). Then a sample �C(t) from
T(�C(t−1) → �C) can be drawn by accepting a sample �Γ(t) from q(�Γ | �C(t−1)) with probability a(�Γ(t) | �C(t−1)); otherwise
�C(t) = �C(t−1).

The proposal distribution is chosen so as to be easy to sample from, as MCMC methods change the problem of sampling
from π to one of drawing many samples from q. It is also advantageous for speed reasons if samples from q tend to be in
high-probability regions of π. A sufficient condition for discrete state spaces for π( �C|I) to be the stationary distribution of
the chain is detailed balance:

π(�C|I)T(�C → �Γ|I) = π(�Γ|I)T(�Γ → �C|I) . (7)

For continuous state spaces, a bit more care needs to be taken, but a similar statement can generally be made. See Neal 12

for details.

2.1 Metropolis-Hastings

Hastings13 created the MCMC sampling approach commonly referred to as the Metropolis-Hastings algorithm by extending
Metropolis’ work to provide detailed balance when q is asymmetric (q( �C | �Γ) �= q(�Γ | �C)). For an iterate �C(t−1) and a
candidate sample �Γ(t), the Metropolis-Hastings acceptance probability is defined as

a(�Γ(t) | �C(t−1)) = min
(
1, η(�Γ(t) | �C(t−1))

)
(8)

where the Hastings ratio η is

η(�Γ(t) | �C(t−1)) =
π(�Γ(t))

π(�C(t−1))

q(�C(t−1) | �Γ(t))

q(�Γ(t) | �C(t−1))
. (9)

Using the ratio of the proposal distributions in the Hastings ratio ensures that the samples do not get overly attracted to
high probability regions of q.

2.2 Bayesian segmentation model

To construct a Metropolis-Hastings sampling algorithm, we must specify π( �C | I) and q(�Γ | �C). Note that while the for-
mulation we present is continuous, any implementation must necessarily be a discrete approximation. The choice of π
is problem dependent (though one must be able to evaluate it). For the proposal distribution, arbitrary choices of q can
result in a slow mixing rate. The more likely q is to generate high-probability samples from π, the faster convergence will
be. For the proposal distribution, we choose to implicitly define q by explicitly defining the method of sampling from it.
To generate a candidate sample �Γ from a previous iterate �C , we add a random perturbation to the normal of �C (the arc
length-parameterized version of �C):

�Γ(p) = �Ca(p) + f(p) �N�C(p)δt (10)

where f(p) is a random field. The problem of generating �Γ is now the problem of generating f(p). Note that we choose to
define the perturbation relative to a canonical parameterization so that the perturbations are geometric and independent of
the particular parameterization of �C. We implement equation (10) using a narrowband 3 level set approach for numerical
stability reasons.

∗The ergodic condition implies that it is possible to get to any state from any other state with non-zero probability and that the chain
is aperiodic. The stationary distribution of a Markov chain is the distribution π(�C) that satisfies π(�Γ) =

∫
π( �C)T( �C → �Γ)d �C for all

�Γ.
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1. Start with an initial curve �C(0) and set t = 1.
2. Create f (t)(p) = h ©∗ n(t)(p) + µ�C(t−1)(p).
3. Compute �Γ(t)(p) = �C

(t−1)
a (p) + f (t)(p) �N�C(t−1) (p).

4. Evaluate Hastings ratio η(�Γ(t) | �C(t−1)) (Sec. 2.3).
5. �C(t) = �Γ(t) with probability η(�Γ(t) | �C(t−1)). Otherwise �C(t) = �C(t−1).
6. Increment t and return to Step 2.

Table 1. Overall algorithm

For practical sampling implementations, it is necessary for both computing sample paths of f(p) and the probability of
these sample paths to be fast. In this work, we focus on generating f(p) which are composed of a correlated zero-mean
random process r(p) and a mean function µ �C(p):

f(p) = µ�C(p) + r(p) . (11)

We construct r(p) by circularly convolving white Gaussian noise n(p) with a smoothing kernel h(p) (e.g., a Gaussian
kernel). Many other choices for generating r(p) are possible such as using Fourier or wavelet bases to provide perturbations
that are more localized in space and frequency.

The mean process should be chosen to increase the convergence rate of the sampling algorithm. For instance, if µ �C(p)
is the gradient flow of π( �C | I) (or log π( �C | I)), then samples from q are likely to move to higher probability regions of π.
It is important, though, that the mean component does not overly dominate the random component of the perturbation to
ensure the ergodicity of the chain.

Many reasonable choices are possible for the mean perturbation. Here, we define it as

µ�C(p) = −κ�C(p) + γ�C (12)

where γ �C is a positive value (which can be dependent on �C or a fixed constant) counteracting the curve shortening term
κ�C . As discussed earlier, a flow of f(p) = −κ �C(p) is a regularizing flow which creates smooth curves. Empirical results
show that without this deterministic smoothing force, generating smooth curves from a chain of q evaluations is so unlikely
that the sampling procedure will not generate smooth curves in a reasonable amount of time. While each r(p) is smooth,
the sum of N of these random fields is somewhat similar to convolving h(p) with a random white Gaussian process with
variance proportional to N .

2.3 Detailed balance

Metropolis-Hastings sampling requires that we be able to evaluate both the forward and reverse proposal distributions.
This computation needs to be understood in order to ensure detailed balance and guarantee that our samples come from the
posterior. In the case of our curve perturbations, this is non-trivial because q is asymmetric due to the presence of the mean
component. The mean component biases the proposal distribution to generate perturbations in a certain direction. Both the
forward and reverse directions of the proposal distribution have the same bias but their perturbations are opposite of each
other (to go from �Γ to �C requires a perturbation in the opposite direction of moving from �C to �Γ). So if a perturbation
around the mean was generated to go from �C to �Γ, a perturbation in the opposite direction of the mean is required to go
from �C to �Γ. The former is a high-probability event while the latter is a low-probability event, thus q cannot be symmetric.

The perturbation defined in equation (10) is a differential in the direction of the normal, so each random perturbation
maps one curve uniquely to another. This remains approximately true for small finite δt. Thus evaluating q( �Γ | �C) is
equivalent to evaluating the probability of generating f(p).

For a numerical implementation of equation (11), we generate a Gaussian noise vector n of fixed length, multiply it by
a circulant matrix H (which implements the circular convolution), and add a mean vector µ �C . This results in a Gaussian
random vector f ∼ N(µ �C , HHT). Note that f is deterministically generated from n so

pf(Hn + µ�C) ∝ pn(n) ∝ exp(− 1
2nTn) . (13)
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�Γa(q0) = �Γ(p0)

f(p0) �N �Ca
(p0)δt

φ̂lin(q0) �N�Γa
(q0)δt

�Ca(p0)

�̂Cr(q0)�̃Ca(p)

Figure 1. An example of the backtracing operation which must be done to compute the reverse perturbation. The linear approximation
to �C is shown as the dashed line.

Unfortunately, computing the probability of the reverse perturbation q( �C | �Γ) (which is necessary for detailed balance)
is less straightforward. The following analysis demonstrates how to overcome this issue. The analogs to equations (10)
and (11) are:

�Cr(q) = �Γa(q) + φ(q) �N�Γ(q)δt (14)

φ(q) = µ�Γ(q) + h(q) ©∗ ν(q) (15)

with µ�Γ(q) = −κ�Γ(q) + γ�Γ. Note that we use a different parameter value q to indicate that the parameterizations between
�Ca and �Γa are not directly compatible, and the matching curve �Cr in (15) is geometrically equivalent to �C, but does not
have the same parameterization.

The main difficulty arises because �N�C �= �N�Γ otherwise φ(q) would just be −f(q). In fact, for finite δt, it is possible

to construct an f such that no φ can satisfy equation (14). For small δt and smooth curves �C (say κ �C(p) bounded), it is

generally possible to construct φ(q) by taking each point q0 on �Γ(q) and tracing along the normal �N�Γ(q0) until the line

intersects with �C at some corresponding point p0 (essentially solving equation (14) for each q0 ∈ [0, 1]).

This is cumbersome, so in practice we approximate that computation by constructing linear approximations at each
point q0 to �C and �Γ (using the tangent to the curve at p0 and tracing back along the normal). See Fig. 1 for an illustration
of this process. This results in the following closed-form approximation:

φ(q0) ≈ − f(p0)
�N�C(p0) · �N�Γ(q0)

. (16)

Note that when �N�C(p0) = �N�Γ(q0), we get the expected φ(q0) = −f(p0). More accurate approximations can be found
by using higher-order terms such as curvature. Note that this explicit correspondence we construct here means that even
though we implement the perturbations using level sets, topological change is not valid for our Markov chain. To allow
splitting or merging of regions, a jump-diffusion process must be used. 9

Once we have computed φ(q), computing its probability is straightforward:

pφ(Hν + µ�Γ) = pν(ν) ∝ exp(− 1
2νTν) . (17)

We can then use the analysis we just performed (which is a detail that most implementations ignore) to ensure detailed
balance by computing the ratio of the forward and reverse proposal distributions as

q(�C(t−1) | �Γ(t))

q(�Γ(t) | �C(t−1))
= exp

(
− 1

2

[
‖ν(t)‖2 − ‖n(t)‖2

])
(18)
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with ν(t) = H−1(φ(t) − µ�Γ(t)).

We summarize the algorithm in Table 1.

3. CONDITIONAL SIMULATION

One advantage of sampling-based approaches is that it enables the natural handling of situations when we are given exact
information about part of the solution. With an optimization-based approach, this would require one to do constrained
optimization which can be quite difficult in high-dimensional problems. Standard semi-automatic segmentation algorithms
such as Livewire15 can generally only fill in small gaps between user-specified points. With a sampling approach, we can
use a technique often used in geophysics referred to as conditional simulation. 16 The basic idea is to generate samples
from a multi-dimensional probability distribution conditioned on knowing some of the dimensions (in our case portions of
the curve).

Let �Ck : [0, β] → Ω be the known part of the curve (β ∈ [0, 1]) and �Cu : [β, 1] → Ω be the unknown part of the curve.
Then

�C(s) =
{

�Ck(s) : s ∈ [0, β]
�Cu(s) : s ∈ [β, 1]

(19)

�Ck(β) = �Cu(β) and �Ck(0) = �Cu(1) for �C to be closed. While we will only discuss the case where �Ck is on a single
contiguous interval [0, β], it is straightforward to generalize this approach for multiple intervals.

Now we wish to sample from
π(�Cu|I, �Ck) ∝ p(I|�Cu, �Ck)p(�Cu|�Ck) . (20)

Note that

p(�Cu|I, �Ck) =
p(�Cu, �Ck|I)

p(�Ck)
=

p(�C | I)

p(�Ck)
. (21)

Thus, we can see that
π(�Cu|I, �Ck) ∝ p(�C | I) ∝ p(I | �C)p(�C) , (22)

and computing the conditional target distribution is the same computation as in our regular sampling algorithm (and part
of �C does not change with time).

To ensure that our samples from our proposal distribution stay on the manifold of curves that contain �Ck , we simply
need to modify our proposal distribution to impose zero variance on part of the curve. A simple way to implement this is
to multiply the random perturbations we defined in Sec. 2.2 by a scalar field:

r(s) = d(s) (µ(s) + h(s) ∗©n(s)) (23)

with d(s) = 0 for s ∈ [0, β], d(s) = 1 for s ∈ [β + ε, 1 − ε] and ε > 0. From (β, β + ε] and [1 − ε, 1), we should have
d(s) smoothly transition from 0 to 1 so that there is not a strong variance mismatch at the end points of �Ck.

Computationally, this is equivalent to multiplying our random vector r by a diagonal matrix D resulting in r ∼
N(Dµ, DHHTD). Note that this is a degenerate probability distribution as some entries of r have zero variance. Thus
we should only evaluate q(· | ·) using the the perturbation r u on the unknown part of the curve. Otherwise the computation
is identical to that described in Sec. 2.3.

4. RESULTS

In this section we present results on two main applications: prostate magnetic resonance (MR) segmentation and a geo-
logical inversion problem. All images used were 256 × 256. For each application, we generated 1000 samples { �Ci}1000

i=1

from π( �C | I). Computation time per sample ranged from 10 to 120 seconds on a Pentium 4 workstation depending on the
complexity of the specific model and the nature of the configuration space. Each sample is generated independently of the
others, so parallel computing systems can easily be used to increase sample throughput.

To display the results of the sampling methods, we will use three main visualization approaches:
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(a) (b) (c) (d)
Figure 2. Results for the synthetic Gaussian example. (a) Observed image. (b) True boundary and initial curve. (c) Two most likely
samples. (d) Marginal confidence bounds and histogram image.

1. Plotting the most likely samples (e.g., Fig. 2(c)).

2. Histogram images (e.g., Fig. 2(d)). For each x we count the number of �Ci for which x is inside the curve (i.e.,
Ψ �Ci

(x) < 0). This is thus the marginal distribution over segmentation labels at each x.

3. Marginal confidence bounds (e.g., Fig. 2(d)). Given a histogram image, we plot the level contours. All points with
probability 0.5 of being inside the curve can be viewed as analogous to a median contour. Other level contours can
be viewed as confidence bounds (e.g., the 10% confidence bound is the contour outside of which all pixels were
inside fewer than 10% of the samples).

These visualizations are only possible because we are able to draw a large number of statistically-correct samples from
the posterior distribution. Confidence bounds have been used in some previous image segmentation or reconstruction ap-
proaches,17, 18 but those dealt with parametric shape representations (so the uncertainty was over a finite set of parameters).
It is important to note that our confidence representations are marginal statistics from infinite-dimensional non-parametric
shape distributions.

While we do not present any direct comparisons to gradient-based curve evolution methods, the most likely samples
we show can be viewed as a proxy for what an optimization-approach that can find global optima would capture. In the
examples we show below, the global optimum does not provide a satisfactory segmentation (even for the synthetic example
where the image is generated exactly according to the data model used in segmentation) due to the high levels of noise and
clutter in the images. This is similar to trying to estimate the mean of a Gaussian random variable with variance σ 2 from
N samples. As the variance of the maximum likelihood (ML) estimate is σ 2/N , we would not be surprised for the ML
estimate to be incorrect by ±σ/

√
(N) (which can be very different from the true answer if σ is large). Note though that

having access to higher-order statistics such as error variances can help constrain the range of likely answers, much as we
do below.

4.1 Synthetic Gaussian

In this section, we generate a synthetic image I exactly according to the implicit Chan-Vese model:

I(x) = m(x) + n(x) (24)

where m(x) is piecewise constant (0 outside the curve, 1 inside the curve) and n(x) is white Gaussian noise with σ = 10
(for a SNR of −20 dB), and the shape of the true curve that of a 2D prostate slice. Our probability density then is (3)
exponentiated with the mean values inside and outside the curve known a priori. The observed image is shown in Fig. 2(a)
with no readily apparent structure due to the low SNR. The true location of the contour is shown in Fig. 2(b).

In this example, the most-likely samples shown in Fig. 2(c) are actually not close to the true boundary in the upper-
right corner of the object. While the model is correct, the noise levels in this image are high enough to create regions
where the incorrect segmentation is more likely under the model. Note, though, that the marginal confidence bounds in

SPIE-IS&T/ Vol. 6814  681407-7

Downloaded from SPIE Digital Library on 04 May 2010 to 128.30.100.187. Terms of Use:  http://spiedl.org/terms



—-−1000 −500 0 500 1000 1500 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

−3

intensities

P
[in

te
ns

iti
es

 | 
la

be
l]

 

 

inside
outside

 

 

true
#1
#2

 

 

true
#1
#2

(a) (c) (e)

 

 

true
10/90%
50%

 

 

true
10/90%
50%

(b) (d) (f)
Figure 3. Prostate segmentation using non-parametric intensity distributions. (a) Pixel intensities for each class. (b) Initial curve. (c) Two
most likely samples. (d) Marginal confidence bounds and histogram image. (e)-(f) Most likely samples and marginal for prostate-only
cluster.

Fig. 2(d) show that the true contour location is mostly bracketed between the 90% and 10% confidence contours. The
median contour is also quite close to the true boundary location indicating that the typical sample is perhaps providing
more useful information than the most-likely sample. There is also a more diffuse histogram image (and a larger gap
between the confidence bounds) in the upper right corner of the prostate which indicates greater uncertainty in that portion
of the curve.

4.2 Prostate segmentation

Here we present results on a noisy T1-weighted prostate MR image. We assume that pixels are independent and identically
distributed (iid) given the curve and learn (from segmented training data) non-parametric histogram distributions p(I(x)|0)
and p(I(x)|1) (shown in Fig. 3(a)) to specify the pixel intensity distribution outside and inside the curve respectively. Then
the data likelihood term is

π(I | �C) =
∏
x

p
(
I(x) |H(Ψ �C(x))

)
(25)

with H the Heaviside function. We use a standard curve length penalty as the prior.

The histogram image and the marginal confidence bounds in Fig. 3(d) show that this distribution has three primary
modes: one is around the correct prostate segmentation (the red contour); another segments just the rectum (the dark
region located below the prostate); and the third encompasses both the prostate and the rectum. As can be seen in Fig. 3(c),
the curves that segment the two regions together are actually from the most likely mode. The reason for this can be seen in
the image intensity distributions. Due to the noise and our simple iid model, even though the rectum appears to be darker
than the prostate, all pixel intensities below some threshold (approximately a value of 350) result in a higher likelihood for
that pixel to be inside the curve. Hence the most likely curves are actually the ones that segment the prostate and rectum
together.
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Figure 4. Synthetic circular salt body example. (a) Observed gravity profile. (b) Initial curve and true boundary. (c) Two most likely
samples. (d) Marginal confidence bounds and histogram image.

Without having any additional a priori information, it would be difficult to say which of these three scenarios is the
correct one. In fact, it is possible in some applications where multiple modes all provide reasonable explanations of the data.
One approach we can take here is to utilize the information our sampling procedure provides to us. While the aggregate
marginal statistics do not appear to be providing very useful information (though the 90% confidence boundaryis located
within the true prostate boundary), it is straightforward to create three clusters of samples. An expert user or a shape-driven
classifier could then pick the best cluster to use. We show the most-likely samples and the marginal confidence boundaries
for the prostate-only cluster in Fig. 3(e) and (f).

4.3 Gravity inversion

In petroleum geophysical applications, it is often important to be able to accurately locate underground salt bodies. Fluid
does not flow through salt bodies, so water, oil, and gas tend to become trapped next to salt bodies. The tops of salt
bodies are usually easy to locate using standard seismic tomographic imaging techniques, but locating the bottoms is more
difficult due to the strong attenuation of seismic waves in salt bodies. Without accurate knowledge of the salt boundaries,
high-quality seismic imaging below the salt body is impossible.

Gravity inversion is one technique that can be used to localize salt bodies. 19 Salt is less dense than the surrounding
rock, so the presence of salt will cause a deviation from the expected gravitational field at the earth’s surface which can
be measured by very precise gravimeters. We will discuss a 2D version of the formulation that naturally generalizes to
3D. The measurements are preprocessed by subtracting various effects (such as the geoid and centrifugal force from the
rotation of the earth) so the resulting observed values only depend on the mass distribution ρ(x) inside the image domain
Ω. Note that this is a very ill-posed problem. In the example we show, there were 512 surface measurements from which
we try to reconstruct an image containing 65,536 pixels.

We assume there is an array of evenly-spaced gravimeters located at x i = (i∆x, 0) having associated vector gravity
measurements �gi = (gx,i, gz,i) for i ∈ {1, 2, . . . , Ng}. The measurements can be modeled as:

�gi(ρ) = G

∫
Ω

ρ(x)(x − xi)
||x − xi||3

dx (26)

with G the universal gravitational constant.

The densities are relatively constant within salt and non-salt regions, so we assume ρ takes on a simple form:

ρ(x) = ρ0 + ∆ρH(−Ψ(x; �C)) . (27)

This results in the following forward gravity model:

�gi(�C) = �g0 + ∆ρG

∫
R(�C)

(x − xi)
||x − xi||3

dx (28)
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Figure 5. Synthetic salt body example with two disjoint regions and complex geometry. (a) Observed gravity profile. (b) True boundary,
initial curve, and curve found using gradient-based curve evolution. Most probable samples and marginal confidence bounds for (c)-(d)
unconstrained problem, (e)-(f) top-salt fixed, and (g)-(h) top-salt and an additional point fixed. The known portion of the curve is shown
in magenta.

We then define our energy functional as the L2 difference between observed gravity measurements �ξi and forward
model estimates �gi(�C) with a regularization term:

E(�C) =
Ng∑
i=1

||�gi(�C) − �ξi||2 + α

∮
�C

ds (29)

In the results we present here, synthetic gravity measurements are generated exactly according to equation (26) using some
true salt boundary �C∗.

We begin with a salt body with a simple circular geometric structure. In Fig. 4(a) we show the observed vector gravity
profile, and in Fig. 4(b) the true salt boundary in red and the initial curve in magenta. The two most likely samples in
Fig. 4(c) come reasonably close to the true curve, and the marginal median contour in Fig. 4(d) is quite accurate as well.
Note that the error behaves as we would expect with greater uncertainty at the bottom of the salt body than at the top (due
to the 1/r2 term in the measurement model).

In Fig. 5, we show an example with more complex geometry. We are given a priori the information that there are
two separate regions. If we did not know the topology beforehand, one approach would be to run the sampler multiple
times, varying the number of curves. We now track two curves �C1 and �C2 which are treated independently in the proposal
distribution:

q(�Γ1, �Γ2|�C1, �C2) = q(�Γ1|�C1)q(�Γ2|�C2) . (30)

The curves are coupled together only through π( �C1, �C2|I). Computation of equation (28) is largely unchanged except a
pixel is considered to be salt if it is inside either curve. The two curves are allowed to overlap, but both the data and the
curve length penalty make that unlikely in this case.

In Fig. 5(a) and (b), we show the observed gravity measurements with the true salt boundaries and the initial curves
and the result of running an optimization-based curve evolution method (the derivation of the gradient flow can be found
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in Fan14). Because the top salt boundary is usually available through other means, we allow the initialization to have this
information. We show the results of running the normal sampling procedure in Fig. 5(c). In Fig. 5(d), we fix the location
of the top-salt and conditionally simulate the rest of the curve. In Fig. 5(e) we further fix an additional location at the high
curvature point on the left salt body (this can possibly be obtained using an exploratory well). The conditional simulation
results exhibit much less sample variance, more accurate estimates, and allow much faster computation (due to reduced
mixing time and reduced number of samples needed to accurately represent the distribution). As an indication of the ill-
posedness of this problem, the top two samples in Fig. 5(d) have virtually identical gravity errors but are fairly different
geometrically.

Conditional simulation is particularly useful for globally-coupled estimation problems. For instance, in the gravity
inversion problem, the locations of the top of the salt and the bottom are correlated. If the estimate of the top is too low,
the observed gravity at the surface can still be accurately explained if our estimate of the bottom is also too low (by a scale
factor reflecting the 1/r2 of gravity measurements). Thus fixing the location of the top of the salt to some extent fixes a
range for the location of the bottom of the salt. This is not the case with energy functionals such as Chan-Vese which are
more local in nature.

One thing to notice is that we have trouble accurately segmenting portions of the curve with high positive or negative
curvature because our proposal distribution makes it unlikely that those types of samples will be generated. A different
proposal distribution that still smooths the curve but is not based on curvature would alleviate this issue.

5. CONCLUSION

In this paper, we presented an approach to generate samples from probability distributions defined on spaces of curves by
constructing a MCMC algorithm and showing how to properly compute the proposal distribution probabilities to ensure
detailed balance and asymptotic convergence to a desired posterior distribution. The sampling approach provided robust-
ness to local minima in low-SNR and ill-posed problems, and we showed how a large number of curve samples can be
used to provide useful aggregate statistics (such as non-parametric marginal confidence bounds) about the likely location
of the true curve locations. Experimental results demonstrated the usefulness of this aggregate information even when the
most likely curves do not provide satisfactory segmentations.

We developed a semi-automatic segmentation algorithm which extended our sampling approach to enable conditional
simulation. In many application domains of interest, segmentations are currently performed by an expert such as a ra-
diologist or a geological interpreter. Rather than trying to remove them completely from the equation, we can create a
feedback system that allows them to focus their expertise and knowledge on the most difficult portions of the problem. In
fact, sampling methods can actually provide information about where the greatest uncertainty is and, thus, where expert
assistance is most needed.

Future work in this space involves developing faster sampling algorithms by utilizing better proposal distributions
or multiresolution methods; extending the framework to non-closed curves and unknown topology; creating uncertainty
measures that provide information about the local characteristics of the shape manifold; and extending the conditional
simulation algorithm to allow for uncertainty in the user-provided curve location.
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