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ABSTRACT

Information measures have long been studied in the con-

text of hypothesis testing leading to variety of bounds on

performance based on the information content of a signal

or the divergence between distributions. Here we consider

the problem of estimation of information content for high-

dimensional signals for purposes of classification. Direct

estimation of information for high-dimensional signals is

generally not tractable therefore we consider an extension to

a method first suggested in [1] in which high dimensional sig-

nals are mapped to lower dimensional feature spaces yielding

lower bounds on information content. We develop an affine-

invariant gradient method and examine the utility of the

resulting estimates for predicting classification performance

empirically.

Index Terms— information measures, mutual informa-

tion, feature extraction, invariance

1. INTRODUCTION

There is a long history of analysis relating information mea-

sures to classification performance in M -ary hypothesis test-

ing. These measures, particularly those of the Ali-Silvey [2]

variety (expectations over convex functions of the likelihood

ratio), are appealing in the context of machine learning as

they lend themselves readily to optimization owing to their

smoothness and convexity properties. Basseville [3] surveys

their use in signal processing. More recently, Nguyen et al
[4] have established links between a broad class of Ali-Silvey

measures and convex surrogate loss functions (e.g. the expo-

nential and logistic loss functions). In turn, bounds on excess

risk have been established [5] for such surrogate loss func-

tions, further establishing the suitability of Ali-Silvey mea-

sures as a surrogate criterion for classifier design.

Kullback-Leibler divergence [6], of which mutual infor-

mation is a special case, is an example of an Ali-Silvey mea-

sure. We discuss the use of mutual information (MI) as a

criterion for feature extraction, focusing on mappings from

high-dimensional measurements to low-dimensional features
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following a method originally suggested in [1]. There, an es-

timator utilizing kernel density estimation (KDE) was used

to optimize mutual information in a low-dimensional feature

space. We discuss two issues. The first is the incorporation of

affine invariance into the optimization. The second is the im-

pact of kernel bandwidth on both the quality of the empirical

estimate of mutual information as well as the optimization of

the mapping parameters. We observe that kernel sizes which

are suitable for optimization (i.e. learning the mappings) are

different than those that lead to good empirical estimates of

the mutual information. The latter is of note owing to the fact

that optimal projections cannot, in general, be guaranteed in

the nonparametric setting. Consequently, accurate empirical

estimates are desired when estimating performance bounds.

2. FANO AND HELLMAN-RAVIV BOUNDS

Fano’s inequality [7] is a well known bound relating condi-

tional entropy to the probability of misclassification for M -

ary hypothesis testing. Similar to the Cramer-Rao bound for

minimum mean-square estimation, Fano’s inequality provides

a lower bound on what is achievable for classification error

and thus motivates mutual information as a design criterion

for classifiers. There are various statements of Fano’s inequal-

ity, all of which exploit the following relationships (see [8] for

a derivation)

H(C|X) = H(C)− I(C; X) (1)

= H (E|X) + PεH (C|X, E = 1) (2)

where Pε denotes the probability of misclassification, C is a

discrete random variable denoting the class, X is an observed

random variable from which C is estimated, the binary ran-

dom variable E denotes whether a classification error has oc-

curred, H (•) denotes discrete Shannon entropy (we use h (•)
for differential entropy), H (•|•) denotes conditional entropy,

and I (•; •) denotes the mutual information between two ran-

dom variables. This relationship separates the uncertainty re-

garding class label conditioned on an observation X into two

terms. The first term is the uncertainty as to whether or not an

error has occurred (conditioned on the observation X). The

second term is the remaining uncertainty in the class label

conditioned on the event that an error has occurred.
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In the following discussion, minimization of H(C|X) is

equivalent to maximization of I(C; X) by equation 1. We use

H(C|X) and I(C; X) interchangeably, though, some care

must be taken when expressing error bounds in terms of these

two measures. In particular, one must make an assumption re-

garding H(C) (the prior uncertainty in the class variable) in

order to give an explicit bound on Pε as a function of I(C; X).
The weak form of Fano’s inequality

H(C|X) ≤ 1 + Pε log (M − 1) , (3)

with M being the number of classes, substitutes the inequali-

ties

H (C|X, E = 1) ≤ log (M − 1) , and

H (E|X) ≤ H (Pε) ≤ 1,

into equation 2 assuming log base-2. Alternately, the strong

Fano bound

Pε ≥ min
P
{P : H(C|X) ≤ H(P ) + P log (M − 1)} , (4)

is tighter and may be solved numerically. While Equation 3

provides a basis for the use of MI as an optimization crite-

rion when designing M -ary classifiers it is inapplicable to the

binary case1 as when M = 2

H (C|X, E = 1) = 0.

The strong Fano bound does apply to the binary case.

Hellman and Raviv [9] give a loose upper bound on the

probability of error also specified in terms of conditional en-

tropy

Pε ≤ 1
2
H (C|X) (5)

which can also be stated in terms of I(C; X). We refer to

this bound as the H-R upper bound. In contrast, to the Fano

bounds, the H-R upper bound necessarily assumes the use of

the Bayes’ optimal classifier. In either case, both the upper

and lower bounds motivate I(C; X) as a design criterion.

Figure 1 plots the strong and weak Fano lower bounds

as well as the Hellman-Raviv upper bounds as a function of

I(C; X) for M = 4. What is clear from the figure is that

the weak Fano bound is significantly looser than the strong

Fano bound (almost everywhere) and particularly for small

Pε which is an important regime for classifier design. This

disparity grows as M grows large. Consequently, the weak

Fano bound is of limited use to compute performance bounds

as a function of estimates of information measures.

Fano’s inequality has been the motivation for a wide va-

riety of methods exploiting mutual information I(C; X) as

a criterion for optimizing decision systems. Previous work

1a number of references in the machine learning literature erroneously

cite Equation 3 as a basis for classifier design in the binary case.
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Fig. 1. Weak Fano lower bound (red), strong Fano lower

bound (blue), H-R upper bound (green) on Pε for M = 4.

X Z Ĉ(Z)C

Fig. 2. Directed graph from class label C to estimate Ĉ with

embedded feature extraction.

includes the design of decision trees [10], feature selection

[11, 12] and feature extraction [13, 1]. The distinction be-

tween selection and extraction being that the former addresses

the selection or ranking of a subset of features from a given

list while the latter infers a mapping as a function of all fea-

tures to a lower-dimensional representation. Many similar

feature selection and extraction methods have since been de-

veloped differing in the form of probability model or the ap-

proximation to conditional entropy. For the remainder of the

discussion we will focus exclusively on feature extraction.

g(•){x1, · · · , xNT
}

{c1, · · · , cNT
} Î(•; •)

{z1, · · · , zNT
}

Fig. 3. Block diagram for learning information preserving

mappings: Labeled samples xi are passed through a parame-

terized mapping g(•) resulting in lower-dimensional features

zi which are then combined with class labels ci to compute a

perturbation to g(•) so as to increase mutual information.
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3. INFORMATION PRESERVING MAPPINGS

The Markov chain of Figure 2 depicts the statistical model

of a classification system with feature extraction embedded

in the process. Here X ∈ �D represents a high-dimensional

measurement while Z ∈ �L is a mapping of the measure-

ment to a lower-dimensional space. The last term, Ĉ(Z)
is the classifier. Ideally, one would like to design the pa-

rameters of the mapping g : �D → �L so as to minimize

Pε = Pr
{

C �= Ĉ(Z)
}

, however, as suggested in [1, 14] and

motivated by the preceding, a surrogate criterion is to maxi-

mize I(C; Z), thus optimizing bounds on Pε. Note that under

this surrogate criterion one can optimize properties of the fea-

tures without explicitly constructing a classifier.

Ideally, one would like Z to be a sufficient statistic. One

measure of sufficiency is the K-L divergence

D (p (C|X) ||p (C|Z)) = I(C; X)− I(C; Z)

which captures information loss as a consequence of feature

extraction. This is a form of the well known data processing

inequality[8]. It can be shown that I(C; X) ≥ I(C; Z) with

equality if and only if Z is sufficient for C.

3.1. Empirical Estimation and Optimization of Mutual
Information

We define the following sets of high-dimensional samples and

their labels as

X = {x1, · · · , xN} C = {c1, · · · , cN}
where xi ∼ p(X|C = ci) and ci ∼ P (C). The set of features

is denoted

Z = {z1, · · · , zN}
= {g(x1; G), · · · , g(xN ; G)} = g(X ; G)

where G are the parameters of a function that we wish to op-

timize. Finally, we denote

Xj = {xi|ci = j} Zj = {zi|ci = j}
as the subset of samples (or features) grouped by common

label. The resubstitution estimate of I(C; Z) is

Î (C,Z, Θ (Z)) =

1
N

∑
zi∈Z

log
(

p̂ (zi|ci; Θci (Zci))
p̂ (zi; Θ (Z))

)
(6)

where the parameters of class-conditional density estimates

Θ = {Θ1, · · · , ΘM} ,

are functions of {Z1, · · · ,ZM}, respectively. Equation 6 can

also be expressed as an explicit function of X and G by sub-

stituting zi = g(xi; G) and Z = g(X ; G) as appropriate. We

will drop the explicit dependence when it is clear from the

context. Additionally, we assume that the estimate of p̂ (z) is

marginally-consistent

p̂ (z; Θ) =
M∑

j=1

πj p̂ (z|j; Θj) ; πj =
|Zj |
N

where we assume that the prior probabilities of each class πj

are reflected in the samples2. Under this assumption, Equa-

tion 6 decomposes into two terms

Î (C,Z, Θ (Z)) = (7)

1
N

∑
zi∈Z

log
(

1
p̂ (zi; Θ (Z))

)
−

M∑
j=1

∑
zi∈Zj

πj log
(

1
p̂ (zi|j; Θj (Zj))

)

= ĥ (C,Z, Θ (Z))−
M∑

j=1

πj ĥ (Cj ,Zj , Θ (Zj)) . (8)

where the first term is the resubstitution estimate of the en-

tropy of p (Z) and the second term is the resubstitution es-

timate of the conditional entropy of p (Z|C). Following 8,

we will derive a gradient update for ĥ which can be linearly

combined to compute a gradient update for Î .

3.2. Gradient Updates

In Equation 6, dependence on G comes through two terms

– the samples over which the estimate is evaluated and the

parameters. For the remainder of the discussion we will as-

sume that p̂ (•) is a KDE, in which case the parameters are

comprised of a kernel size and the set of samples

Θj = {Zj , σj} = {g (Xj ; G) , σj}
and

p̂ (z|j; Θj) =
1

NΘj

∑
θi∈Θj

k (z − θi, σj) ,

=
1
|Zj |

∑
zi∈Zj

k (z − zi, σj) ,

=
1
|Xj |

∑
xi∈Xj

k (g(x; G)− g(xi; G), σj)

where |Θj | = NΘj
+ 1.

Expanding the resubstitution estimate of the entropy of

p (Z|C) yields

ĥ (Cj ,Zj , Θj) = − 1
|Zj |

∑
zi∈Zj

log p̂ (zi|j; Θj) (9)

2If this is not the case, i.e. πj �= |Zj |/N , there is a straightforward

modification.
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By the chain rule

∇Gĥ =
(
∇Z ĥ +∇Θĥ∇ZΘ

)
∇GZ. (10)

where we have dropped the explicit dependence on j which

denotes the set over which the gradient is being evaluated.

Conditional terms are computed over subsets with common

labels (i.e. Zj) while the unconditional terms are computed

over the full set of samples Z . Taking each term separately,

the gradient of the entropy estimate with respect to a set of

samples Z is

∇Z ĥ =
[
∇z1 ĥ, . . . ,∇zNz

ĥ
]

(11)

∇zk
ĥ = − 1

Nz

1
p̂ (zk; Θ)

∇zk
p̂ (zk; Θ) (12)

∇zk
p̂ (zk; Θ) =

1
NΘ

NΘ∑
j=1

k
′
(zk − θj ; σ) (13)

where Nz = Nθ = N or Nz = Nθ = |Zj | depending on

whether an unconditional or conditional entropy gradient is

being evaluated and k
′
(•; σ) is the derivative of the kernel

k (•; σ).
The gradient with respect to the parameters Θ for a KDE

is:

∇Θĥ =
[
∇θ1 ĥ . . .∇θN

ĥ,∇σĥ
]

(14)

∇θk
ĥ = − 1

Nz

Nz∑
i=1

1
p̂ (zi; Θ)

∇Θk
p̂ (zi; Θ) (15)

where

∇θk
p̂ (zi; Θ) = − 1

NΘ
k

′
(zi − θk; σ) (16)

For fixed σ

∇ZΘ =
[I 0
0 0

]
(17)

For simplicity we will assume a linear mapping, that is

zi = g (Xi; G) = GTXi and consequently

∇GZ = X T (18)

other mappings are possible. Combined, equations 12, 13,

15, 16, 17, and 18 comprise the terms for computing ∇ĥG.

Consequently,

∇GÎ = ∇Gĥ (C,Z, Θ)−
M∑

j=1

πj∇Gĥ (Cj ,Zj , Θj) . (19)

3.3. Affine Invariance

Ali-Silvey measures are invariant to invertible transforma-

tions of the random variables; however, nonparametric esti-

mators of these measures are generally not invariant to such

transformations. Here we show how invariance can be incor-

porated directly into the gradient calculations. The alternative

is to rescale both the kernel size and the data throughout the

optimization for which there is no analytic approach.

Here we present the case for linear mappings as in the

previous development. The standard (k+1)th gradient ascent

update to G be expressed

G(k+1) = G(k) + ΔG

where ΔG ∝ ∇GÎ . However, we wish to define a gradient

update which cannot be explained as an invertible transfor-

mation in the low-dimensional feature space. Such changes

in the feature space do not reflect a real change in expected

information. The condition which ensures that the perturba-

tion is affine invariant is

ΔT
GG(k) = 0, (20)

that is, the columns of G(k) are orthogonal to the columns of

ΔG. This results in a constrained optimization

max
ΔG

∇GÎT ΔG

such that ΔT
GΔG = μ

and ΔT
GG(k)ΔG = 0

the solution to which is

ΔG = μ(I −G(k)(G(k)T
G(k))−1G(k)T

)∇GÎ

That is, ΔG is proportional to the projection of∇GÎ onto the

orthogonal subspace of G(k).

4. EMPIRICAL RESULTS

We present experiments which illustrate various aspects of the

approach. We are primarily concerned with two issues. The

first issue is the sensitivity of the optimization to kernel size.

We find that one can use an overly smooth kernel (i.e. one

that gives a poor estimate of mutual information) and yet still

leads to an informative projection. The second issue is to what

degree the empirical estimate of I(C; Z) is useful for perfor-

mance prediction. This essentially amounts to how close the

resubstitution estimate of mutual information in the feature

space is to the actual information. Not surprisingly, the es-

timator is sensitive to kernel size. However, the empirical

implications are that one can use a wide range of kernel sizes

to find the projection and then use a leave-one-out kernel size

to estimate information content.
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Fig. 4. For each kernel size 50 samples were generated with

100 points each (N = 100). The average MI for each sam-

pling as measured using the optimization kernel size, σopt,

a leave-one-out estimate σloo and the known distribution are

shown in red, blue and green respectively. The dotted blue

lines above and below Îσloo
represent +/- the variance using

that estimate.

Consider a two class problem with univariate Gaussian

class conditional distributions, embedded with an extra di-

mension of independent Gaussian noise (M = 2, D = 2). In

this case a linear projection to one dimension is sufficient for

optimal classification (L = 1). For each kernel size in the log-

arithmic range [10−3, 101], the optimization produces a pro-

jection G, from which we record mutual information in three

different ways: 1) using the specified kernel size Îσopt
(C; Z),

2) using a size which optimizes the leave-one-out likelihood

of the projected data Îσloo
(C; Z) upon completion of the op-

timization using a fixed kernel size, and 3) using the known

distribution in the learned feature space I(C; Z). Note that

the affine invariant gradient of the previous section allows the

use of a fixed kernel size throughout the optimization. This

eliminates the computationally burdensome step of adapting

the kernel size throughout the optimization. Figure 4 shows

the impact of kernel size on these values.

The optimization succeeds for sizes in the range [.2, 1.5],
where the mutual information I(C; Z) is close to I(C; X).
Moreover, while Îσopt

(C; Z) varies significantly as a function

of size, Îσloo
(C; Z) is close to I(C; Z). In general, smaller

sizes overestimate the mutual information while larger sizes

underestimate. Informative projections can be found over a

range of sizes with leave-one-out kernel size providing an ac-

curate estimate of mutual information as a final step.

Next we show some simple figures that illustrate the na-

ture of the learned projections. It is well known that the

log-likelihood ratio is a sufficient statistic for classification.

Figure 5(top) shows a learned 2D feature space of 2D data
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Fig. 5. Mapping of 4-D measurement space to 2-D feature

space (top) as compared to log-likelihood space (bottom). In-

trinsic dimension of class information is 2-D.

embedded in 4D with two extra noise dimensions. Figure

5(bottom) is the corresponding log likelihood ratio space.

As be seen both preserve class information (though we shall

quantify this), but in different ways. The difference being that

the feature space reflects the multi-modal nature of the data,

which is a point of comparison only.

In Figure 6 the 2D learned feature and log likelihood ratio

spaces are shown for 1D data embedded in 4D (i.e. there

are 3 extra noise dimensions). While the log-likelihood ratio

is a sufficient statistic, it is not minimal, as can be seen by

the degeneracy of the figure. The feature space is also not

minimal, however, one can see in this simple example that

optimization over a 1D feature space would produce a near

minimal sufficient statistic.

Finally, figure 7 shows the results of multiple trials in

which class separability (i.e. Pε) is varied. In these experi-

ments the feature space matches the intrinsic dimension of the

class information. Blue marks indicate the Pε and I(C; X) of

the known model. Red marks indicate the Pε and true I(C; Z)
obtained from the learned projection over multiple trials. Fi-

nally, green marks indicate Pε and estimated I(C; Z) from

the resubstitution estimate. As can be seen for low Pε ac-

curate bounds and informative features are learned while for

higher Pε estimates of information content have an optimistic
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Fig. 6. Mapping of 4-D measurement space to 2-D feature

space(top) as compared to log-likelihood space (bottom). In-

trinsic dimension of class information is 1-D.

bias with one clear outlier. These points are overlain on the

known Fano and H-R bounds for a M = 3. Excepting one

outlier, all estimates of I(C; Z) give accurate bounds on Pε.

5. DISCUSSION

We extended a method for extracting informative features first
suggested by [1]. Affine invariance precludes the computa-
tionally burdensome step of adjusting kernel size thoughout
the optimization. Empirical results indicate that useful pro-
jections may be learned using overly smooth kernels, though
some other means (e.g. leave-one-out cross-validation) was
needed to accurately esitimate actual information content.
Furthermore, in our experiments, estimated information con-
tent gave accurate performance bounds.
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