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Abstract 

We discuss an unsupervised learning method which is driven by an informa- 
tion theoretic based criterion. Information theoretic based learning has been 
examined by several authors Linsker [2, 31, Bell and Sejnowski [5], Deco and 
Obradovic [l], and Viola et aZ[6]. The method we discuss differs from previous 
work in that it is extensible to a feed-forward multi-layer perceptron with an 
arbitrary number of layers and makes no assumption about the underlying 
PDF of the input space. We show a simple unsupervised method by which 
multi-dimensional signals can be nonlinearly transformed onto a maximum 
entropy feature space resulting in statistically independent features. 

1.0 INTRODUCTION 
Our goal is to develop mappings that yield statistically independent features. We 
present here a nonlinear adaptive method of feature extraction. It is based on con- 
cepts from information theory, namely mutual information and maximum cross- 
entropy. The adaptation is unsupervised in the sense that the mapping is determined 
without assigning an explicit target output, a priori, to each exemplar. It is driven, 
instead, by a global property of the output: cross entropy. 

There are many mappings by which statistically independent outputs can be 
obtained. At issue is the usefulness of the derived features. Towards this goal we 
apply Linsker’s Principle of Information Maximization which seeks to transfer 
maximum information about the input signal to the output features. It is also shown 
that the resulting adaptation rule fits naturally into the back-propagation method for 
training multi-layer perceptrons. 

Previous methods [ 11 have optimized entropy at the output of the mapping by con- 
sidering the underlying distribution at the input. This represents a complex problem 
for general nonlinear mappings. The method presented here, by contrast, is more 
directly related to the technique of Bell and Sejnowski [5] in which we manipulate 
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entropy through observation at the output of the mapping. Specifically, we exploit a 
property of entropy coupled with a saturating nonlinearity which results in a 
method for entropy manipulation that is extensible to feed-forward multi-layer per- 
ceptrons (MLP). The technique can be used for an MLP with an arbitrary number 
of hidden layers. As mutual information is a function of two entropy terms, the 
method can be applied to the manipulation of mutual information as well. 

In section 2 we discuss the concepts upon which our feature extraction method is 
based. We derive the adaptation method which results in statistically independent 
features in section 3. An example result is presented in section 4, while our conclu- 
sions and observations appear in section 5 .  

2.0 BACKGROUND 
The method we describe here combines cross entropy maximization with Parzen 
window probability density function estimation. These concepts are reviewed. 

2.1 
Maximum entropy techniques have been applied to a host of problems (e.g. blind 
separation, parameter estimation, coding theory, etc.). Linsker [2] proposed maxi- 
mum entropy as a self-organizing principle for neural systems. The basic premise 
being that any mapping of a signal through a neural network should be accom- 
plished so as to maximize the amount of information preserved. Linsker demon- 
strates this principle of maximum information preservation for several problems 
including a deterministic signal corrupted by gaussian noise. Mathematically Lin- 
sker's principle is stated 

Maximum Entropy as a Self-organizing Principle 

I ( X > Y )  = hy(V>-hy/,y(Ylx) (1) 

where I ( x , y )  is the mutual information of the RVs X and Y,  and hiJ 1)  is the 
continuous entropy measure [4]. Given the RV (random vector), Y E 'Ji , the con- 
tinuous entropy is defined as 

4 

h y ( u >  = - j log(f y(u>>fy(u>du > (2) 

where f y( U )  is the probability density function of the RV, the base of the logarithm 
is arbitrary, and the integral is N-fold. Several properties of the continuous entropy 
measure are of interest. 

1. If the RV is restricted to a finite range in ' J i N  the continuous entropy measure is 
maximized for the uniform distribution. 

2. If the covariance matrix is held constant the measure is maximized for the nor- 
mal distribution. 

'U 
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N N 3. If the RV is transformed by a mapping g:% + % 
new RV, y = g ( x )  , satisfies the inequality 

then the entropy of the 

h y ( Y )  hfy(x) + W q J x y l )  } > (3 1 
with equality if and only if the mapping has a unique inverse, where Jxy is the 
Jacobian of the mapping from X to Y .  

Regarding the first two properties we note that for either case each element of the 
RV is statistically independent from the other elements. 

Examination of (3) implies that by transforming a RV we can increase the amount 
of information. This is a consequence of working with continuous RVs. In general 
the continuous entropy measure is used to compare the relative entropies of several 
RVs. We can see from (3), that if two RVs are mapped by the same invertible linear 
transformation their relative entropies (as measured by the difference) remains 
unchanged. However, if the mapping is nonlinear, in which case the second term of 
(3), is a function of the random variable, it is possible to change relative informa- 
tion of two random variables. From the perspective of classification this is an 
important point. If the mapping is topological (in which case it has a unique 
inverse), there is no increase, theoretically, in the ability to separate classes. That is, 
we can always reflect a discriminant function in the transformed space as a warping 
of another discriminant h c t i o n  in the original space. However, finding the dis- 
criminant function is a different problem altogether. By changing the relative infor- 
mation, the form of the discriminant function may be simpler. 

This is not true, however, for a mapping onto a subspace. Our implicit assumption 
here is that we are unable to reliably determine a discriminant function in the full 
input space. As a consequence we seek a subspace mapping that is in some measure 
optimal for classification. We cannot avoid the loss of information (and hence some 
ability to discriminate classes) when using a subspace mapping. However, if the cri- 
terion used for adapting the mapping, is entropy based, we can perhaps minimize 
this loss. It should be mentioned that in all classification problems there is an 
implicit assumption that the classes to be discriminated do indeed lie in a subspace. 

2.2 Nonparametric Pdf Estimation 
One difficulty in applying the continuous entropy measure with continuous RVs is 
that it requires some knowledge of the underlying PDF (probability distribution 
function). Unless assumptions are made about the form of the density function it is 
very difficult to use the measure directly. A nonparametric kernel-based method for 
estimating the PDF is the Parzen window method [7]. The Parzen window estimate 
of the probability distribution, f y (  U )  , of a random vector Y E 93 at a point U is 
defined as 

N 
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N The vectors yi E ‘$3 are observations of the random vector and K (  [ 1) is a kernel 
function which itself satisfies the properties of PDFs (i.e. K ( U )  > 0 and 
/K(u)~u = 1 ). Since we wish to make a local estimate of the PDF, the kernel 
function should also be localized (i.e. uni-modal, decaying to zero). In the method 
we describe we will also require that K([ 1) be differentiable everywhere. In the 
multidimensional case the form of the kernel is typically gaussian or uniform. As a 
result of the differentiability requirement, the gaussian kernel is most suitable here. 
The computational complexity of the estimator increases with dimension, however, 
we will be estimating the PDF in the output space of our multi-layer perceptron 
where the dimensionality can be controlled. 

3.0 DERIVATION OF LEARNING ALGORITHM 
As we stated our goal is to find statistically independent features; features that 
jointly posses minimum mutual information or maximum cross entropy. 

Suppose we have a mapping g: ’Ji + ‘Ji 
which is described by the following equation 

N M N 
; M < N , of a random vector X E X , 

y = g ( a , X )  (5) 
How do we adapt the parameters a such that the mapping results in a maximum 
cross-entropy random variable? If we have a desired target distribution then we can 
use the Parzen windows estimate to minimize the “distance” between the observed 
distribution and the desired distribution. If the mapping has a restricted range (as 
does the output of an MLP using sigmoidal nonlinearities), the uniform distribution 
(which has maximum entropy for restricted range) can be used as the target distri- 
bution. If we adapt the parameters, a , of our mapping such that the output distribu- 
tion is uniform, then we will have achieved statistically independent features 
regardless of the underlying input distribution. 

Viola et a1 [6] has taken a very similar approach to entropy manipulation, although 
that work differs in that it does not address nonlinear mappings directly, the gradi- 
ent method is estimated stochastically, and entropy is worked with explicitly. By 
our choice of topology (MLP) and distance metric we are able to work with entropy 
indirectly and fit the approach naturally into a back-propagation learning paradigm. 

As our minimization criterion we use integrated squared error between our estimate 
and the desired distribution, which we approximate with a summation. 

1 2 
J = 2 / ( f y ( u ) - f y ( U , Y ) )  du 

(6) 1 2 
x j ( f v ( u j ) - f ^ , ( U j . Y ) )  Au Y = . .*YN,) 
J 

In (6), R, indicates the nonzero region (a hypercube for the uniform distribution) 
over which the M-fold integration is evaluated. The criterion above exploits the 
fact that the MLP with saturating nonlinearities has finite support at the output. This 
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fact coupled with property 1 (i.e. as the integrated squared error between the 
observed output distribution and the uniform distribution is minimized, entropy is 
maximized) makes the criterion suitable for entropy manipulation. 

Assuming the output distribution is sampled adequately, we can approximate this 
integral with a summation in which u j  E S M  are samples in M-space and Au is 
represents a volume. 

The gradient of the criterion function with respect to the mapping parameters is 
determined via the chain rule as 

where E y( ui’ y )  is the computed distribution error over all observations y . The last 
term in (7),  d g / d a ,  is recognized as the sensitivity of our mapping to the parame- 
ters a. Since our mapping is a feed-forward MLP ( a  represents the weights and 
bias terms of the neural network), this term can be computed using standard back- 
propagation. The remaining partial derivative, df / d g  , is 

Substituting (8) into (7) yields 

The terms in (9), excluding the mapping sensitivities, become the new error term in 
our backpropagation algorithm. This adaptation scheme is depicted in figure 1, 
which shows that this adaptation scheme fits neatly into the backpropagation para- 
digm. 

Examination of the gaussian kernel and its differential in two dimension illustrates 
some of the practical issues of implementing this method of feature extraction as 
well as providing an intuitive understanding of what is happening during the adap- 
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tation process. The N-dimensional gaussian kernel evaluated at some U is (simpli- 
fied for two dimensions) 

(10) 
1 exp --y . - uty - U 

1 - - -  
27co 2 ( 202 

The partial derivative of the kernel (also simplified for the two-dimensional case) 
with respect to the input yi as observed at the output of the MLP is 

, N = 2  
2 : 0 0  OI 

These functions are shown in figure 2. The contour of the gaussian kernel is useful 
in that it shows that output samples, y i  , greater than two standard deviations from 
the center, U ,  of the kernel (in the feature space) do not significantly impact the 
estimate of the output PDF at that sample point. Likewise, the gradient term, is not 
significant for output samples exceeding two standard deviations from the kernel 
center. Consequently sample points for the PDF estimate should not exceed a dis- 
tance of two standard deviations from each other, otherwise, samples caught “in 
between” do not contribute significantly to the estimate of the PDF. A large number 
of such samples can cause very slow adaptation. 

Recall that the terms in (9) replace the standard error term in the backpropagation 
algorithm. This term is plotted as a surface in figure 2 minus the PDF error. From 
this plot we see that the kernels act as either local attractors or repellors depending 
on whether the computed PDF error is negative (repellor) or positive (attractor). In 
this way the adaptation procedure operates in the feature space locally from a glo- 
bally derived measure of the output space (PDF estimate). 

4.0 EXPERIMENTAL RESULTS 
We have conducted experiments using this method on millimeter-wave ISAR 
(inverse synthetic aperture radar) images (64 x 64 pixels). The mapping structure 
we use in our experiment is a multi-layer perceptron with a single hidden layer 
(4096 input nodes,4 hidden nodes, 2 output nodes). Using the adaptation method 

19 



described, we trained the network on two vehicle types with ISAR images from 180 
degrees of aspect. The projection of the training images (and between aspect testing 
images) is shown in figure 3 (where adjacent aspect training images are connected). 
As can be some significant class separation is exhibited (without prior labeling of 
the classes). We also note that the points where the classes overlap correspond to 
the cardinal aspect angles, which are, in general, difficult aspect angles to separate 
on similar vehicles in this type of imagery, 

5.0 CONCLUSIONS 
We have presented what we believe to be a new method of unsupervised learning. 
This method unlike previous methods is not limited to linear topologies [3] nor uni- 
modal PDFs [5]. In effect, we achieve features which are statistically independent 
from each other and yet are still, clearly, structurally related to the input structure as 
exhibited by the results of our example. This property bears similarity to Kohonen’s 
discrete SOFM, however our map exists in a continuous output space. We are pur- 
suing in our research more ngorous analysis in the comparison of the resulting fea- 
ture maps to the Kohonen type. We are utilizing this method as a preprocessing for 
classification in our continuing research, although other applications certainly exist 
(e. g . blind separation). 
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Figure 1 Block diagram o f  PDF driven adaptation scheme 
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Figure 2 The plots above assume that we are using a two- 
dimensional gaussian kemel with a diagonal covariance 
matrix with o2 on the diagonals. Contour of the gaussian 
kernel (top left, normalized by D), surface plots of the 
gradient terms with respect to y ,  (top right), y2 (bottom 
left), and magnitude (bottom right) all normalized by o3 . 
These terms are essentially zero at a distance of two 
standard deviations. 
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Figure 3 Example of training on ISAR images of two vehicles 
(aspect varying over 180 degrees). Over most of the aspect 
angles the vehicles are separated in the new feature space. 
Adjacent aspect angles are connected in the training set, 
evidence that topological neighborhoods were maintained. 
The mapping also generalizes to the testing set as well. 
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