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Abstract 

We discuss an unsupervised feature extraction method 
which is driven by an information theoretic based crite- 
rion: mutual information. While information theoretic sig- 
nal processing has been examined by many authors the 
method presented here is more closely related to the 
approaches of Linsker (1988,1990). Bell and Sejnowski 
(1995), and Viola et a1 (1996). The method we discuss dif- 
fers from previous work in several aspects. It is extensible 
to a fiedforward multi-layer perceptmn with an arbitrary 
number of layers. No assumptions are ma& about the 
underlying PDF of the input space. It exploits a pmperty 
of entropy coupled with a saturating nonlinearity resulting 
in a method for entropy manipulation with computational 
complexity proportional to the number of data samples 
squared. This repments a significant computationaI sav- 
ings overprevious methods (viola et al, 1996). As mutual 
infomation is a function of two entropy terms, the method 
for entropy manipulation can be directly applied to the 
mutual information as well. 

1. Introduction 

Classification is often hindered by the so called “curse 
of dimensionality”. It is often the case that the dimension- 
ality of the observed signal is too large to reliably/robustly 
construct a classifier. Consequently, various methods have 
been applied in order to reduce the dimensionality. This 
process, referred to as feature extraction, often results in 
improved performance of a nonparametric classifier. 

It is imperative, however, that the driving criterion of 
any feature extraction method somehow be related to the 
overall system objective; namely classification. Suitable 
feature extraction criteria for classification are not always 
easily applied (e.g. likelihood ratios which require prior 
knowledge of the underlying probability density function). 
As a result, sub-optimal feature sets or user defined ad hoc 
features based on intuitive assumptions (without rigorous 
relationship to classification) are used for classification. 

We have recently presented a method which derives fea- 
tures which are relevant for classification [4, 5, 61. The 
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method applies Linsker’s Principle of Information Maximi- 
zation, which seeks to transfer maximum information 
about a signal from the input to the output of a mapping, as 
the criterion for feature extraction [7]. As a result, we seek 
parameters of a general (differentiable) nonlinear mapping 
such that the mutual information between the observed out- 
put and the class of interest is maximized. Mathematically, 
mutual information is formulated as 

I(C,Y) = hyCV>-hy,&IC) (1) 

where I( C, y )  is the mutual information of the RVs C 
and Y, and h([ 1) is the differential entropy measure [9]. 
Given the random vector (RV), Y E  BN, the differential 
entropy is defined as 

m 

hy(u) = -1 logcfy(u)Yy(u)du ? (2) 
4 

where f d u )  is the probability density function of the 
RV, the base of the logarithm is arbitrary, and the integral is 

Previous authors [l,  111 have proposed similar tech- 
niques with application to various problems (e.g. blind 
source separation, pose estimation, etc.), but none have 
addressed feature extraction in the context of information 
theoretic processing (the method proposed here being also 
more general). In contrast to Bell and Sejnowski El] the 
method here can be generalized to a multi-layer perceptron 
with an arbitrary number of hidden layers and nodes. Fur- 
thermore, the application is not specific to uni-modal dis- 
tributions. In contrast to the method of Viola et a1 [ 111 we 
use an indirect measure of entropy rather than a direct esti- 
mate in order to determine our mapping. As a result, the 
optimization of entropy can be modeled as local interac- 
tions between the observed data samples in the output 
space. 

N -fold. 

In this discussion we address three primary issues: 
1. The appropriateness of mutual information as a crite- 

rion for feature extraction in the context of classifica- 
tion. 
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2. Significant computational reduction as compared to our 

3. The perspective of mutual information as local intemc- 

previous algorithm. 

tion of the data in the output space. 

2. Mutual Information And Classification 

The use of mutual information for classification can be 
motivated by Fano’s inequality [3] which gives a lower 
bound for the probability of error (or conversely an upper 
bound on the probability of correct classification) when 
estimating a discrete RV from another RV as a function of 
mutual information. Fano’s inequality is stated as follows, 
given the discretely distributed RV C (representing the 
class) and a related RV Y, the probability of incorrectly 
estimating C based on an estimate derived from observa- 
tions of Y is lower bounded by 

where N is the number of classes represented by the RV 
C and e is the estimate of C after observing Y. We see 
from equation 3, that the lower bound on the error pmba- 
bility is minimized when the mutual information behveen 
C and Y is maximized. 

Fano’s inequality, therefore, justifies the use of mutual 
information as a feature extraction criterion for classifica- 
tion. The approach is depicted in figure 1 with regards to a 
Bayesian framework. The probability density function of 
the high-dimensional observation X i s  conditioned OIL the 
class, C. The feature vector, Y = g(X,  a) is derived 
from the observation of X and is itself a random vector 
prior to observation. It is from feature vector, Y, that 
we wish to estimate the class. Qur goal is to choose the 
parameters, a, of the mapping g ( [  1, a) such thal the 
mutual information between Y and C is maximized We 
are still left with the task of determining the estimator, e, 
however, from Fano’s inequality we know that if I ( C ,  Y) 
is maximized, the lower bound on the classification (:mor 
will be minimized. 

3. Simplification f The Learning Algorithm 

Having motivated mutual information as an optinliza- 
tion criterion, we must still determine the mapping pamme- 
ters, a. Examination of equation 1 shows that the mutual 
information, I( C, Y) , can be written as a h c t i o n  of’ two 
entropy terms, h( Y) and h( YI C) . In the context of classi- 
fication, h( u) represents the entropy of the observations 
over all classes, while h( YI C) represents the class condi- 
tional entropy. An algorithm which manipulates enlropy 
(independently applied) is sufficient for maximizing 
mutual information. We have presented such an algoiithm 

ICI 
I 

Figure 1 : Mutual information approach to featurc 
extraction. An observation of the random variable 
X is generated by the probability density 
function f ( X l C )  which is conditioned on the 
discrete random variable C which is 
characterized by the discrete probability density 
function P ( C ) .  The features, Y, are used to 
estimate C .  

in previous work [4, 5, 61 which resulted in the adaptation 
scheme depicted in figure 2. 

The method exploits the following property of differen- 
tial entropy: 

If the RV is restricted to a finite range in ‘3 , differen- 
tial entropy is maximized for the unvorm distribution. 
Our algonthm, therefore, seeks parameters, a, such 

that the distribution observed at the point, yi , is as close to 
(maximizing entropy) or distant from (minimizing entropy) 
the uniform distribution as possible. This approach to 
entropy manipulation is similar to that of Bell and 
Sejnowski [ 11. There are, however, several differences. 
The algorithm discussed here works equally well for multi- 
modal distributions as well as mi-modal distributions. 
More significantly, there are no restrictions placed on the 
number of hidden layers or nodes in the multi-layer percep- 
tron structure used as the mapping. 

Towards the goal described above we require a distance 
metric and a differentiable estimator of the output distribu- 
tion. The estimator we use is the Parzen window method 
[lo]. The Parzen window estimate of the pAobability distri- 
bution, fdu) , of a random vector Y E  % at a point u is 
defined as 

N 

‘Y Y 

fr(4 = (L) c K O ’ i - 4  . (4) 
NY 1 = 1  . 

The vectors yi E %’ are observations of the random 
vector and K([ 1) is a kernel function. We choose the 
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Figure 2: A signal flow diagram of the learnin algorithm. The criterion block computes, as a function o 
the observed outputs, the error direction for t it e mapping network. 

gaussian kemel since we require that K( [ 1)  be differentia- 
ble everywhere. 

As our distance criterion we use the integrated squared 
e m r  (ISE) between the observed output distribution, 
TAU, y )  at a point u over a set of observations y , and the 
uniformdistribution, fdu) . 

2 
J = I cry(+&o, { V I ) )  du 

nr 
1 ( 5 )  

= 2 I Vrfu)-fy(u,g({xl, a))I2du 
Q, 

It is this choice of criterion coupled with the multi-layer 
perceptron architecture which leads to a computationally 
simple algorithm for manipulating entropy. Viola et a1 [ 1 I] 
also use the Parzen window estimator for entropy manipu- 
lation enabling a means by which to apply gradient descent 
to the mapping parameters. A significant difference, how- 
ever, is that the method of Viola et a1 estimates entropy 
directly. By contrast, the method here uses an indirect mea- 
sure of entropy (ISE) coupled with a saturating nonlinear- 
ity. This approach, as we will see, enables entropy 
manipulation to be modeled as local interaction between 
observations in the output space. 

In our previous work [4,5,6] the straightforward evalu- 
ation of the gradient of the criterion with respect to the 
mapping parameters, a, led to the following update rule 
for manipulating the entropy of the mapping, 

where N, is the number of training exemplars, 
~ y ( u ,  { y  }) is the computed error distribution between the 
estimated output distribution and the desired uniform dis- 
tribution, K'( u )  is the gradient of the estimator kemel, and 
8g(a,xi)/& are the mapping sensitivities (which we 
compute using error back-propagation). Excluding the 
mapping sensitivities, the remaining terms can be com- 
bined to compute an error direction term, E ~ ,  associated 
with each training sample. The error direction term is the 
convolution of the observed error distribution with the ker- 
nel gradient. A more general discussion of this approach is 
presented in Fisher and Principe [4,5,6]. 

The straightforward approach has one significant draw- 
back in that the algorithm, as implemented, requires the 
evaluation of the convolution term (and the Parzen window 
estimate) at a sufficient number of points in the output 
space. Consequently the computational complexity of the 
algorithm implement in this way is proportional to 

o ( q + 2 ) ,  (7) 
where Nd is the dimension of the output space. 
Fortunately, the dimensionality of the output space is 

controlled by the designer. Equation 7, however, poses a 
fundamental computational limitation to the dimensional- 
ity of the subspace mapping. This limitation, however, is 
only valid if the implicit error term is computed in the 
straightforward manner that the equations imply. Further 
examination of the gradient of the ISE criterion results in 
significant reduction in the computational complexity. 
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Expanding the error direction term, E ~ ,  yields 
E j  = Ed4 { J ' } ) ' K ' ( U )  I" = y ,  

= (fy(U)-fy(U, (YH)*K'(U)I" = y ,  

= (fy(U)-v(U)*K(u>)*K'(u)Iu = y ,  

= (fy(U)*K'(u))--Y(U)*K(U)*K'(U)I* = y ,  9 (8) 

= f r ( u ) - Y ( U ) * K , ( U ) I , ,  = ~ ,  

= f , o t i ) -  C ~ o o t j - ~ j )  
iti 

where, ~ ( u )  , representing the location of the tralning 
samples in the output space, is written as 

'V r 

Y ( U )  = c W U - Y j ) .  

i =  1 

The terms KJU) and &(u) are termed the attractor 
kernel and the topology regulating term, respectively. 
Equation 8 overcomes the fundamental limitation imiplied 
by equation 7. Both terms can be computed analytically 
(for the gaussian kernel and the uniform distribulion). 
More importantly, the computational complexity of equa- 
tion 8 is only of order Nr for each yi . Substituting 8 into 
the update rule of equation 6 results in a computational 
complexity which is quadratic in the number of exemplars, 
simplifying to 

(9) 
Of particular interest are the forms of K,( u )  and f,( u )  . 

The analytic forms for the gaussian kemel (with diagonal 
covariance) and the uniform distribution are 

K,(U) = K(U)*lC'(U) 

where N is the dimension of the kernel, 0 is the size of 
the kernel, a is the extent in all dimensions of the uniform 
distribution, and K I (u,  0) indicates the one dimensional 
gaussian kernel evaluated at u with standard deviation 0. 
These functions are shown for the two dimensional case in 
figures 3 and 4. From the figure we can see that KJ[ 1) 
represents the influence that each observation has on its 
local surrounding, while f,([ 1) represents the influence 
on each sample near the boundary of the region of support. 

Figure 3: Two dimensional attractor functions. 
The xi -component is shown at the top while the 
 component Is shown at the bottom. The 
function represents the local influence of each 
data point in the output space. 

(KI(U, + 4.0)- 

I 

Figure 4: Two dimensional regulating function. 
The x I  -component is shown at the top while the 
x2 -component is shown at the bottom,. 
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From this perspective, we see that entropy (mutual 
information) can be modeled as a local attractiodrepulsion 



between samples in the output space. As we maximize 
entropy the samples repel each other and as we minimize 
entropy (as in the conditional entropy term of mutual infor- 
mation) the samples attract each other. From a classifica- 
tion standpoint, this would be a desirable property. 
Samples from the same class would map to compact loca- 
tions, while classes from separate classes will repel. 

4. Conclusions 

We have presented a general method for manipulating 
entropy of a mapping and developed an algorithm of suffi- 
ciently low complexity that makes it practical. The method 
is extensible to general, differentiable nonlinear mappings. 
We have already shown that it fits easily into the backprop- 
agation formalism [4,5,6]. The method is not constrained 
by assumptions about the underlying distribution at the 
input of the mapping. In addition, it is not limited to uni- 
modal distributions as in the case of Bell and Sejnowslu 
[ 11. Furthermore, the computational complexity is indepen- 
dent of the dimension at the output space, although the 
quality and generality of the features, as in any nonpara- 
metric approach, will be related to the number of training 
samples. 

During the discussion we demonstrated the appropriate- 
ness of mutual information in the context of classification. 
We also demonstrated that the computational complexity 
of our previous results could be greatly simplified, yielding 
an algorithm which is quadratic in the number of training 
samples. This simplification also led to a perspective by 
which entropy manipulation can be modeled as local inter- 
actions among the trainhg samples in the output space. 
This perspective is important as it leads to even more sim- 
plification of the computational complexity of the algo- 
rithm, which we will be reporting on in the future. 
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