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Abstract
Belief propagation (BP) is an increasingly popular method of performing approximate inference

on arbitrary graphical models. At times, even further approximations are required, whether due
to quantization of the messages or model parameters, from other simplified message or model
representations, or from stochastic approximation methods. The introduction of such errors into the
BP message computations has the potential to affect the solution obtained adversely. We analyze
the effect resulting from message approximation under two particular measures of error, and show
bounds on the accumulation of errors in the system. This analysis leads to convergence conditions
for traditional BP message passing, and both strict bounds and estimates of the resulting error in
systems of approximate BP message passing.

Keywords: belief propagation, sum-product, convergence, approximate inference, quantization

1. Introduction

Graphical models and message-passing algorithms defined on graphs comprise a growing field of
research. In particular, thebelief propagation(or sum-product) algorithm has become a popular
means of solving inference problems exactly or approximately. One part ofits appeal lies in its
optimality for tree-structured graphical models (models which contain no loops). However, its is
also widely applied to graphical models with cycles. In these cases it may not converge, and if it
does its solution is approximate; however in practice these approximations areoften good. Recently,
some additional justifications for loopy belief propagation have been developed, including a handful
of convergence results for graphs with cycles (Weiss, 2000; Tatikonda and Jordan, 2002; Heskes,
2004).

The approximate nature of loopy belief propagation is often a more than acceptable price for
performing efficient inference; in fact, it is sometimes desirable to makeadditionalapproximations.
There may be a number of reasons for this—for example, when exact message representation is
computationally intractable, the messages may be approximated stochastically (Koller et al., 1999)
or deterministically by discarding low-likelihood states (Coughlan and Ferreira, 2002). For belief
propagation involving continuous, non-Gaussian potentials, some form ofapproximation is required
to obtain a finite parameterization for the messages (Sudderth et al., 2003; Isard, 2003; Minka,
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2001). Additionally, simplification of complex graphical models through edge removal, quantiza-
tion of the potential functions, or other forms of distributional approximation may be considered in
this framework. Finally, one may wish to approximate the messages and reducetheir representation
size for another reason—to decrease the communications required for distributed inference applica-
tions. In distributed message passing, one may approximate the transmitted message to reduce its
representational cost (Ihler et al., 2004a), or discard it entirely if it is deemed “sufficiently similar”
to the previously sent version (Chen et al., 2004). Through such meansone may significantly reduce
the amount of communications required.

Given that message approximation may be desirable, we would like to know what effect the
errors introduced have on our overall solution. In order to characterize the approximation effects
in graphs with cycles, we analyze the deviation from the solution given by “exact” loopy belief
propagation (not, as is typically considered, the deviation of loopy BP from the true marginal distri-
butions). As a byproduct of this analysis, we also obtain some results on theconvergence of loopy
belief propagation.

We begin in Section 2 by briefly reviewing the relevant details of graphical models and be-
lief propagation. Section 4 then examines the consequences of measuring a message error by its
dynamic range. In particular, we explain the utility of this measure and its behavior with respect
to the operations of belief propagation. This allows us to derive conditions for the convergence
of traditional loopy belief propagation, and bounds on the distance between any pair of BP fixed
points (Sections 5.1–5.2), and these results are easily extended to many approximate forms of BP
(Section 5.3). If the errors introduced are independent, as is a typical assumption in, for example,
quantization analysis (Gersho and Gray, 1991; Willsky, 1978), tighter estimates of the resulting
error can be obtained (Section 5.5).

It is also instructive to examine other measures of message error, in particular ones which em-
phasize more average-case (as opposed to pointwise or worst-case) differences. To this end, we
consider a KL-divergence based measure in Section 6. While the analysisof the KL-divergence
measure is considerably more difficult and does not lead to strict guarantees, it serves to give some
intuition into the behavior of perturbed BP under an average-case difference measure.

2. Graphical Models

Graphical models (Lauritzen, 1996; Kschischang et al., 2001) providea convenient means of rep-
resenting conditional independence relations among large numbers of random variables. Specif-
ically, each nodes in an undirected graph is associated with a random variablexs, while the
set of edgesE is used to describe the conditional dependency structure of the variablesthrough
graph separation. If every path between two setsA andC passes through another setB [see Fig-
ure 1(a)], the sets of variablesxA = {xs : s∈ A} andxC = {xs : s∈ C} must be independent given
the values ofxB = {xs : s∈ B}. Thus, the distributionp(xA,xB,xC) can be written in the form
p(xB)p(xA|xB)p(xC|xB).

It can be shown that a distributionp(x) is consistent with (i.e., satisfies the conditional indepen-
dence relations specified by) an undirected graph if it factors into a product of potential functions
ψ defined on the cliques (fully-connected subsets) of the graph, and thatthe converse is also true
if p(x) is strictly positive (Clifford, 1990). For convenience, we confine our attention to graphical
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Figure 1: (a) Graphical models describe statistical dependency; here, the setsA andC are independent given
B. (b) BP propagates information fromt and its neighborsui is to s by a simple message-passing
procedure; this procedure is exact on a tree, but approximate in graphs with cycles. (c) For a
graph with cycles, one may show an equivalence betweenn iterations of loopy BP and the depth-
n computation tree [shown here forn = 3 and rooted at node1; example from Tatikonda and
Jordan (2002)].

models with at most pairwise potential functions, so that the distribution factorsaccording to

p(x) = ∏
(s,t)∈E

ψst(xs,xt)∏
s

ψs(xs).

This is a typical assumption for belief propagation, and can be taken without incurring any real loss
of generality since a graphical model with higher-order potential functions may always be converted
to a graphical model with only pairwise potential functions through a process of variable augmenta-
tion, though this may also increase the nodes’ state dimension undesirably; see, for example, Weiss
(2000).

2.1 Belief Propagation

The goal of belief propagation (BP) (Pearl, 1988), also called the sum-product algorithm, is to
compute the marginal distributionp(xt) at each nodet. BP takes the form of a message-passing
algorithm between nodes, expressed in terms of an update to the outgoing message at iterationi
from each nodet to each neighbors in terms of the previous iteration’s incoming messages fromt ’s
neighborsΓt [see Figure 1(b)],

mi
ts(xs) ∝

Z

ψts(xt ,xs)ψt(xt) ∏
u∈Γt\s

mi−1
ut (xt)dxt . (1)

Typically each message is normalized so as to integrate to unity (and we assume that such normal-
ization is possible). For discrete-valued random variables, of course,the integral is replaced by a
summation. At any iteration, one may calculate thebelief at nodet by

Mi
t(xt) ∝ ψt(xt) ∏

u∈Γt

mi
ut(xt). (2)

For tree-structured graphical models, belief propagation can be used toefficiently perform exact
marginalization. Specifically, the iteration (1) converges in a finite number of iterations (at most the
length of the longest path in the graph), after which the belief (2) equals thecorrect marginalp(xt).
However, as observed by Pearl (1988), one may also apply belief propagation to arbitrary graphical
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models by following the samelocal message passing rules at each node and ignoring the presence
of cycles in the graph; this procedure is typically referred to as “loopy” BP.

For loopy BP, the sequence of messages defined by (1) is not guaranteed to converge to a fixed
point after any number of iterations. Under relatively mild conditions, one mayguarantee the ex-
istence of fixed points (Yedidia et al., 2004). However, they may not be unique, nor are the results
exact [the beliefMi

t does not converge to the true marginalp(xt)]. In practice however the procedure
often arrives at a reasonable set of approximations to the correct marginal distributions.

2.2 Computation Trees

It is sometimes convenient to think of loopy BP in terms of itscomputation tree. Tatikonda and
Jordan (2002) showed that the effect ofn iterations of loopy BP at any particular nodes is equivalent
to exact inference on a tree-structured ‘unrolling” of the graph froms. A small graph, and its
associated 4-level computation tree rooted at node1, are shown in Figure 1(c).

The computation tree with depthn consists of all length-n paths emanating froms in the original
graph which do not immediately backtrack (though they may eventually repeatnodes).1 We draw
the computation tree as consisting of a number oflevels, corresponding to each node in the tree’s
distance from the root, with the root node at level 0 and the leaf nodes at level n. Each level may
contain multiple replicas of each node, and thus there are potentially many replicas of each node in
the graph. The root nodes has replicas of all neighborsΓs in the original graph as children, while
all other nodes have replicas of all neighbors except their parent node as children.

Each edge in the computation tree corresponds to both an edge in the originalgraphand an
iteration in the BP message-passing algorithm. Specifically, assume an equivalent initialization of
both the loopy graph and computation tree—i.e., the initial messagesm0

ut in the loopy graph are
taken as inputs to the leaf nodes. Then, the upward messages from leveln to level n− 1 match
the messagesm1

ut in the first iteration of loopy BP, and more generally, a upward messagemi
ut on

the computation tree which originates from a nodeu on leveln− i +1 to its parent nodet on level
n− i is identical to the message from nodeu to nodet in the ith iteration of loopy BP (out ofn total
iterations) on the original graph. Thus, the incoming messages to the root node (level 0) correspond
to the messages in thenth iteration of loopy BP.

2.3 Message Approximations

Let us now consider the concept ofapproximateBP messages. We begin by assuming that the “true”
messagesmts(xs) are some fixed point of BP, so thatmi

ts = mi+1
ts . We may ask what happens when

these messages are perturbed by some (perhaps small) error functionets(xs). Although there are
certainly other possibilities, the fact that BP messages are combined by takingtheir product makes
it natural to consider multiplicative message deviations (or additive in the log-domain):

m̂i
ts(xs) = mts(xs)e

i
ts(xs).

To facilitate our analysis, we split the message update operation (1) into two parts. In the first,
we focus on the messageproducts

M̂i
ts(xt) ∝ ψt(xt) ∏

u∈Γt\s

m̂i
ut(xt) M̂i

t(xt) ∝ ψt(xt) ∏
u∈Γt

m̂i
ut(xt) (3)

1. Thus in Figure 1(c), the computation tree includes the sequence1−2−4−1, but not the sequence1−2−4−2.
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where the proportionality constant is chosen to normalizeM̂. The second operation, then, is the
messageconvolution

m̂i+1
ts (xs) ∝

Z

ψts(xs,xt)M̂
i
ts(xt)dxt (4)

where againM̂ is a normalized message or product of messages.
In this paper, we use the convention that lowercase quantities (mts,ets, . . .) refer to messages and

message errors, while uppercase ones (Mts,Ets,Mt , . . .) refer to their products—at nodet, the product
of all incoming messages and the local potential is denotedMt(xt), its approximationM̂t(xt) =
Mt(xt)Et(xt), with similar definitions forMts, M̂ts, andEts.

3. Overview of Results

To orient the reader, we lay out the order and general results which are obtained in this paper. We
begin in Section 4 by examining adynamic rangemeasured(e) of the variability of a message error
e(x) (or more generally of any function) and show how this measure behaves with respect to the
BP equations (1) and (2). Specifically, we show in Section 4.2 that the measure logd(e) is sub-
additive with respect to the product operation (3), and contractive with respect to the convolution
operation (4).

Applying these results to traditional belief propagation results in a new sufficient condition for
BP convergence (Section 5.1), specifically

max
s,t ∑

u∈Γt\s

d(ψut)
2−1

d(ψut)
2 +1

< 1; (5)

and this condition may be further improved in many cases. The condition (5) can be shown to be
slightly stronger than the sufficient condition given in Tatikonda and Jordan (2002), and empirically
appears to be stronger than that of Heskes (2004). In experiments, thecondition appears to be
tight (exactly predicting uniqueness or non-uniqueness of fixed points)for at least some problems,
such as binary–valued random variables with attractive potentials. More importantly, however, the
methodin which it is derived allows us to generalize to many other situations:

1. Using the same methodology, we may demonstrate that any two BP fixed points must be
within a ball of a calculable diameter; the condition (5) is equivalent to this diameter being
zero (Section 5.2).

2. Both the diameter of the bounding ball and the convergence criterion (5)are easily improved
for graphical models with irregular geometry or potential strengths, leadingto better condi-
tions on graphs which are more “tree-like” (Section 5.3).

3. The same analysis may also be applied to the case of quantized or otherwiseapproximated
messages and models (potential functions), yielding bounds on the resultingerror (Section 5.4).

4. If we regard the message errors as a stochastic process, a similar analysis with a few addi-
tional, intuitive assumptions gives alternate, tighter estimates (though not necessarily bounds)
of performance (Section 5.5).
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Figure 2: (a) A messagem(x) and an example approximation ˆm(x); (b) their log-ratio
logm(x)/m̂(x), and the error measure logd(e).

Finally, in Section 6 we perform the same analysis for a less strict measure ofmessage error [i.e.,
disagreement between a messagem(x) and its approximation ˆm(x)], namely the Kullback-Leibler
divergence. This analysis shows that, while failing to provide strict bounds in several key ways,
one is still able to obtain some intuition into the behavior of approximate message passing under an
average-case difference measure.

In the next few sections, we first describe the dynamic range measure and discuss some of its
salient properties (Section 4). We then apply these properties to analyze the behavior of loopy belief
propagation (Section 5). Almost all proofs are given in an in-line fashion, as they frequently serve
to give intuition into the method and meaning of each result.

4. Dynamic Range Measure

In order to discuss the effects and propagation of errors, we first require a measure of the difference
between two messages. In this section, we examine the following measure onets(xs): let d(ets)
denote the function’sdynamic range,2 specifically

d(ets) = sup
a,b

√

ets(a)/ets(b). (6)

Then, we have thatmts≡ m̂ts (i.e., the pointwise equality conditionmts(x) = m̂ts(x)∀x) if and only if
logd(ets) = 0. Figure 2 shows an example ofm(x) andm̂(x) along with their associated errore(x).

4.1 Motivation

We begin with a brief motivation for this choice of error measure. It has a number of desirable
features; for example, it is directly related to the pointwise log error betweenthe two distributions.

Lemma 1. The dynamic range measure(6) may be equivalently defined by

logd(ets) = inf
α

sup
x
| logαmts(x)− logm̂ts(x)| = inf

α
sup

x
| logα− logets(x)|.

Proof. The minimum is given by logα = 1
2(supa logets(a)+ infb logets(b)), and thus the right-hand

side is equal to12(supa logets(a)− infb logets(b)), or 1
2(supa,b logets(a)/ets(b)), which by definition

is logd(ets).

2. This measure has also been independently investigated to provide a stability analysis for the max-product algorithm
in Bayes’ nets (acyclic, directed graphical models) (Chan and Darwiche, 2005). While similar in some ways, the
analysis for acyclic graphs is considerably simpler; loopy graphs require demonstrating a rate of contraction, which
we show is possible for the sum-product algorithm (Theorem 8).
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The scalarα serves the purpose of “zero-centering” the function logets(x) and making the mea-
sure invariant to simple rescaling. This invariance reflects the fact that thescale factor for BP
messages is essentially arbitrary, defining a class of equivalent messages. Although the scale factor
cannot be completely ignored, it takes on the role of a nuisance parameter.The inclusion ofα in
the definition of Lemma 1 acts to select particular elements of the equivalence classes (with respect
to rescaling) from which to measure distance—specifically, choosing the closest such messages in
a log-error sense. The log-error, dynamic range, and the minimizingα are depicted in Figure 2.

Lemma 1 allows the dynamic range measure to be related directly to an approximationerror
in the log-domain when both messages are normalized to integrate to unity, using the following
theorem:

Theorem 2. The dynamic range measure can be used to bound the log-approximationerror:

|logmts(x)− logm̂ts(x)| ≤ 2logd(ets) ∀x.

Proof. We first consider the magnitude of logα:

∀x,

∣

∣

∣

∣

log
αmts(x)
m̂ts(x)

∣

∣

∣

∣

≤ logd(ets)

⇒
1

d(ets)
≤

αmts(x)
m̂ts(x)

≤ d(ets)

⇒
Z

m̂ts(x)dx
1

d(ets)
≤ α

Z

mts(x)dx≤
Z

m̂ts(x)dxd(ets)

and since the messages are normalized,| logα| ≤ logd(ets). Then by the triangle inequality,

|logmts(x)− logm̂ts(x)| ≤ |logαmts(x)− logm̂ts(x)|+ |logα| ≤ 2logd(ets) .

In this light, our analysis of message approximation (Section 5.4) may be equivalently regarded
as a statement about the required quantization level for an accurate implementation of loopy belief
propagation. Interestingly, it may also be related to a floating-point precision onmts(x).

Lemma 3. Letm̂ts(x) be an F-bit mantissa floating-point approximation to mts(x). Then,logd(ets)≤
2−F +O(2−2F).

Proof. For anF-bit mantissa, we have|mts(x)− m̂ts(x)| < 2−F ·2blog2 mts(x)c ≤ 2−F ·mts(x). Then,
using the Taylor expansion of log

[

1+( m̂
m−1)

]

≈ ( m̂
m−1) we have that

logd(ets) ≤ sup
x

∣

∣

∣

∣

log
m̂(x)
m(x)

∣

∣

∣

∣

≤ sup
x

m̂(x)−m(x)
m(x)

+O

(

(

sup
x

m̂(x)−m(x)
m(x)

)2
)

≤ 2−F +O
(

2−2F) .

Thus our measure of error is, to first order, similar to the typical measure ofprecision in floating-
point implementations of belief propagation on microprocessors. We may also related(e) to other
measures of interest, such as the Kullback-Leibler (KL) divergence.

911



IHLER, FISHER AND WILLSKY

Lemma 4. The KL-divergence satisfies the inequality D(mts‖m̂ts) ≤ 2logd(ets)

Proof. By Theorem 2, we have

D(mts‖m̂ts) =
Z

mts(x) log
mts(x)
m̂ts(x)

dx≤
Z

mts(x)(2logd(ets))dx= 2logd(ets) .

Finally, a bound on the dynamic range or the absolute log-error can also beused to develop
confidence intervals for the maximum and median of the distribution.

Lemma 5. Let m̂(x) be an approximation of m(x) with logd(m̂/m) ≤ ε, so that

m̂+(x) = exp(2ε)m̂(x) m̂−(x) = exp(−2ε)m̂(x)

are upper and lower pointwise bounds on m(x), respectively. Then we have a confidence region on
the maximum of m(x) given by

argmax
x

m(x) ∈ {x : m̂+(x) ≥ max
y

m̂−(y)}

and an upper bound µ on the median of m(x), i.e.,

Z µ

−∞
m(x) ≥

Z ∞

µ
m(x) where

Z µ

−∞
m̂−(x) =

Z ∞

µ
m̂+(x)

with a similar lower bound.

Proof. The definitions ofm̂+ andm̂− follow from Theorem 2. Given these bounds, the maximum
value ofm(x) must be larger than the maximum value of ˆm−(x), and this is only possible at locations
x for which m̂+(x) is also greater than the maximum of ˆm−. Similarly, the left integral ofm(x) (−∞
to µ) must be larger than the integral of ˆm−(x), while the right integral (µ to ∞) must be smaller than
for m̂+(x). Thus the median ofm(x) must be less thanµ.

These bounds and confidence intervals are illustrated in Figure 3: giventhe approximate mes-
sagem̂ (solid black), a bound on the error yields ˆm+(x) and m̂−(x) (dotted lines), which yield
confidence regions on the maximum and median values ofm(x).

4.2 Additivity and Error Contraction

We now turn to the properties of our dynamic range measure with respect to the operations of
belief propagation. First, we consider the error resulting from taking the product (3) of a number of
incoming approximate messages.

Theorem 6. The log of the dynamic range measure is sub-additive:

logd
(

Ei
ts

)

≤ ∑
u∈Γt\s

logd
(

ei
ut

)

logd
(

Ei
t

)

≤ ∑
u∈Γt

logd
(

ei
ut

)

.
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Area = A
Area = A

Confidence Region on Maximum (Right boundary of) Conf. Region on Median
(a) (b)

Figure 3: Using the error measure (6) to find confidence regions on maximum and median lo-
cations of a distribution. The distribution estimate ˆm(x) is shown in solid black, with
| logm(x)/m̂(x)| ≤ 1

4 bounds shown as dotted lines. Then, the maximum value ofm(x)
must lie above the shaded region, and the median value is less than the dashedvertical
line; a similar computation gives a lower bound.

Proof. We show the left-hand sub-additivity statement; the right follows from a similar argument.
By definition, we have

logd
(

Ei
ts

)

= logd
(

M̂i
ts/Mi

ts

)

=
1
2

logsup
a,b

∏ei
ut(a)/∏ei

ut(b).

Increasing the number of degrees of freedom gives

≤
1
2

log∏ sup
au,bu

ei
ut(au)/ei

ut(bu) = ∑ logd
(

ei
ut(x)

)

.

Theorem 6 allows us to bound the error resulting from a combination of the incoming approx-
imations from two different neighbors of the nodet. It is also important that logd(e) satisfy the
triangle inequality, so that the application of two successive approximations results in an error which
is bounded by the sum of their respective errors.

Theorem 7. The log of the dynamic range measure satisfies the triangle inequality:

logd(e1e2) ≤ logd(e1)+ logd(e2) .

Proof. This follows from the same argument as Theorem 6.

We may also derive a minimum rate of contraction occurring with the convolution operation (4).
We characterize the strength of the potentialψts by extending the definition of the dynamic range
measure:

d(ψts)
2 = sup

a,b,c,d

ψts(a,b)

ψts(c,d)
. (7)

When this quantity is finite, it represents a minimum rate ofmixingfor the potential, and thus causes
a contraction on the error. This fact is exhibited in the following theorem.

Theorem 8. When d(ψts) is finite, the dynamic range measure satisfies a rate of contraction:

d
(

ei+1
ts

)

≤
d(ψts)

2d
(

Ei
ts

)

+1

d(ψts)
2 +d

(

Ei
ts

) . (8)
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log d(ψ)2 d(E)+1
d(ψ)2+d(E)

logd(E)

logd(ψ)2

lo
g

d
(e

)
→

logd(E) →

Figure 4: Three bounds on the error outputd(e) as a function of the error on the product of incom-
ing messagesd(E).

Proof. See Appendix A.

Two limits are of interest. First, if we examine the limit as the potential strengthd(ψ) grows,
we see that the error cannot increase due to convolution with the pairwise potentialψ. Similarly, if
the potential strength is finite, the outgoing error cannot be arbitrarily large(independent of the size
of the incoming error).

Corollary 9. The outgoing message error d(ets) is bounded by

d
(

ei+1
ts

)

≤ d
(

Ei
ts

)

d
(

ei+1
ts

)

≤ d(ψts)
2 .

Proof. Let d(ψts) or d
(

Ei
ts

)

tend to infinity in Theorem 8.

The contractive bound (8) is shown in Figure 4, along with the two simpler bounds of Corol-
lary 9, shown as straight lines. Moreover, we may evaluate the asymptotic behavior by considering
the derivative

∂
∂d(E)

d(ψ)2d(E)+1

d(E)+d(ψ)2

∣

∣

∣

∣

∣

d(E)→1

=
d(ψ)2−1

d(ψ)2 +1
= tanh(logd(ψ)).

The limits of this bound are quite intuitive: for logd(ψ) = 0 (independence ofxt andxs), this deriva-
tive is zero; increasing the error in incoming messagesmi

ut has no effect on the error inmi+1
ts . For

d(ψ) → ∞, the derivative approaches unity, indicating that for very larged(ψ) (strong potentials)
the propagated error can be nearly unchanged.

We may apply these bounds to investigate the behavior of BP in graphs with cycles. We begin
by examining loopy belief propagation with exact messages, using the previous results to derive a
new sufficient condition for BP convergence to a unique fixed point. When this condition is not
satisfied, we instead obtain a bound on the relative distances between any two fixed points of the
loopy BP equations. This allows us to consider the effect of introducing additional errors into the
messages passed at each iteration, showing sufficient conditions for thisoperation to converge, and
a bound on the resulting error from exact loopy BP.
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5. Applying Dynamic Range to Graphs with Cycles

In this section, we apply the framework developed in Section 4, along with the computation tree
formalism of Tatikonda and Jordan (2002), to derive results on the behavior of traditional belief
propagation (in which messages and potentials are represented exactly).We then use the same
methodology to analyze the behavior of loopy BP for quantized or otherwiseapproximated mes-
sages and potential functions.

5.1 Convergence of Loopy Belief Propagation

The work of Tatikonda and Jordan (2002) showed that the convergence and fixed points of loopy
BP may be considered in terms of a Gibbs measure on the graph’s computation tree. In particular,
this led to the result that loopy BP is guaranteed to converge if the graph satisfies Dobrushin’s
condition (Georgii, 1988). Dobrushin’s condition is a global measure, and difficult to verify; given
in Tatikonda and Jordan (2002) is the easier to check sufficient condition(often called Simon’s
condition),

Theorem 10 (Simon’s condition). Loopy belief propagation is guaranteed to converge if

max
t ∑

u∈Γt

logd(ψut) < 1. (9)

where d(ψ) is defined as in(7).

Proof. See Tatikonda and Jordan (2002).

Using the previous section’s analysis, we obtain the following, stronger condition, and (after the
proof) show analytically how the two are related.

Theorem 11 (BP convergence). Loopy belief propagation is guaranteed to converge if

max
(s,t)∈E

∑
u∈Γt\s

d(ψut)
2−1

d(ψut)
2 +1

< 1 (10)

Proof. By induction. Let the “true” messagesmts be any fixed point of BP, and consider the in-
coming error observed by a nodet at level n− 1 of the computation tree (corresponding to the
first iteration of BP), and having parent nodes. Suppose that the total incoming error logd

(

E1
ts

)

is bounded above by some constant logε1 for all (t,s) ∈ E . Note that this is trivially true (for any
n) for the constant logε1 = maxt ∑u∈Γt

logd(ψut)
2, since the error on any messagemut is bounded

above byd(ψut)
2.

Now, assume that logd
(

Ei
ut

)

≤ logεi for all (u, t) ∈ E . Theorem 8 bounds the maximum log-
error logd

(

Ei+1
ts

)

at any replica of nodet with parents, wheres is on leveln− i of the tree (which
corresponds to theith iteration of loopy BP) by

logd
(

Ei+1
ts

)

≤ gts(logεi) = Gts(εi) = ∑
u∈Γt\s

log
d(ψut)

2 εi +1

d(ψut)
2 + εi

. (11)

We observe a contraction of the error between iterationsi andi +1 if the boundgts(logεi) is smaller
than logεi for every(t,s) ∈ E , and asymptotically achieve logεi → 0 if this is the case for any value
of εi > 1.
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Definingz= logε, we may equivalently showgts(z) < z for all z> 0. This can be guaranteed
by the conditionsgts(0) = 0, g′ts(0) < 1, andg′′ts(z) ≤ 0 for eacht,s. The first is easy to verify, as is
the last (term by term) using the identityg′′ts(z) = ε2G′′

ts(ε)+εG′
ts(ε); the second (g′ts(0) < 1) can be

rewritten to give the convergence condition (10).

We may relate Theorem 11 to Simon’s condition by expanding the setΓt \ s to the larger set
Γt , and observing that logx ≥ x2−1

x2+1 for all x ≥ 1 with equality asx → 1. Doing so, we see that
Simon’s condition is sufficient to guarantee Theorem 11, but that Theorem 11 may be true (implying
convergence) when Simon’s condition is not satisfied. The improvement over Simon’s condition
becomes negligible for highly-connected systems with weak potentials, but can be significant for
graphs with low connectivity. For example, if the graph consists of a single loop then each nodet
has at most two neighbors. In this case, the contraction (11) tells us that theoutgoing message in
either direction isalwaysas close or closer to the BP fixed point than the incoming message. Thus
we easily obtain the result of Weiss (2000), that (for finite-strength potentials) BP always converges
to a unique fixed point on graphs containing a single loop. Simon’s condition,on the other hand,
is too loose to demonstrate this fact. The form of the condition in Theorem 11 is also similar to a
result shown for binary spin models; see Georgii (1988) for details.

However, both Theorem 10 and Theorem 11 depend only on the pairwisepotentialsψst(xs,xt),
and not on the single-node potentialsψs(xs), ψt(xt). As noted by Heskes (Heskes, 2004), this
leaves a degree of freedom to which the single-node potentials may be chosen so as to minimize the
(apparent) strength of the pairwise potentials. Thus, (9) can be improvedslightly by writing

max
t ∑

u∈Γt

min
ψu,ψt

logd

(

ψut

ψuψt

)

< 1 (12)

and similarly for (10) by writing

max
(s,t)∈E

∑
u∈Γt\s

min
ψu,ψt

d
(

ψut
ψuψt

)2
−1

d
(

ψut
ψuψt

)2
+1

< 1. (13)

To evaluate this quantity, one may also observe that

min
ψu,ψt

d

(

ψut

ψuψt

)4

= sup
a,b,c,d

ψts(a,b)

ψts(a,d)

ψts(c,d)

ψts(c,b)
.

In general we shall ignore this subtlety and simply write our results in terms ofd(ψ), as given in (9)
and (10). For binary random variables, it is easy to see that the minimum–strengthψut has the form

ψut =

[

η 1−η
1−η η

]

,

and that when the potentials are of this form (such as in the examples of this section) the two
conditions are completely equivalent.

We provide a more empirical comparison between our condition, Simon’s condition, and the
recent work of Heskes (2004) shortly. Similarly to Heskes (2004), we shall see that it is possible to
use the graph geometry to improve our bound (Section 5.3); but perhaps more importantly (and in
contrast to both other methods), when the condition isnot satisfied, we still obtain useful informa-
tion about the relationship between any pair of fixed points (Section 5.2), allowing its extension to
quantized or otherwise distorted versions of belief propagation (Section 5.4).
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5.2 Distance of Multiple Fixed Points

Theorem 11 may be extended to provide not only a sufficient condition fora unique BP fixed point,
but an upper bound on distance between the beliefs generated by successive BP updates and any
BP fixed point. Specifically, the proof of Theorem 11 relied on demonstrating a bound logεi on the
distance from some arbitrarily chosen fixed point{Mt} at iterationi. When this bound decreases
to zero, we may conclude that only one fixed point exists. However, evenshould it decrease only
to some positive constant, it still provides information about the distance between any iteration’s
belief and the fixed point. Moreover, applying this bound to another, different fixed point{M̃t} tells
us that all fixed points of loopy BP must lie within a sphere of a given diameter [as measured by
logd

(

Mt/M̃t
)

]. These statements are made precise in the following two theorems:

Theorem 12 (BP distance bound). Let {Mt} be any fixed point of loopy BP. Then, after n> 1
iterations of loopy BP resulting in beliefs{M̂n

t }, for any node t and for all x

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

log
d(ψut)

2 εn−1 +1

d(ψut)
2 + εn−1

whereεi is given byε1 = maxs,t d(ψst)
2 and

logεi+1 = max
(s,t)∈E

∑
u∈Γt\s

log
d(ψut)

2 εi +1

d(ψut)
2 + εi

.

Proof. The result follows directly from the proof of Theorem 11.

We may thus infer a distance bound between any two BP fixed points:

Theorem 13 (Fixed-point distance bound). Let{Mt}, {M̃t} be the beliefs of any two fixed points
of loopy BP. Then, for any node t and for all x

| logMt(x)/M̃t(x)| ≤ 2logd
(

Mt/M̃t
)

≤ 2 ∑
u∈Γt

log
d(ψut)

2 ε+1

d(ψut)
2 + ε

(14)

whereε is the largest value satisfying

logε = max
(s,t)∈E

Gts(ε) = max
(s,t)∈E

∑
u∈Γt\s

log
d(ψut)

2 ε+1

d(ψut)
2 + ε

. (15)

Proof. The inequality| logMt(x)/M̃t(x)| ≤ 2logd
(

Mt/M̃t
)

follows from Theorem 2. The rest fol-
lows from Theorem 12—taking the “approximate” messages to be any other fixed point of loopy
BP, we see that the error cannot decrease over any number of iterations. However, by the same
argument given in Theorem 11,g′′ts(z) < 0, and forz sufficiently large,gts(z) < z. Thus (15) has at
most one solution greater than unity, andεi+1 < εi for all i with εi → ε asi → ∞. Letting the number
of iterationsi → ∞, we see that the message “errors” logd

(

Mts/M̃ts
)

must be at mostε, and thus
the difference inMt (the belief of the root node of the computation tree) must satisfy (14).
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Thus, if the value of logε is small (the sufficient condition of Theorem 11 is nearly satisfied)
then although we cannot guarantee convergence to a unique fixed point,we can still make a strong
statement: that the set of fixed points are all mutually close (in a log-error sense), and reside within a
ball of diameter described by (14). Moreover, even though it is possiblethat loopy BP does not con-
verge, and thus even after infinite time the messages may not correspond toanyfixed point of the BP
equations, we are guaranteed by Theorem 12 that the resulting belief estimateswill asymptotically
approach the same bounding ball [achieving distance at most (14) fromall fixed points].

5.3 Path-Counting

If we are willing to put a bit more effort into our bound-computation, we may beable to improve
it further, since the bounds derived using computation trees are very much “worst-case” bounds. In
particular, the proof of Theorem 11 assumes that, as a message error propagates through the graph,
repeated convolution withonly the strongest set of potentials is possible. But often even if the
worst potentials are quite strong, every cycle which contains them may also contain several weaker
potentials. Using an iterative algorithm much like belief propagation itself, we mayobtain a more
globally aware estimate of how errors can propagate through the graph.

Theorem 14 (Non-uniform distance bound). Let{Mt} be any fixed point belief of loopy BP. Then,
after n≥ 1 iterations of loopy BP resulting in beliefs{M̂n

t }, for any node t and for all x

| logMt(x)/M̂t(x)| ≤ 2logd
(

Mt/M̂n
t

)

≤ 2 ∑
u∈Γt

logυn
ut

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

logεi
ts = ∑

u∈Γt\s

logυi
ut (16)

with initial conditionυ1
ut = d(ψut)

2.

Proof. Again we consider the error logd
(

Ei
ts

)

incoming to nodet with parents, wheret is at level
n− i + 1 of the computation tree. Using the same arguments as Theorem 11 it is easy to show by
induction that the error products logd

(

Ei
ts

)

are bounded above byεi
ts, and the individual message

errors logd
(

ei
ts

)

are bounded above byυi
ts, and . Then, by additivity we obtain the stated bound on

d(En
t ) at the root node.

The iteration defined in Theorem 14 can also be interpreted as a (scalar) message-passing proce-
dure, or may be performed offline. As before, if this procedure resultsin logεts→ 0 for all (t,s)∈ E

we are guaranteed that there is a unique fixed point for loopy BP; if not, we again obtain a bound
on the distance between any two fixed-point beliefs. When the graph is perfectly symmetric (every
node has identical neighbors and potential strengths), this yields the same bound as Theorem 12;
however, if the potential strengths are inhomogeneous Theorem 14 provides a strictly better bound
on loopy BP convergence and errors.

This situation is illustrated in Figure 5—we specify two different graphical models defined on a
5×5 grid in terms of their potential strengths logd(ψ)2, and compute bounds on the dynamic range
d
(

Mt/M̃t
)

of any two fixed point beliefsMt , M̃t for each model. (Note that, while potential strength
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Nonuniform bound, grid (a)
Nonuniform bound, grid (b)
Simons condition
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ω →
(a) (b) (c)

Figure 5: (a-b) Two small (5×5) grids. In (a), the potentialsψ are all of equal strength (logd(ψ)2 =
ω), while in (b) several potentials (thin lines) are weaker (logd(ψ)2 = .5ω). The methods
described may be used to compute bounds (c) on the distanced(Et) between any two
fixed point beliefs as a function of potential strengthω.

does not completely specify the graphical model, it is sufficient for all the bounds considered here.)
One grid (a) has equal-strength potentials logd(ψ)2 = ω, while the other has many weaker potentials
(ω/2). The worst-case bounds are the same (since both have a node with four strong neighbors),
shown as the solid curve in (c). However, the dashed curves show the estimate of (16), which
improves only slightly for the strongly coupled graph (a) but considerablyfor the weaker graph (b).
All three bounds give considerably more information than Simon’s condition (dotted vertical line).

Having shown how our bound may be improved for irregular graph geometry, we may now com-
pare our bounds to two other known uniqueness conditions (Tatikonda and Jordan, 2002; Heskes,
2004). Simon’s condition can be related analytically, as described in Section 5.1. On the other hand,
the recent work of Heskes (2004) takes a very different approachto uniqueness based on analysis of
the minima of the Bethe free energy, which directly correspond to stable fixedpoints of BP (Yedidia
et al., 2004). This leads to an alternate sufficient condition for uniqueness. As observed in Heskes
(2004) it is unclear whether a unique fixed point necessarily implies convergence of loopy BP. In
contrast, our approach gives a sufficient condition for the convergence of BP to a unique solution,
which implies uniqueness of the fixed point.

Showing an analytic relation between all three approaches does not appear straightforward; to
give some intuition, we show the three example binary graphs compared in Heskes (2004), whose
structures are shown in Figure 6(a-c) and whose potentials are parameterized by a scalarη > .5,
namely

ψ =

[

η 1−η
1−η η

]

(17)

(so thatd(ψ)2 = η
1−η ). The trivial solutionMt = [.5;.5] is always a fixed point, but may not be

stable; the preciseηcrit at which this fixed point becomes unstable (implying the existence of other,
stable fixed points) can be found empirically for each case (Heskes, 2004); the same values may
also be found algebraically by imposing symmetry requirements on the messages(Yedidia et al.,
2004). This value may then be compared to the uniqueness bounds of Tatikonda and Jordan (2002),
the bound of Heskes (2004), and this work; these are shown in Figure 6.

Notice that our bound is always better than Simon’s condition, though for theperfectly symmet-
ric graph the margin is not large (and decreases further with increased connectivity, for example a
cubic lattice). Additionally, in all three examples our method appears to outperform that of Heskes
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Method (a) (b) (c)
Simon’s condition .62 .62 .62
Heskes’ condition .55 .58 .65
This work .67 .79 .88
Empirical .67 .79 .88

(a) (b) (c) ηcrit

Figure 6: Comparison of various uniqueness bounds: for binary potentials parameterized byη, we
find the predictedηcrit at which loopy BP can no longer be guaranteed to be unique. For
these simple problems, theηcrit at which the trivial (correct) solution becomes unstable
may be found empirically. Examples and empirical values ofηcrit from Heskes (2004).

(2004), though without analytic comparison it is unclear whether this is always the case. In fact, for
these simple binary examples, our bound appears to be tight.

However, our method also allows us to make statements about the results of loopy BP after
finite numbers of iterations, up to some finite degree of numerical precision in the final results.
For example, we may also find the value ofη below which BP will attain a particular precision,
say logd

(

Mt/M̂n
t

)

< 10−3 in at leastn = 100 iterations [obtaining the values{.66, .77, .85} for the
grids in Figure 6(a), (b), and (c), respectively].

5.4 Introducing Intentional Message Errors and Censoring

As discussed in the introduction, we may wish to introduce or allowadditionalerrors in our mes-
sages at each stage, in order to improve the computational or communication efficiency of the algo-
rithm. This may be the result of an actual distortion imposed on the message (perhaps to decrease
its complexity, for example quantization), or the result of censoring the message update (reusing the
message from the previous iteration) when the two are sufficiently similar. Errors may also arise
from quantization or other approximation of the potential functions. Such additional errors may be
easily incorporated into our framework.

Theorem 15. If at every iteration of loopy BP, each message is further approximated insuch a way
as to guarantee that the additional distortion has maximum dynamic range atmostδ, then for any
fixed point beliefs{Mt}, after n≥ 1 iterations of loopy BP resulting in beliefs{M̂n

t } we have

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

logυn
ut

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

+ logδ logεi
ts = ∑

u∈Γt\s

logυi
ut

with initial conditionυ1
ut = δd(ψut)

2.

Proof. Using the same logic as Theorems 12 and 14, apply additivity of the log dynamic range
measure to the additional distortion logδ introduced to each message.
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As with Theorem 14, a simpler bound can also be derived (similar to Theorem12). Either
gives a bound on the maximum total distortion from any true fixed point which will be incurred by
quantized or censored belief propagation. Note that (except on tree-structured graphs) this doesnot
bound the error from the true marginal distributions, only from the loopy BPfixed points.

It is also possible to interpret the additional error as arising from an approximation to the correct
single-node and pairwise potentialsψt ,ψts.

Theorem 16. Suppose that{Mt} are a fixed point of loopy BP on a graph defined by potentialsψts

andψt , and let{M̂n
t } be the beliefs of n iterations of loopy BP performed on a graph with potentials

ψ̂ts andψ̂t , where d(ψ̂ts/ψts) ≤ δ1 and d(ψ̂t/ψt) ≤ δ2. Then,

logd
(

Mt/M̂n
t

)

≤ ∑
u∈Γt

logυn
ut + logδ2

whereυi
ut is defined by the iteration

logυi+1
ts = log

d(ψts)
2 εi

ts+1

d(ψts)
2 + εi

ts

+ logδ1 logεi
ts = logδ2 + ∑

u∈Γt\s

logυi
ut

with initial conditionυ1
ut = δ1d(ψut)

2.

Proof. We first extend the contraction result given in Appendix A by applying the inequality

R

ψ(xt ,a) ψ̂(xt ,a)
ψ(xt ,a)M(xt)E(xt)dxt

R

ψ(xt ,b) ψ̂(xt ,b)
ψ(xt ,b)M(xt)E(xt)dxt

≤

R

ψ(xt ,a)M(xt)E(xt)dxt
R

ψ(xt ,b)M(xt)E(xt)dxt
·d(ψ̂/ψ)2 .

Then, proceeding similarly to Theorem 15 yields the definition ofυi
ts, and including the additional

errors logδ2 in each message product (resulting from the product withψ̂t rather thanψt) gives the
definition ofεi

ts.

Incorrect modelŝψ may arise when the exact graph potentials have been estimated or quantized;
Theorem 16 gives us the means to interpret the (worst-case) overall effects of using an approximate
model. As an example, let us again consider the model depicted in Figure 6(b). Suppose that
we are givenquantizedversions of the pairwise potentials,ψ̂, specified by the value (rounded to
two decimal places)η = .65. Then, the true potentialψ hasη ∈ .65± .005, and thus is within
δ1 ≈ 1.022= (.35)(.655)

(.345)(.65) of the known approximation̂ψ. Applying the recursion of Theorem 16
allows us to conclude that the solution obtained using the approximate modelψ̂ and true modelψ
are within logd(e) ≤ .36, or alternatively that the beliefs found using the approximate model are
correct to within a multiplicative factor of about 1.43. The samêψ, with η assumed correct to three
decimal places, gives a bound logd(e) ≤ .04, or multiplicative factor of 1.04.

5.5 Stochastic Analysis

Unfortunately, the bounds given by Theorem 16 are often pessimistic compared to actual perfor-
mance. We may use a similar analysis, coupled with the assumption of uncorrelated message errors,
to obtain a more realistic estimate (though no longer a strict bound) on the resulting error.
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Proposition 17. Suppose that the errorslogets are random and uncorrelated, so that at each iter-
ation i, for s 6= u and any x, E

[

logei
st(x) · logei

ut(x)
]

= 0, and that at each iteration of loopy BP,
the additional error (in the log domain) imposed on each message is uncorrelated with variance at
most(logδ)2. Then,

E
[

(

logd
(

Ei
t

))2
]

≤ ∑
u∈Γt

(

σi
ut

)2
(18)

whereσ1
ts = logd(ψts)

2 and

(

σi+1
ts

)2
=

(

log
d(ψts)

2 λi
ts+1

d(ψts)
2 +λi

ts

)2

+(logδ)2 (

logλi
ts

)2
= ∑

u∈Γt\s

(

σi
ut

)2
.

Proof. Let us define the (nuisance) scale factorαi
ts = argminα supx | logαei

ts(x)| for each errorei
ts,

and letζi
ts(x) = logαi

tse
i
ts(x). Now, we model the error functionζi

ts(x) (for eachx) as a random
variable with mean zero, and bound the standard deviation ofζi

ts(x) by σi
ts at each iterationi; under

the assumption that the errors in any two incoming messages are uncorrelated, we may assert addi-
tivity of their variances. Thus the variance of∑Γt\sζi

ut(x) is bounded by(logλi
ts)

2. The contraction
of Theorem 8 is a non-linear relationship; we estimate its effect on the errorvariance using a sim-
ple sigma-point quadrature (“unscented”) approximation (Julier and Uhlmann, 1996), in which the
standard deviationσi+1

ts is estimated by applying Theorem 8’s nonlinear contraction to the standard
deviation of the error on the incoming product (logλi

ts).

The assumption of uncorrelated errors is clearly questionable, since propagation around loops
may couple the incoming message errors. However, similar assumptions have yielded useful analy-
sis of quantization effects in assessing the behavior and stability of digital filters (Willsky, 1978). It
is often the case that empirically, such systems behave similarly to the predictionsmade by assum-
ing uncorrelated errors. Indeed, we shall see that in our simulations, theassumption of uncorrelated
errors provides a good estimate of performance.

Given the bound (18) on the variance of logd(E), we may apply a Chebyshev-like argument to
provide probabilistic guarantees on the magnitude of errors logd(E) observed in practice. In our
experiments (Section 5.6), the 2σ distance was almost always larger than the observed error. The
probabilistic bound derived using (18) is typically much smaller than the boundof Theorem 15 due
to the strictly sub-additive relationship between the standard deviations. However, the underlying
assumption of uncorrelated errors makes the estimate obtained using (18) unsuitable for deriving
strict convergence guarantees.

5.6 Experiments

We demonstrate the dynamic range error bounds for quantized messages with a set of Monte Carlo
trials. In particular, for each trial we construct a binary–valued 5×5 grid with uniform potential
strengths, which are either (1) all positively correlated, or (2) randomlychosen to be positively or
negatively correlated (equally likely); we also assign random single-node potentials to each variable
xs. We then run a quantized version of BP forn = 100 iterations from the same initial conditions,
rounding each log-message to discrete values separated by 2logδ (ensuring that the newly intro-
duced error satisfiesd(e) ≤ δ). Figure 7 shows the maximum belief error in each of 100 trials of
this procedure for various values ofδ.
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(a) logd(ψ)2 = .25 (b) logd(ψ)2 = 1

Figure 7: Maximum belief errors incurred as a function of the quantization error. The scatterplot
indicates the maximum error measured in the graph for each of 200 Monte Carlo runs;
this is strictly bounded above by Theorem 15, solid, and bounded with high probability
(assuming uncorrelated errors) by Proposition 17, dashed.

.

Also shown are two performance estimators—thebound on belief error developed in Sec-
tion 5.4, and the 2σ estimate computed assuming uncorrelated message errors as in Section 5.5.
As can be seen, the stochastic estimate is a much tighter, more accurate assessment of error, but it
does not possess the same strong theoretical guarantees. Since [as observed for digital filtering ap-
plications (Willsky, 1978)] the errors introduced by quantization are typically close to independent,
the assumptions underlying the stochastic estimate are reasonable, and empirically we observe that
the estimate and actual errors behave similarly.

6. KL-Divergence Measures

Although the dynamic range measure introduced in Section 4 leads to a number of strong guarantees,
its performance criterion may be unnecessarily (and undesirably) strict. Specifically, it provides a
pointwiseguarantee, thatmandm̂are close for every possible statex. For continuous-valued states,
this is an extremely difficult criterion to meet—for instance, it requires that the messages’ tails
match almost exactly. In contrast, typical measures of the difference between two distributions
operate by an average (mean squared error or mean absolute error) or weighted average (Kullback-
Leibler divergence) evaluation. To address this, let us consider applying a measure such as the
Kullback-Leibler (KL) divergence,

D(p‖p̂) =
Z

p(x) log
p(x)
p̂(x)

dx.

The pointwise guarantees of Section 4 are necessary to bound performance even in the case of
“unlikely” events. More specifically, the tails of a message approximation canbecome important if
two parts of the graph strongly disagree, in which case the tails of each message are the only overlap
of significant likelihood. One way to discount this possibility is to consider the graph potentials
themselves (in particular, the single node potentialsψt) as a realization of random variables which
“typically” agree, then apply a probabilistic measure to estimate the typical performance. From this
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viewpoint, since a strong disagreement between parts of the graph is unlikely we will be able to
relax our error measure in the message tails.

Unfortunately, many of the properties which we relied on for analysis of thedynamic range
measure do not strictly hold for a KL-divergence measure of error, resulting in anapproximation,
rather than a bound, on performance. In Appendix B, we give a detailedanalysis of each property,
showing the ways in which each aspect can break down and discussing the reasonability of simple
approximations. In this section, we apply these approximations to develop a KL-divergence based
estimate of error.

6.1 Local Observations and Parameterization

To make this notion concrete, let us consider a graphical model in which the single-node poten-
tial functions are specified in terms of a set of observation variablesy = {yt}; in this section we
will examine the average (expected) behavior of BP over multiple realizationsof the observation
variablesy. We further assume that both the priorp(x) and likelihoodp(y|x) exhibit conditional
independence structure, expressed as a graphical model. Specifically, we assume throughout this
section that the observation likelihood factors as

p(y|x) = ∏
t

p(yt |xt), (19)

in other words, that each observation variableyt is local to (conditionally independent given) one
of thext . As for the prior modelp(x), for the moment we confine our attention to tree-structured
distributions, for which one may write (Wainwright et al., 2003)

p(x) = ∏
(s,t)∈E

p(xs,xt)

p(xs)p(xt)
∏

s
p(xs). (20)

The expressions (19)-(20) give rise to a convenient parameterizationof the joint distribution, ex-
pressed as

p(x,y) ∝ ∏
(s,t)∈E

ψst(xs,xt)∏
s

ψx
s(xs)ψy

s(xs) (21)

where

ψst(xs,xt) =
p(xs,xt)

p(xs)p(xt)
and ψx

s(xs) = p(xs) , ψy
s(xs) = p(ys|xs). (22)

Our goal is to compute the posterior marginal distributionsp(xs|y) at each nodes; for the tree-
structured distribution (21) this can be performed exactly and efficiently byBP. As discussed in the
previous section, we treat the{yt} as random variables; thus almost all quantities in this graph are
themselves random variables (as they are dependent on theyt), so that the single node observation
potentialsψy

s(xs), messagesmst(xt), etc.are random functions of their argumentxs. The potentials
due to the prior (ψst andψx

s), however, are not random variables as they do not depend on any of the
observationsyt .

For models of the form (21)-(22), the (unique) BP message fixed point consists of normalized
versions of the likelihood functionsmts(xs) ∝ p(yts|xs), whereyts denotes the set of all observations
{yu} such thatt separatesu from s. In this section it is also convenient to perform aprior-weighted
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normalization of the messagesmts, so that
R

p(xs)mts(xs) = 1 (as opposed to
R

mts(xs) = 1 as as-
sumed previously); we again assume this prior-weighted normalization is always possible (this is
trivially the case for discrete-valued statesx). Then, for a tree-structured graph, the prior-weight
normalized fixed-point message fromt to s is precisely

mts(xs) = p(yts|xs)/p(yts) (23)

and the products of incoming messages tot, as defined in Section 2.3, are equal to

Mts(xt) = p(xt |yts) Mt(xt) = p(xt |y).

We may now apply aposterior-weighted log-errormeasure, defined by

D(mut‖m̂ut) =
Z

p(xt |y) log
mut(xt)

m̂ut(xt)
dxt ; (24)

and may relate (24) to the Kullback-Leibler divergence.

Lemma 18. On a tree-structured graph, the error measureD(Mt ,M̂t) is equivalent to the KL-
divergence of the true and estimated posterior distributions at node t:

D(Mt‖M̂t) = D(p(xt |y)‖p̂(xt |y)).

Proof. This follows directly from the definitions ofD, and the fact that on a tree, the unique fixed
point has beliefsMt(xt) = p(xt |y).

Again, the errorD(mut‖m̂ut) is a function of the observationsy, both explicitly through the term
p(xt |y) and implicitly through the messagemut(xt), and is thus also a random variable. Although
the definition ofD(mut‖m̂ut) involves theglobalobservationy and thus cannot be calculated at node
u without additional (non-local) information, we will primarily be interested in the expected value
of these errors over many realizationsy, which is a function only of the distribution. Specifically,
we can see that in expectation over the datay, it is simply

E [D(mut‖m̂ut)] = E

[

Z

p(xt)mut(xt) log
mut(xt)

m̂ut(xt)
dxt

]

. (25)

One nice consequence of the choice of potential functions (22) is the locality of prior infor-
mation. Specifically, ifno observationsy are available, and only prior information is present, the
BP messages are trivially constant [mut(x) = 1 ∀x]. This ensures that any message approximations
affect only the data likelihood, and not the priorp(xt); this is similar to the motivation of Paskin and
Guestrin (2004), in which an additional message-passing procedure is used to create this parame-
terization.

Finally, two special cases are of note. First, ifxs is discrete-valued and the prior distribu-
tion p(xs) constant (uniform), the expected message distortion with prior-normalized messages,
E[D(m‖m̂)], and the KL-divergence of traditionally normalized messages behave equivalently, i.e.,

E [D(mts‖m̂ts)] = E

[

D

(

mts
R

mts

∥

∥

m̂ts
R

m̂ts

)]
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where we have abused the notation of KL-divergence slightly to apply it to the normalized likelihood
mts/

R

mts. This interpretation leads to the same message-censoring criterion used in Chen et al.
(2004).

Secondly, when the statexs is a discrete-valued random variable taking on one ofM possible
values, a straightforward uniform quantization of the value ofp(xs)m(xs) results in a bound on the
divergence (25). Specifically, we have the following lemma:

Lemma 19. For an M-ary discrete variable x, the quantization

p(x)m(x) →{ε,3ε, . . . ,1− ε}

results in an expected divergence bounded by

E [D(m(x)‖m̂(x))] ≤ (2log2+M)Mε+O(M3ε2).

Proof. Defineµ(x) = p(x)m(x), andµ̄(x) ∈ {ε,3ε, . . . ,1− ε} (for eachx) to be its quantized value.
Then, the prior-normalized approximation ˆm(x) satisfies

p(x)m̂(x) = µ̄(x) / ∑
x

µ̄(x) = µ̄(x)/C

whereC∈ [1−Mε,1+Mε]. The expected divergence

E [D(m(x)‖m̂(x))] = ∑
x

p(x)m(x) log
m(x)
m̂(x)

≤ ∑
x

µ(x) log
µ(x)
µ̄(x)

+∑
x
| logC|.

The first sum is at its maximum forµ(x) = 2ε andµ̄(x) = ε, which results in the value∑x(2log2)ε.
Applying the Taylor expansion of the log, the second sum∑ | logC| is bounded above byM2ε +
O(M3ε2).

Thus, for example, for uniform quantization of a message with binary–valued statex, fidelity up
to two significant digits (ε = .005) results in an errorD which, on average, is less than.034.

We now state the approximations which will take the place of the fundamental properties used
in the preceding sections, specifically versions of the triangle inequality, sub-additivity, and contrac-
tion. Although these properties donot hold in general, in practice useful estimates are obtained by
making approximations corresponding to each property and following the same development used
in the preceding sections. (In fact, experimentally these estimates still appearquite conservative.)
A more detailed analysis of each property, along with justification for the approximation applied, is
given in Appendix B.

6.2 Approximations

Three properties of the dynamic range described in Section 4 are importantin the error analysis
of Section 5—a form of the triangle inequality, enabling the accumulation of errors in successive
approximations to be bounded by the sum of the individual errors, a formof sub-additivity, enabling
the accumulation of errors in the message product operation to be boundedby the sum of incoming
errors, and a rate of contraction due to convolution with each pairwise potential. We assume the
following three properties for the expected error; see Appendix B for amore detailed discussion.
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Approximation 20 (Triangle Inequality). For a true BP fixed-point message mut and two approx-
imationsm̂ut, m̃ut, we assume

D(mut‖m̃ut) ≤ D(mut‖m̂ut)+D(m̂ut‖m̃ut). (26)

Comment.This is not strictly true for arbitrary ˆm, m̃, since the KL-divergence (and thusD) does
not satisfy the triangle inequality.

Approximation 21 (Sub-additivity). For true BP fixed-point messages{mut} and approximations
{m̂ut}, we assume

D(Mts‖M̂ts) ≤ ∑
u∈Γt\s

D(mut‖m̂ut). (27)

Approximation 22 (Contraction). For a true BP fixed-point message product Mts and approxima-
tion M̂ts, we assume

D(mts‖m̂ts) ≤ (1− γts)D(Mts‖M̂ts) (28)

where

γts = min
a,b

Z

min[ρ(xs,xt = a) , ρ(xs,xt = b)]dxs ρ(xs,xt) =
ψts(xs,xt)ψx

s(xs)
R

ψts(xs,xt)ψx
s(xs)dxs

.

Comment.For tree-structured graphical models with the parametrization described by(21)-(22),
ρ(xs,xt) = p(xs|xt), andγts corresponds to the rate of contraction described by Boyen and Koller
(1998).

6.3 Steady-State Errors

Applying these approximations to graphs with cycles, and following the same development used
for constructing the strict bounds of Section 5, we find the following estimatesof steady-state error.
Note that, other than those outlined in the previous section (and described in Appendix B), this
development involves no additional approximations.

Approximation 23. After n≥ 1 iterations of loopy BP subject to additional errors at each iteration
of magnitude (measured byD) bounded above by some constantδ, with initial messages{m0

tu}
satisfyingD(mtu‖m0

tu) less than some constant C, results in an expected KL-divergence between a
true BP fixed point{Mt} and the approximation{M̂n

t } bounded by

Ey
[

D(Mt‖M̂n
t )
]

= Ey

[

D(Mt‖M̂
n

t )
]

≤ ∑
u∈Γt

((1− γut)εn−1
ut +δ)

whereε0
ts = C and

εi
ts = ∑

u∈Γt\s

((1− γut)εi−1
ut +δ).

Comment.The argument proceeds similarly to that of Theorem 15. Letεi
ts bound the quantity

D(Mts‖M̂ i
ts) at each iterationi, and apply Approximations 20-22.
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We refer to the estimate described in Approximation 23 as a “bound-approximation”, in order
to differentiate it from the stochastic error estimate presented next.

Just as a stochastic analysis of message error gave a tighter estimate for thepointwise difference
measure, we may obtain an alternate Chebyshev-like “bound” by assuming that the message pertur-
bations are uncorrelated (already an assumption of the KL additivity analysis) and that we require
only an estimate which exceeds the expected error with high probability.

Approximation 24. Under the same assumptions as Approximation 23, but describing the error in
terms of its variance and assuming that these errors are uncorrelated gives the estimate

E
[

D(Mt‖M̂
n

t )2
]

≤ ∑
u∈Γt

(σn−1
ut )2

where(σ0
ts)

2 = C and
(σi

ts)
2 = ∑

u∈Γt\s

((1− γut)σi−1
ut )2 +δ2.

Comment.The argument proceeds similarly to Proposition 17, by induction on the claim that (σi
ut)

2

bounds the variance at each iterationi. This again applies Theorem 29 ignoring any effects due to
loops, as well as the assumption that the message errors are uncorrelated(implying additivity of the
variances of each incoming message). As in Section 5.5, we take the 2σ value as our performance
estimate.

6.4 Experiments

Once again, we demonstrate the utility of these two estimates on the same uniform grids used
in Section 5.6. Specifically, we generate 200 example realizations of a 5× 5 binary grid and its
observation potentials (100 with strictly attractive potentials and 100 with mixed potentials), and
compare a quantized version of loopy BP with the solution obtained by exact loopy BP, as a function
of KL-divergence boundδ incurred by the quantization levelε (see Lemma 18).

Figure 8(a) shows the maximum KL-divergence from the correct fixed point resulting in each
Monte Carlo trial for a grid with relatively weak potentials (in which loopy BP is analytically guar-
anteed to converge). As can be seen, both the bound (solid) and stochastic estimate (dashed) still
provide conservative estimates of the expected error. In Figure 8(b) we repeat the same analysis but
with stronger pairwise potentials (for which convergence to a unique solution is not guaranteed but
typically occurs in practice). In this case, the bound-based estimate of KL-divergence is trivially
infinite—its linear rate of contraction is insufficient to overcome the accumulationrate. However,
the greater sub-additivity in the stochastic estimate leads to the non-trivial curve shown (dashed),
which still provides a reasonable (and still conservative) estimate of the performance in practice.

7. Conclusions and Future Directions

We have described a framework for the analysis of belief propagation stemming from the view that
the message at each iteration is some noisy or erroneous version of some true BP fixed point. By
measuring and bounding the error at each iteration, we may analyze the behavior of various forms
of BP and test for convergence to the ideal fixed-point messages, or bound the total error from any
such fixed point.

928



LOOPY BP: CONVERGENCE ANDEFFECT OFMESSAGEERRORS

10
3

10
 2

10
 1

10
 4

10
 3

10
 2

10
 1

10
0

10
1

Expectation bound

Stochastic estimate

Positive corr. potentials

Mixed corr. potentials

δ →

av
g

D
(M

t‖
M̂

t)

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

10
0

10
1

δ →

av
g

D
(M

t‖
M̂

t)

(a) logd(ψ)2 = .25 (b) logd(ψ)2 = 1

Figure 8: KL-divergence of the beliefs as a function of the added message errorδ. The scatterplots
indicates the average error measured in the graph for each of 200 MonteCarlo runs,
along with the expected divergence bound (solid) and 2σ stochastic estimate (dashed).
For stronger potentials, the upper bound may be trivially infinite; in this examplethe
stochastic estimate still gives a reasonable gauge of performance.

.

In order to do so, we introduced a measure of the pointwise dynamic range,which represents
a strong condition on the agreement between two messages; after showing itsutility for common
inference tasks such as MAP estimation and its transference to other common measures of error, we
showed that under this measure the influence of message errors is both sub-additive and measurably
contractive. These facts led to conditions under which traditional belief propagation may be shown
to converge to a unique fixed point, and more generally a bound on the distance between any two
fixed points. Furthermore, it enabled analysis of quantized, stochastic, or other approximate forms
of belief propagation, yielding conditions under which they may be guaranteed to converge to some
unique region, as well as bounds on the ensuing error over exact BP.If we further assume that
the message perturbations are uncorrelated, we obtain an alternate, tighterestimate of the resulting
error.

The second measure considered an average case error similar to the Kullback-Liebler diver-
gence, in expectation over the possible realizations of observations within the graph. While this
gives no guarantees about any particular realization, the difference measure itself is able to be much
less strict (allowing poor approximations in the distribution tails, for example). Analysis of this case
is substantially more difficult and leads to approximations rather than guarantees, but explains some
of the observed similarities in behavior among the two forms of perturbed BP. Simulations indicate
that these estimates remain sufficiently accurate to be useful in practice.

Further analysis of the propagation of message errors has the potential togive an improved
understanding of when and why BP converges (or fails to converge),and potentially also the role of
the message schedule in determining the performance. Additionally, there aremany other possible
measures of the deviation between two messages, any of which may be able to provide an alternative
set of bounds and estimates on performance of BP using either exact or approximate messages.
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Appendix A. Proof of Theorem 8

Because all quantities in this section refer to the pair(t,s), we suppress the subscripts. The error
measured(e) is given by

d(e)2 = d(m̂/m)2 = max
a,b

R

ψ(xt ,a)M(xt)E(xt)dxt
R

ψ(xt ,a)M(xt)dxt
·

R

ψ(xt ,b)M(xt)dxt
R

ψ(xt ,b)M(xt)E(xt)dxt
(29)

subject to a few constraints: positivity of the messages and potential functions, normalization of
the message productM, and the definitions ofd(E) andd(ψ). In order to analyze the maximum
possible value ofd(e) for any functionsψ, M, andE, we make repeated use of the following
property:

Lemma 25. For f1, f2, g1, g2 all positive,

f1 + f2
g1 +g2

≤ max

[

f1
g1

,
f2
g2

]

.

Proof. Assume without loss of generality thatf1/g1 ≥ f2/g2. Then we havef1/g1 ≥ f2/g2 ⇒
f1g2 ≥ f2g1 ⇒ f1g1 + f1g2 ≥ f1g1 + f2g1 ⇒

f1
g1

≥ f1+ f2
g1+g2

.

This fact, extended to more general sums, may be applied directly to (29) to prove Corollary 9.
However, a more careful application leads to the result of Theorem 8. The following lemma will
assist us:

Lemma 26. The maximum of d(e) with respect toψ(xt ,a), ψ(xt ,b), and E(xt) is attained at some
extremum of their feasible function space. Specifically,

ψ(x,a) = 1+(d(ψ)2−1)χA(x) E(x) = 1+(d(E)2−1)χE(x)

ψ(x,b) = 1+(d(ψ)2−1)χB(x)

whereχA, χB, andχE are indicator functions taking on only values 0 and 1.

Proof. We simply show the result forψ(x,a); the proofs forψ(x,b) andE(x) are similar. First, ob-
serve that without loss of generality we may scaleψ(x,a) so that its minimum value is 1. Now con-
sider a convex combination of any two possible functions: letψ(xt ,a) = α1ψ1(xt ,a)+ α2ψ2(xt ,a)
with α1 ≥ 0, α2 ≥ 0, andα1 + α2 = 1. Then, applying Lemma 25 to the left-hand term of (29) we
have

α1
R

ψ1(xt ,a)M(xt)E(xt)dxt +α2
R

ψ2(xt ,a)M(xt)E(xt)dxt

α1
R

ψ1(xt ,a)M(xt)dxt +α2
R

ψ2(xt ,a)M(xt)dxt

≤ max

[R

ψ1(xt ,a)M(xt)E(xt)dxt
R

ψ1(xt ,a)M(xt)dxt
,

R

ψ2(xt ,a)M(xt)E(xt)dxt
R

ψ2(xt ,a)M(xt)dxt

]

. (30)
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Thus,d(e) is maximized by taking whichever ofψ1, ψ2 results in the largest value—an extremum.
It remains only to describe the form of such a function extremum. Any potential ψ(x,a) may be

considered to be the convex combination of functions of the form
(

d(ψ)2−1
)

χ(x)+ 1, whereχ
takes on values{0,1}. This can be seen by the construction

ψ(x,a) =
Z 1

0

(

d(ψ)2−1
)

χy
m(x,a)+1 dy

where χy
m(x,a) =

{

1 ψ(x,a) ≥ 1+(d(ψ)2−1)y

0 otherwise.

Thus, the maximum value ofd(e) will be attained by a potential equal to one of these functions.

Applying Lemma 26, we define the shorthand

MA =
Z

M(x)χA(x) MB =
Z

M(x)χB(x) ME =
Z

M(x)χE(x)

MAE =
Z

M(x)χA(x)χE(x) MBE =
Z

M(x)χB(x)χE(x)

α = d(ψ)2−1 β = d(E)2−1,

giving

d(e)2 ≤ max
M

1+αMA +βME +αβMAE

1+αMB +βME +αβMBE
·
1+αMB

1+αMA
.

Using the same argument outlined by Equation 30, one may argue that the scalars MAE, MBE, MA,
andMB must also be extremum of their constraint sets. Noticing thatMAE should be large andMBE

small, we may summarize the constraints by

0≤ MA, MB, ME ≤ 1 MAE ≤ min[MA, ME] MBE ≥ max[0, ME − (1−MB)]

(where the last constraint arises from the fact thatME + MB−MBE ≤ 1). We then consider each
possible case:MA ≤ ME, MA ≥ ME, . . . In each case, we find that the maximum is found at the
extremaMAE = MA = ME andME = 1−MB. This gives

d(e)2 ≤ max
M

1+(α+β+αβ)ME

1+α+(β−α)ME
·
1+α−αME

1+αME
.

The maximum with respect toME (whose optimum is not an extreme point) is given by taking the
derivative and setting it to zero. This procedure gives a quadratic equation; solving and selecting
the positive solution givesME = 1

β(
√

β+1−1). Finally, plugging in, simplifying, and taking the
square root yields

d(e) ≤
d(ψ)2d(E)+1

d(ψ)2 +d(E)
.
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Appendix B. Properties of the Expected Divergence

We begin by examining the properties of the expected divergence (25) ontree-structured graphical
models parameterized by (21)-(22); we discuss the application of these results to graphs with cycles
in Appendix B.4. Recall that, for tree-structured models described by (21)-(22), the prior-weight
normalized messages of the (unique) fixed point are equivalent to

mut(xt) = p(yut|xt)/p(yut),

and that the message products are given by

Mts(xt) = p(xt |yts)Mt(xt) = p(xt |y).

Furthermore, let us define theapproximatemessages ˆmut(x) in terms of some approximate like-
lihood function, i.e.,m̂ut(x) = p̂(yut|xt)/p̂(yut) where p̂(yut) =

R

p̂(yut|xt)p(xt)dxt . We may then
examine each of the three properties in turn: the triangle inequality, additivity,and contraction.

B.1 Triangle Inequality

Kullback-Leibler divergence is not a true distance, and in general, it does not satisfy the triangle
inequality. However, the following generalization does hold.

Theorem 27. For a tree-structured graphical model parameterized as in(21)-(22), and given
the true BP message mut(xt) and two approximationŝmut(xt), m̃ut(xt), suppose that mut(xt) ≤
cutm̂ut(xt) ∀xt . Then,

D(mut‖m̃ut) ≤ D(mut‖m̂ut)+cutD(m̂ut‖m̃ut)

and furthermore, ifm̂ut(xt) ≤ c∗utm̃ut(xt) ∀xt , then mut(xt) ≤ cutc∗utm̃ut(xt) ∀xt .

Comment.Sincem,m̂ are prior-weight normalized (
R

p(x)m(x) =
R

p(x)m̂(x) = 1), for a strictly
positive priorp(x) we see thatcut ≥ 1, with equality if and only ifmut(x) = m̂ut(x) ∀x. However,
this is often quite conservative and Approximation 20 (cut = 1) is sufficient to estimate the resulting
error. Moreover, we shall see that the constants{cut} are also affected by the product operation,
described next.

B.2 Near-Additivity

For BP fixed-point messages{mut(xt)}, approximated by the messages{m̂ut(xt)}, the resulting error
is not quite guaranteed to be sub-additive, but is almost so.

Theorem 28. The expected error E[D(Mt‖M̂t)] between the true and approximate beliefs is nearly
sub-additive; specifically,

E
[

D(Mt‖M̂t)
]

≤ ∑
u∈Γt

E [D(mut‖m̂ut)]+
(

Î − I
)

(31)

where I= E

[

log p(y)/ ∏
u∈Γt

p(yut)

]

and Î = E

[

log p̂(y)/ ∏
u∈Γt

p̂(yut)

]

.
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Moreover, if mut(xt) ≤ cutm̂ut(xt) for all xt and for each u∈ Γt , then

Mt(xt) ≤ ∏
u∈Γt

cutC
∗
t M̂t(xt) C∗

t =
p̂(y)

∏u∈Γt
p̂(yut)

∏u∈Γt
p(yut)

p(y)
(32)

Proof. By definition we have

E[D(Mt‖M̂t)] = E

[

Z

p(xt ,y) log
Mt(xt)

M̂t(xt)
dxt

]

= E

[

Z

p(xt |y) log
p(xt)

p(xt)

p(y|xt)

p̂(y|xt)

p̂(y)

p(y)
dxt

]

.

Using the Markov property of (21) to factorp(y|xt), we have

= E

[

Z

p(xt |y) ∑
u∈Γt

log
p(yut|xt)

p̂(yut|xt)
+ p(xt |y) log

p̂(y)

p(y)
dxt

]

and, applying the identitymut(xt) = p(yut|xt)/p(yut) gives

= ∑
u∈Γt

E

[

Z

p(xt |y) log
mut(xt)

m̂ut(xt)

]

+E

[

log
p̂(y)

∏u p̂(yut)

∏u p(yut)

p(y)

]

dxt

= ∑
u∈Γt

E [D(mut‖m̂ut)]+(Î − I)

whereÎ , I are as defined. Here,I is the mutual information (the divergence from independence) of
the variables{yut}u∈Γt . Equation (32) follows from a similar argument.

Unfortunately, it isnot the case that the quantitŷI − I must necessarily be less than or equal
to zero. To see how it may be positive, consider the following example. Letx = [xa,xb] be a two-
dimensional binary random variable, and letya andyb be observations of the specified dimension
of x. Then, ifya andyb are independent (I = 0), the true messagesma(x) andmb(x) have a regular
structure; in particular,ma andmb have the forms[p1p2p1p2] and[p3p3p4p4] for somep1, . . . , p4.
However, we have placed no such requirements on the messageerrors m̂/m; they have the poten-
tially arbitrary formsea = [e1e2e3e4], etc.. If either message errorea,eb doesnot have the same
structure asma,mb respectively (even if they are random and independent), thenÎ will in general
not be zero. This creates theappearanceof information betweenya andyb, and the KL-divergence
will not be strictly sub-additive.

However, this is not a typical situation. One may argue that in most problems ofinterest, the
informationI between observations is non-zero, and the types of message perturbations [particularly
random errors, such as appear in stochastic versions of BP (Sudderth et al., 2003; Isard, 2003; Koller
et al., 1999)] tend to degrade this information on average. Thus, is is reasonable to assume thatÎ ≤ I .

A similar quantity defines the multiplicative constantC∗
t in (32). WhenC∗

t ≤ 1, it acts to reduce
the constant which boundsMt by M̂t ; if this occurs “typically”, it lends additional support for Ap-
proximation (20). Moreover, ifE[C∗

t ] ≤ 1, then by Jensen’s inequality, we haveÎ − I ≤ 0, ensuring
sub-additivity as well.
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B.3 Contraction

Analysis of the contraction of expected KL-divergence is also non-trivial; however, the work of Boyen
and Koller (1998) has already considered this problem in some depth for the specific case of directed
Markov chains (in which additivity issues do not arise) and projection-based approximations (for
which KL-divergence does satisfy a form of the triangle inequality). We may directly apply their
findings to construct Approximation 22.

Theorem 29. On a tree-structured graphical model parameterized as in(21)-(22), the error mea-
sureD(M,M̂) satisfies the inequality

E [D(mts‖m̂ts)] ≤ (1− γts)E
[

D(Mts‖M̂ts)
]

where γts = min
a,b

Z

min[p(xs|xt = a) , p(xs|xt = b)]dxs.

Proof. For a detailed development, see Boyen and Koller (1998); we merely sketchthe proof here.
First, note that

E [D(mts‖m̂ts)] = E

[

Z

p(xs|y) log
p(yts|xs)

p(yts)

p̂(yts)

p̂(yts|xs)

]

= E

[

Z

p(xs|yts) log
p(xs|yts)

p̂(xs|yts)

]

= E [D(p(xs|yts)‖p̂(xs|yts))]

(which is the quantity considered by Boyen and Koller, 1998) and furtherthat

p(xs|yts) =
Z

p(xs|xt)p(xt |yts)dxt .

By constructing two valid conditional distributionsf1(xs|xt) and f2(xs|xt) such thatf1 has the form
f1(xs|xt) = f1(xs) (independence ofxs, xt), and

p(xs|xt) = γts f1(xs|xt)+(1− γts f2(xs|xt)

one may use the convexity of KL-divergence to show

D(p(xs|yts)‖p̂(xs|yts)) ≤ γtsD( f1∗ p(xt |yts)‖ f1∗ p̂(xt |yts))+

(1− γts)D( f2∗ p(xt |yts)‖ f2∗ p̂(xt |yts))

where “∗” denotes convolution, i.e.,f1 ∗ p(xt |yts) =
R

f1(xs|xt)p(xt |yts)dxt . Since the conditional
f1 induces independence betweenxs andxt , the first divergence term is zero, and sincef2 is a valid
conditional distribution, the second divergence term is less thanD(p(xt |yts)‖p̂(xt |yts)) (see Cover
and Thomas, 1991). Thus we have a minimum rate of contraction of(1− γts).

It is worth noting that Theorem 29 gives alinear contraction rate. While this makes for sim-
pler recurrence relations than the nonlinear contraction found in Section 4.2, it has the disadvantage
that, if the rate of error addition exceeds the rate of contraction it may resultin a trivial (infinite)
bound. Theorem 29 is the best contraction rate currently known for arbitrary conditional distri-
butions, although certain special cases (such as binary–valued random variables) appear to admit
stronger contractions.
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B.4 Graphs with Cycles

The analysis and discussion of each property (Appendices B.1–B.3) also relied on assuming a tree-
structured graphical model, and using the direct relationship between messages and likelihood func-
tions for the parameterization (21)-(22). However, for BP on generalgraphs, this parameterization
is not valid.

One way to generalize this choice is given by the re-parameterization around some fixed point
of loopy BP on the graphical model of the prior. If the original potentialsψ̃st, ψ̃x

s specify the prior
distribution [cf. (22)],

p(x) ∝ ∏
(s,t)∈E

ψ̃st(xs,xt)
˜∏sψ

x
s(xs) (33)

then given a BP fixed point{M̃st,M̃s} of (33), we may choose a new parameterization of the same
prior ψst,ψx

s given by

ψst(xs,xt) =
M̃st(xs)M̃ts(xt)ψ̃st(xs,xt)

M̃s(xs)M̃t(xt)
and ψx

s(xs) = M̃s(xs). (34)

This parameterization ensures that uninformative messages [mut(xt) = 1 ∀xt ] comprise a fixed point
for the graphical model ofp(x) as described by the new potentials{ψst,ψs}. For a tree-structured
graphical model, this recovers the parameterization given by (22).

However, the messages of loopy BP are no longer precisely equal to the likelihood functions
m(x) = p(y|x)/p(y), and thus the expectation applied in Theorem 28 is no longer consistent with
the messages themselves. Additionally, the additivity and contraction statements were developed
under the assumption that the observed datay along different branches of the tree are conditionally
independent; in graphs with cycles, this is not the case. In the computation tree formalism, instead
of being conditionally independent, the observationsy actuallyrepeatthroughout the tree.

However, the assumption of independence is precisely the same assumption applied by loopy
belief propagation itself to perform tractable approximate inference. Thus, for problems in which
loopy BP is well-behaved and results in answers similar to the true posterior distributions, we may
expect our estimates of belief error to be similarly incorrect but near to the true divergence.

In short, all three properties required for a strict analysis of the propagation of errors in BP fail,
in one sense or another, for graphs with cycles. However, for many situations of practical interest,
they are quite close to the real average-case behavior. Thus we may expect that our approximations
give rise to reasonable estimates of the total error incurred by approximateloopy BP, an intuition
which appears to be borne out in our simulations (Section 6.4).
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