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Target Discrimination in Synthetic Aperture
Radar Using Artificial Neural Networks
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Abstract—This paper addresses target discrimination in syn-
thetic aperture radar (SAR) imagery using linear and nonlinear
adaptive networks. Neural networks are extensively used for
pattern classification but here the goal is discrimination. We will
show that the two applications require different cost functions.
We start by analyzing with a pattern recognition perspective
the two-parameter constant false alarm rate (CFAR) detector
which is widely utilized as a target detector in SAR. Then we
generalize its principle to construct the quadratic gamma dis-
criminator (QGD), a nonparametrically trained classifier based
on local image intensity. The linear processing element of the
QGD is further extended with nonlinearities yielding a multilayer
perceptron (MLP) which we call the NL-QGD (nonlinear QGD).

MLP’s are normally trained based on the L2 norm. We
experimentally show that the L2 norm is not recommended to
train MLP’s for discriminating targets in SAR. Inspired by the
Neyman–Pearson criterion, we create a cost function based on a
mixed norm to weight the false alarms and the missed detections
differently. Mixed norms can easily be incorporated into the
backpropagation algorithm, and lead to better performance.
Several other norms (L8; cross-entropy) are applied to train the
NL-QGD and all outperformed the L2 norm when validated by
receiver operating characteristics (ROC) curves. The data sets
are constructed from TABILS 24 ISAR targets embedded in 7
km2 of SAR imagery (MIT/LL mission 90).

Index Terms—Gamma kernels, mixed norm training, neural
networks, synthetic aperture radar, target discrimination.

I. INTRODUCTION

A UTOMATIC target recognition (ATR) seeks to classify
specific targets in natural environments (background clut-

ter). The architecture of ATR systems is normally divided
into a focus of attention block followed by a classifier for
practical reasons [21]. The computational bandwidth required
to directly classify each image pixel is prohibitive and the
method is wasteful since most of the imagery is background
clutter. Hence, the focus of attention stage selects areas with
a large probability of containing targets. Only these areas are
further scrutinized by the classifier. The focus of attention must
therefore be a computationally simple system that provides a
high probability of detection creating at the same time as few
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false alarms as possible. A false alarm is a system detection
that corresponds to clutter. The price/performance ratio of the
full ATR system is therefore very much dependent upon the
figure of merit of the focus of attention.

The focus of attention is built from a detector (prescreener)
enhanced by a discriminator to reduce further the number of
false alarms. The most popular prescreener utilized in synthetic
aperture radar (SAR) is the two parameter constant false alarm
(CFAR) detector [17], which is based on a normalized test
of the pixel intensity versus its local neighborhood. Its pop-
ularity in millimeter SAR is due to an excellent compromise
simplicity/performance. However, the discriminating power of
the two parameter CFAR is not enough to reduce the false
alarms to acceptable levels. The focus of attention subsystems
described in the literature incorporate complementary features
and discriminants such as fractal dimension, weighted rank
fill ratio, size, polarimetric purity, etc. [17], [21]. Acceptable
performance has been reported [19], but the systems can be
further improved.

In this paper, we briefly describe a focus of attention
based on adaptive systems concepts. Instead of extending
the CFAR with unrelated features and other discriminators,
we optimize the utilization of local pixel intensity features
extracted by a modified CFAR detector, the [14].
We start by analyzing the two-parameter CFAR detector in
a pattern recognition perspective and generalize its structure
to the quadratic gamma discriminator (QGD), which is able to
create a quadratic discriminant function in the pixel intensity
space. The QGD was implemented as a linear machine [24],
i.e. as a weighted combination of all the quadratic terms of
the intensity of the pixel under analysis and the intensity of
a neighboring region. Least squares was used to adapt the
weights of the QGD. The combination CFAR/QGD has been
tested by MIT/LL on real target data and showed a substantial
improvement with respect to the CFAR performance [25].

The purpose of this paper is to report on further enhance-
ments to the QGD. Extending the linear processing element
(PE) of the QGD with a saturating nonlinearity provides the
basis for a multilayer perceptron (MLP) topology, which we
called the nonlinear QGD (NL-QGD). Training the NL-QGD
with backpropagation and the mean square error criterion
norm) yielded disappointing performance. An analysis of the
Neyman–Pearson criterion, the most appropriate hypothesis
test for real world detection problems, led us to develop
a mixed norm approach to train the NL-QGD, which im-
proves the performance further. Several other norms were
also implemented and tested. We present receiver operating
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characteristics (ROC’s) for each of the discriminators utilizing
a large data set of SAR imagery (about 7 provided
by MIT/LL (mission 90 pass 5) with embedded targets.
Unsupervised neural networks have been applied to SAR
image recognition for segmentation and surface representation
[2], [8] and as feature extractors [16]. In fact, the gamma
kernels resemble the Mexican hat function but they have
the advantage of independently setting the “inhibition region”
[27]. Here, neural networks will be trained in a supervised
framework, very much like the work of [5], [22], and [26]. In
the context of our work, neural networks appear as a natural
extension to improve performance for the focus of attention
as will be described in the paper.

II. DETECTION AND THE NEYMAN-PEARSON CRITERION

Signal detection in background noise can be formulated
through the Bayes’ theory of hypothesis testing. The hy-
pothesis here are two: that corresponds to no signal
present (only noise), and where the signal and noise
are both present. The optimum detector (decision) according
to Bayes theory minimizes the average risk, which implies
knowledge of the costs of decisions, the prior probabilities of
each hypothesis as well as the probability density function
of both the signal and noise In realistic
detection environments the knowledge of the decision costs
and thea priori probabilities are not available. Under these
circumstances, Neyman and Pearson [18] proposed a criterion
that maximizes the probability of detection, given a
constraint imposed on the probability of false alarms, as
follows:

subject to (1)

where is the probability of detection for the decision rule
and stands for the probability of false alarms, which we

constrain to be equal to Notice the different role played by
the missed detections and the false alarms.

The Neyman–Pearson criterion can be easily implemented
by computing the likelihood ratio as a
function of and comparing the outcome to a fixed threshold

Hypothesis is chosen if otherwise
is selected. is chosen such that the false alarm rate
is obtained. The simplicity of the Neyman–Pearson criterion
and its relationship with Bayes criterion makes it the preferred
criterion in signal detection [13].

In many practical situations, knowledge of and
is also not available or difficult to model, which leads to
the construction of nonparametric detectors. In this case one
should try to achieve only a specified false alarm rate, relaxing
the requirement of maximum probability of detection. A
detector whose false alarm rate is unchanged for all noise
distributions in a given class is called constant false alarm
rate (CFAR). A rather important case for detection is obtained
when the signal amplitude is positive but unknown and the
noise is assumed Gaussian distributed with zero mean and un-
known variance. Under this condition and using the principle
of maximum likelihood, the likelihood ratio test is equivalent
to a Student statistics [10] which leads to the following

(a)

(b)

Fig. 1. The CFAR detector. The amplitude of the test pixel is compared with
the mean and the standard deviation of the local area. The guard area ensures
that no target pixels are included in the measurement of the local statistics.

decision rule

(2)

where is the sampled signal mean and is the sampled
standard deviation. For positive amplitude signals, hypothesis

is chosen if the ratio is above a threshold which sets
the false alarm rate. The asymptotic relative efficiency of this
test is the same as the Neyman–Pearson criterion when the
number of samples used to estimate the mean and variance of
the noise tend to infinity.

These ideas were applied to radar signal detection by Finn
[7], who showed that a simple comparison of the cell under
test with the power estimated in surrounding cells produced
a CFAR detector for Gaussian clutter (background noise).
Goldstein [10] showed that the following test:

(3)

where is a pixel under test and and are the estimates
of the local clutter mean and standard deviation, produced a
CFAR detector for log-normal and Weibull distributed clutter.
Novak adapted this test for synthetic aperture radar (SAR)
[3] and called it the two parameter CFAR detector. The area
where the clutter statistics are estimated is defined by a stencil
as shown in Fig. 1.

The CFAR compares the intensity of a pixel under test
with the normalized intensity of a surrounding area. Since
man-made objects are normally bright in millimeter SAR
imagery, this is a very effective test, which can be efficiently
implemented in digital hardware. The shape of the stencil



1138 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 7, NO. 8, AUGUST 1998

ensures that when the center pixel is on target, the neigh-
borhood falls in the background such that its local statistics
can be reasonably well estimated. The shape of the stencil (in
particular the guardband) is governed by the target size [21].
In SAR imagery, the reflectivity of the object is only weakly
coupled to its geometric shape, soa priori stencil dimensions
based solely on target size cause suboptimal performance [25].

A. Statistical Pattern Recognition Interpretation
of the CFAR Detector

In terms of statistical pattern recognition, we can interpret
the two parameter CFAR detector as a feature extractor fol-
lowed by a discriminant function. One can model the CFAR
stencil as a localintensity feature extractorin the neighborhood
of the pixel under test. The CFAR detection rule is combining
the features to produce a decision between the classes of
targets and clutter, i.e., it is effectively creating adiscriminant
function for a two class problem. The CFAR equation (3) can
be rewritten as

(4)

where is a pixel under test, is the threshold for
the CFAR detector, and are the estimates for
the mean, power and mean square intensity measured in a
neighboring area defined in the CFAR stencil. Hence, we
can interpret the two parameter CFAR as implementing a
restrictedandanchoredquadratic discriminant function of the
local image intensity. It is restricted because some terms of
the quadratic classifier are missing, and anchored because the
discriminant function has fixed parameters so it can not be
moved in pattern space for optimal performance.

If the goal is detection, (4) provides an answer with the
interesting properties of constant false alarm rate for certain
probability density functions (pdf’s). But can we use the
same intensity features to decrease further the number of
false detections, i.e. use the same features to build a dis-
criminator? From the perspective of an optimal discriminator
that is utilizing local intensity features, we can immediately
enumerate shortcomings in the two parameter CFAR detector:
i) it uses only some of the quadratic terms of the pixel intensity
and its surroundings; ii) it implements a fixed parametric
combination of these features; iii) there is little flexibility in
the feature extraction because the stencil size is chosen in
an ad-hocmanner, particularly for SAR. These three aspects
can be greatly improved if more mathematically oriented local
projection operators are chosen and if trainable classifiers are
built. We will briefly review the gamma kernels as alternatives
to the CFAR stencil to improve iii), and will introduce the
QGD (quadratic gamma discriminator) as an improvement to
i) and ii). A more detailed analysis of the QGD can be found
in [24] and [25].

III. GAMMA KERNELS

The gamma delay operator was originally developed for
time series analysis [6]. The goal was to create a signal
processing structure that would have a variable memory depth
for a fixed number of stages (taps), i.e., which would be able

to implement a linear warping of the time axis for performance
improvements. This was accomplished by introducing a local
feedback loop around the delay operator, creating a generalized
feedforward filter structure [23].

The concept of a time warping parameter extrapolates to the
spatial domain as a scale parameter that controls the region of
support of the two-dimensional (2-D) gamma stencil. So, we
define the 2-D gamma kernels of order as

(5)

where the constant is a normalization factor, is the
scale parameter, and and the two space variables. The
resulting 2-D gamma kernels have circularly symmetric shapes
given by

(6)

where is the region of support of the kernel, the kernel
order, and the parameter that controls the shape and scale
of the kernel. Fig. 2 depicts the characteristics of 2-D gamma
kernels in the spatial domain. The 1st order kernel has
its peak at the pivot point (0, 0) with an exponentially decaying
amplitude. The gamma kernels with a higher order
have peaks at the radius creating concentric smooth rings
around the pivot point. For a fixed kernel order, the radial
distances where the kernels peak are still dependent upon the
parameter as in the one-dimensional (1-D) case [6].

By analogy to the CFAR stencil, any combination of the first
gamma kernel with one of the higher order kernels produces
a CFAR-like stencil, although the shapes with the 2-D gamma
kernels are smoother (Fig. 3). We call the CFAR detector with
this stencil the With the we have a better
handle on the shape of the stencil due to the analytic formalism
that depends on a single parameter per kernel. In fact, after
fixing the order of a gamma kernel, we have a single parameter
that controls its spatial extent, and we can derive equations that
will adapt the parameter to minimize the output error in the
training set.

IV. QUADRATIC GAMMA DISCRIMINATOR (QGD)

Quadratic discriminant functions implement the optimal
classifier for Gaussian distributed classes [6]. A quadratic
discriminant function in -dimensional space is

(7)

where is a set of adjustable parameters. One well-
established construction of a quadratic classifier is to create
a quadratic preprocessor that creates all the terms of
followed by a linear machine which simply weights each one
of these terms [9].
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Fig. 2. Two-dimensional gamma kernels(k = 1; k = 15) for different values of the scale parameter�:

(a)

(b)

Fig. 3. 
CFAR detector. The center kernel has an order of one, and the
rounding kernel is of an order 15. The rounding kernel defines a local area
where the local statistics of mean and standard deviation are measured. The
peaky kernel averages a pixel under test and the very closely neighbored
pixels around a pixel under test.

We compute the four basic features : (4)
with two gamma kernels such that

or (8)

where stands for the convolution operator. The two input
features are the intensities at the pixel under test and
the intensity in the ring neighborhood with From
these quantities the traditional quadratic discriminator creates

and the bias.
For a direct comparison with the CFAR we will add and

for a total of seven features and a bias. The complete
feature vector reads

(9)

and the quadratic discriminator becomes

(10)

where

(11)

is the parameter vector. Fig. 4 depicts the implementation of
the quadratic gamma discriminator (QGD).

With this formulation, we can better understand what was
said previously regarding the restricted nature of the two
parameter CFAR detector when seen from a pattern recog-
nition stand point. The parameter vector for the (or
equivalently for the two parameter CFAR) is

(12)

where some of the parameters are set to zero and others are
fixed. Since the increase of the number of free parameters of
a system is coupled with more flexibility, and adapting the
parameters achieves optimal performance, we can improve
the performance by creating more parameters and
adapting them with representative data.

A. Training the QGD

In an adaptive pattern recognition framework, the free
parameters of the classifiers which define the positioning
of the discriminant function for maximum performance are
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Fig. 4. Quadratic gamma discriminator.

Fig. 5. Implementation of the NL-QGD and its adaptation.

learned from a set of representative data. This step is called
the training of the classifier. Given a set of training image
chips centered around points of a known
class, we compute the corresponding feature vectorThe
corresponding desired values of the image chips are one’s for
target class and zero’s for clutter, which construct a desired
vector

If the mean square error between the system output and the
desired response is selected as the cost function, there is an
analytical solution to the problem [12]. The method solves in
the least square sense an overdetermined (assuming
system of linear equations for the unknown coefficient vector

(13)

yielding

(14)

Since the feature vector is a function of the parameters
the problem we are facing is in fact a parametric least

square, which does not have a closed form solution due to

the nonlinear dependence on the parameter. There are two
possibilities of solving this problem. Either we first determine
the best value of and for prescreening and use here the
same values, or we have to use an iterative approach to find
both the weight vector and and The results we will
show later utilize the first method. The second method will be
utilized in the following section to train the nonlinear QGD.

V. NONLINEAR EXTENSION OF THE QGD (NL-QGD)

In the context of our work the MLP appears as a natural
extension of the processing power of the QGD. In fact,
an MLP can be thought of as a nonlinear combination of
QGD’s (Fig. 5). Since the MLP is capable of creating arbitrary
discriminant functions [12] this extension has the potential to
improve performance. Note that the QGD creates a quadratic
discriminant function of the image intensity, which is optimal
only for Gaussian pdf’s [9]. Fig. 5 displays the block diagram
of the NL-QGD. We can think of the QGD as the linear
part of one of the hidden layer processing elements. The
three basic issues that need to be addressed when using a
neural network are the training rules, the cost function and the
network topology.
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A. Training the NL-QGD

In order to fully develop the neural network approach, an
iterative learning scheme is required to adapt the weights and
the parameter Availability of on-line methods of adapting

effectively means that the system output error can be used
to search for the optimal local area and guard band of the
training set data.

The NL-QGD is trained with a desired signal(one’s for
the target class and zeroes for the nontarget class) using the
backpropagation (BP) algorithm [12]. The sum of squared
errors is initially utilized here, i.e.,

(15)

Moreover, in order to adapt the parameterwhich controls
the scale of the stencil, the error generated at the
detector output is backpropagated up to the input layer. The
decision boundary of the NL-QGD is therefore formed in-
cluding the parameter The weights are adapted applying
directly the BP algorithm. The parameter is recursive, so
we present here its learning equations. The correction
at each iteration is proportional to the instantaneous gradient

According to the chain rule, this gradient is
expressed as follows:

(16)

where the input to the network is the feature expansion
given by (9) at each iteration

and is the input to each
nonlinearity (with

(17)

The local gradient vector at the input layer is
The local gradient at theth PE

in the input layer of the MLP is obtained by

(18)

where is the local gradient at theth PE in the first
hidden layer and is a weight between theth PE in the
input layer and theth PE in the first hidden layer.

The gradient is given by

(19)

The derivative of with respect to is

(20)

The sample by sample adaptation of the parameteris
therefore given by

(21)

where is the step size, and (one equation for each
kernel).

VI. THE NEED FOR A DIFFERENT PERFORMANCE

CRITERION TO TRAIN THE NL-QGD

Preliminary comparison between the QGD and the NL-
QGD trained with the norm demonstrated that the QGD
was a better discriminator, although its final mean square
error (MSE) was much higher than that of the NL-QGD (see
Table IV). This was an unexpected result.

We analyzed the NL-QGD outputs to understand the source
of the problem. Fig. 8(b) shows the test set responses of the
QGD (dotted line) and of the NL-QGD (solid line) in a test
set built from 3905 clutter chips and 345 target chips. For
display purposes, the clutter chips were presented sequentially
first followed by the target chips. So the first 3905 values in
Fig. 8(b) correspond to clutter responses (a desired response of
zero) followed by target responses (desired response of one).
The first observation is that the output of the NL-QGD is in the
average much closer to the target values of zero and one than
the QGD. This is to be expected due to the inclusion of the
nonlinearity in the input–output map. What was unexpected
was the behavior of the nonlinear system when the input was
misclassified. Notice that when the NL-QGD makes a mistake,
the error can be very large, in fact much larger than that of
the QGD.

For a discriminator this characteristic is unacceptable for the
following reason: According to the Neyman–Pearson criterion,
we set a threshold value that provides a given detection
performance, let us say 100% detection The goal
is then to minimize the number of false alarms. To implement

we have to choose a threshold that is lower than
the smallest response in the target class. Therefore, if the
discriminator yields a weak response to one of the targets,
many false alarms in the clutter will result. Observing the
plots for the NL-QGD we can see that the system response to
targets has values as low as 0.2, so many false alarms (any
output within the clutter chips that is above this threshold)
will occur. In fact many more than for the linear counterpart,
since the QGD never made as “gross” mistakes in the target
class as the NL-QGD. This explains the reason why the QGD
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performed better than the NL-QGD for discrimination (see the
results for a complete comparison).

Ultimately, the performance of any adaptive system is con-
trolled by the number, position and shape of the discriminant
functions. The shape and number of the discriminant functions
is dictated by the network topology, while their position in the
input space depends upon the final weight values, which are
a function of the performance criterion (also called the cost)
which here was the norm.

There are two main problems in the use of the norm
for discrimination. Notice that the norm (any norm for
that matter) is blind to the error type, i.e., it treats in the
same way the false alarms and the missed detections. The
Neyman–Pearson criterion (1) and the construction of the ROC
curve clearly demonstrate that these two types of errors affect
differently the detection performance, so their contribution
to the positioning of the discriminant functions should be
controlled independently. This lead us to propose a mixed
norm as an implementation of the Neyman–Pearson criterion.
Moreover, the specific norm for the false alarms and missed
detections should also be carefully selected, i.e., it is not clear
that the L2 norm is the natural choice. Hampshire [11] also
studied the norm selection and concluded that thenorm
is not appropriate for detection. We treat these two aspects
below.

A. Mixed Norm Approximation to the
Neyman–Pearson Criterion

Since the core idea of the Neyman–Pearson criterion is to
treat differently the two types of errors in detection, this can
only be achieved with a mixed norm formulation by defining
the error as

(22)

where is the number of clutter samples, is the number
of target samples, is the norm for the clutter class, is the
norm for the target class, and are the clutter and target
classes, respectively.

In order to mimic the Neyman–Pearson criterion with
norms, one wishes to minimize the largest deviation to the
desired response in the target class such that the threshold
can be set as high as possible; while in clutter one wishes to
keep most of the errors small (deemphasize large errors) such
that as few as possible of clutter responses cross the target
threshold. This can be achieved by using the norm for
target exemplars and the norm (or even fractional norms)
for clutter exemplars. Due to the difficulty of training with
these two extreme norms, we created a mixed norm for
clutter and for targets. Next, we explain how the mixed
norm criterion can be included in the BP algorithm.

B. Norms and the BP Algorithm

The norm is defined as

(23)

where is the number of training samples, the number of
PE’s in the output layer, and the order of the norm
When the contribution of large errors is equal to that of
the small errors. When increases, the contribution of large
errors to increases. Since the weights are changed with the
error information and they define the location and shape of
the decision boundary, different norms will move the decision
boundaries in the input space and affect the performance of
the classifier.

The training equations for the MLP can be easily modified
to work with norms [4]. In fact, the norm of the error only
enters in thecomputation of the injected errorused as input
to the dual system. The BP algorithm can be utilized without
modification. In equations we have

(24)

where is one of the output PE’s and is an internal
weight. By changing the norm we only affect the first term
in the equation, which computes the injected error in the BP
procedure. The local gradients in the output layer are computed
as

(25)

where and are a PE index and the number of nodes in
the output layer, respectively. is the instantaneous error
defined as

(26)

Larger norms slow down the training. This effect can be
seen by rewriting (25) as follows:

(27)

Comparing this equation with the norm equivalent, we
conclude that when , becomes very small for large
norms so that the convergence slows down. In the
norm, all the errors contribute equally to the computation of the
gradient. For the gradient is more sensitive to smaller
errors, while for , larger errors affect more the weight
updates.

Returning to the mixed norm criterion (22), in order to
prevent the clutter error power from dominating the target error
power when errors are less than one (the ones of interest due



PRINCIPEet al.: TARGET DISCRIMINATION IN SYNTHETIC APERTURE RADAR 1143

to the nonlinearity) the terms are normalized by the number
of class samples and the power of the inverses ofand
respectively. The weight adaptation is batch training. The local
gradient for the mixed norm at the output can be written as

(28)

For convenience of notation, sample index n was dropped
for and For comparison purposes with the proposed
mixed norm, the L8 norm was also implemented, as well as
the cross-entropy cost (KL) function [1]. The cross entropy
has been suggested as an appropriate criterion in cases where
the distribution of the error is binomial as it may happen when
one trains with two target values of 1/0.

VII. EXPERIMENTS

A. Description of the Data

The data used to test the two-parameter CFAR and our pro-
posed discriminators is high-resolution SAR imagery (mission
90 pass 5) collected at 23depression angle near Stockbridge,
NY, with the Advanced Detection Technology Sensor (ADTS).
The ADTS is a fully polarimetric, coherent
and polarizations), 33-GHz synthetic aperture radar with
1 ft 1 ft resolution. The SAR image data was further
processed by the polarimetric whitening filter (PWF) for
speckle reduction [20]. The mission 90 pass 5 SAR data
contains only natural and man-made clutter, lacking tactical
targets. On the other hand, the TABILS 24 ISAR (inverse
SAR) data set supplies tactical targets at various depression
angles and many aspect angles.

Since at the time of this work there was no public source
for target data in clutter, we had to embed targets to proceed
with the testing of our algorithm. Target embedding is a com-
promise and should be avoided for classification. However,
to test a focus of attention based on intensity features, a
careful embedding method will provide realistic figures of
merit. Moreover, here the emphasis is in relative performance
of several different norms, not in absolute performance.

We chose ISAR target data that was taken at approxi-
mately the same depression angle as the mission 90 pass
5 SAR imagery (within 3 difference). Both data sets were
calibrated. The target embedding was done coherently in the
fully polarimetric clutter data by substituting clutter by target
pixels. Target shadows were not included. Targets were only
embedded in open field locations. A full description of the
procedure is omitted here due to length limitations, but can
be found in [15]. We can add that this embedding procedure

was indirectly validated for the QGD when our measure of
performance improvements with respect to the CFAR was later
corroborated by Novak using targets in clutter [25].

B. Two-Parameter CFAR Processing

The two-parameter CFAR detector was run over the 127
frames (about 7 km of the mission 90 pass 5 data. Three
hundred forty-five targets from the TABILS 24 ISAR data
base were embedded for testing purposes. The size of the
CFAR stencil was 85 85 pixels as suggested by Novaket
al. [21]. The local mean and standard deviation are computed
in the outmost four-pixel wide boundary of the stencil. The
intensity of the test pixel is computed by averaging 33
pixels in the center of the stencil. We could have used our

detector as described in [14], but we preferred to use
an established detector to better compare the improvements of
the discriminator.

After the CFAR processing, multiple detection points occur
in targets and other regions because targets and man-made
clutter (and tree tops) normally consist of many high re-
flectivity pixels that trigger the prescreener repeatedly (raw
detections). Clustering of the multiple detections is performed
for a more representative count of detections and false alarms.
The size of the clustering region was determined from the
size of targets (in this case, clustering radius is 22 pixels long,
which encompasses the largest size of embedded targets) [14].
The QGD or NL-QGD only operate on the clustered locations,
i.e., regions that triggered the CFAR detector. The number of
false alarms is counted from the clustered detections.

After clustering, the two-parameter CFAR detector yielded
4455 false alarms over the 127 frames of the mission 90 pass
5 SAR data set when the detection threshold was set at 100%
target detection (all 345 targets). Fig. 6 shows an example of
detection performance of the two-parameter CFAR detector in
natural and cultural clutter areas. The objects in the square
boxes in Fig. 6(b) indicate embedded targets.

C. Training the QGD

Training of the QGD finds the set of optimal scale parame-
ters and the weight vector in (10). From the false
alarms created by the two-parameter CFAR detector, 550 were
randomly selected as clutter chips, and integrated with the set
of 275 embedded target chips to form the training set. For the
results presented here, the space was exhaustively
searched for the best possible stencil size in terms of minimum
number of false positives for 100% detection Since
there are only two parameters, this is realistic. Alternatively,
the optimal scale could be determined by using a gradient
descent procedure to minimize the output MSE as explained
in [25]. Least squares was utilized to determined the optimal
weight vector (14).

D. Testing the QGD

With the optimal set of parameters and optimal weights,
the QGD was tested on different sets of clutter and target
image chip embeddings (See Fig. 7). Table I shows the per-
formance of the QGD in the testing phase. The table shows
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(a) (b)

Fig. 6. Detection and clustering: The detections enclosed by the rectangular boxes indicate the location of targets embedded. 54 locations were false-detected
by the two-parameter CFAR detector. (a) Natural clutter area. (b) Cultural clutter area.

(a) (b)

Fig. 7. Discriminating performance of the QGD in the test set. (a) ROC curves. (b) QGD outputs for the inputs of clutter and target image chips after training.

TABLE I
QGD DETECTION IN TRAINING AND TESTING

the MSE and false alarms for selected detection rates close
to 100% detection, the desirable operating point for the focus
of attention.

The QGD reduces the false alarms from 3905 to 385 for
An increase of discrimination power of about 1 : 10

(385/3905) was obtained with the QGD over the two parameter
CFAR detector at The number of false alarms
decreases to 118, 97, 53, and 42 for

and , respectively. A small decrease in detection accuracy
reduces greatly the number of false alarms. The testing of the
NL-QGD is performed with 3905 clutter image chips and 345
target image chips.

E. Training and Testing NL-QGDs

In order to compare the performance of the QGD and NL-
QGD based on the same feature values, the same optimal
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TABLE II
PERFORMANCE OF THE NL-QGD WITH L2

TABLE III
PERFORMANCE OF THENL-QGD WITH MIXED NORM

parameters for the QGD, and were used for the NL-
QGD. To train the NL-QGD an iterative training algorithm
such BP must be utilized. Since the image features extracted
with the gamma stencil are highly correlated, it is desirable
to whiten the training data set for faster convergence [15]. A
cross validation set of 550 clutter image chips and another set
of 275 embedded target image chips was created to stop the
training at the point of maximum generalization.

The size of the NL-QGD hidden layer was changed from 3,
5, and 7 to quantify the effect of topology size on performance.
In the following tables, NL-QGD731 indicates that the network
has seven input nodes, three nodes in the hidden layer, and one
output node. Note that our goal is to have small topologies
to guarantee good generalization. Backpropagation with a
momentum term was used to train the NL-QGD weights
with the whitened training data set. For NL-QGD training,
the learning rate (h) and momentum (a) were 0.1 and 0.8,
respectively, for all the networks. The cross validation set was
also whitened by using the estimate of the covariance matrix
of the training data set. Training was stopped when the error
in the cross-validation set started to increase. This happened at
different iteration counts depending on the size of the networks
and the norm utilized.

The performance of the NL-QGD’s trained with norm is
measured in terms of MSE and the number of false alarms for
different network sizes. The results are tabulated in Table II

for training and testing. The NL-QGD is able to provide a
smaller final MSE than the QGD (an improvement of an order
of magnitude). However, the performance of a discriminator is
not measured in terms of MSE but number of false alarms for
a given detection accuracy. Hence, the ROC curve of the two
systems must be compared [Fig. 8(a)]. The NL-QGD trained
with the norm did not perform as well as the QGD at

(1880 false alarms versus only 422 for the QGD). However,
at 0.98, and 0.95, the NL-QGD outperformed the
QGD. Note that changing the number of hidden nodes from
three to seven did not affect the performance of the NL-QGD
much.

The performance with mixed norm is shown in Table III. A
small norm was imposed on the nontarget class and
a large norm on the target class. The BP algorithm
was modified according to (28). The most obvious result of
Table III versus Table II is a drastic reduction of the false
alarms at and an increase in the MSE.

In fact, this mixed norm was the best performer for
among all the experiments that we conducted involving the

norm, the cross-entropy criterion and the QGD [15].
The ROC curves and the detections per class of all the norm
experiments are shown in Fig. 8.

It is interesting to analyze this figure to gain an intuition for
how different norms treat the errors. Notice that thenorm
produces large errors in the target class that are very costly for
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 8. ROC curves and detections for the NL-QGD trained with four different criteria.
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TABLE IV
FINAL RANKING OF ALL THE DISCRIMINATORS

a discriminator. However, the minimization produces a very
good match “in the mean” for the targets values of zero and
one as seen by the MSE.

The norm produces a much more irregular response
throughout the classes, and reduces the distance between the
mean value of the target and clutter responses. However, notice
that in fact there are fewer large errors in both classes. The

norm reduces the size of the errors for targets and keeps
most of the clutter detects near zero, as the Neyman–Pearson
criterion dictates. So we think that the mixed norm is a good
approximation of the Neyman–Pearson criterion for
The cross entropy criterion resembles the performance of the

norm but produces fewer large errors.
Table IV shows the final ranking of all discriminators for

the probability of detection of
It is also very instructive to analyze this table. The first
obvious result is that the discriminators trained with the same
criterion are normally grouped together. This means that the
biggest factor affecting performance is the norm chosen for
the criterion, while the topology is a second-order effect. So
for our problem, the time spent in the conventional struggle to
find the best topology can be best utilized in finding the best
norm to represent the data.

A large discrepancy in the discriminators performance for
detection is also observed. The best performer created

only 292 false alarms, and the worst performer detected 1892
clutter chips, so the definition of the best norm is critical for

It is remarkable that for detection, the QGD
is the second best discriminator.

The best norm for training depends upon the operating point
chosen in the ROC curve (the probability of detection). This
can be seen in the alternation of the discriminator rankings in
Table IV. The mixed norm jumps from first rank for to
last for the operating points and which
means that the decision boundary is being placed with an
enormous emphasis to minimize the largest errors on targets.
This is not a good strategy for the other operating points where
the discriminator is allowed to trade precision for sensitivity.
For and 0.98, the norm is the best performer, but
for the other two operating points and ), the
best performer is the cross-entropy measure. Notice however,
that the number of false alarms for all these detection rates
are rather similar, which means that the choice of the norm
is not as critical as for Fig. 9 illustrates this fact
by displaying the number of false alarms as a function of the
probability of detection for the best performer in each of the
norms.

It is interesting to note that the norm never produced
the best results which indicates that for detection there are
better alternatives than the MSE criterion. Finally, the QGD
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Fig. 9. Comparison of the ROC’s for high probability of detection.

goes from fourth in the ranking for to basically last
for all the other detection rates. So, we conclude that there is
an advantage of using nonlinear systems to design focus of
attention blocks for SAR.

VIII. C ONCLUSION

There are two main set of conclusions resulting from this
work. We first address the area of ATR for SAR. The combi-
nation of the two parameter CFAR with the QGD was shown
to be a superior implementation of the focus of attention,
producing approximately ten false alarms per square km of
imagery [15]. The QGD can be used in conjunction with other
discriminators (such as fractal dimension, weighted rank fill
ratio, size, polarimetric purity, etc.). In fact, its response tends
to be uncorrelated with the response of the other discriminators
[Novak, personal communications] helping reduce the number
of false alarms in conventional focus of attentions for SAR.

In this paper, we extend further the system performance by
substituting the QGD with a MLP, which we called the NL-
QGD. The NL-QGD outperforms the QGD at all the detection
rates tested 0.99, 0.98, 0.95, 0.92), reducing the
number of false alarms by and average of 40%. The NL-QGD
is still a system with small number of parameters (24 weights),
so it is fast to adapt and should generalize well. This work
shows a practical advantage of the MLP in a very difficult and
relevant problem.

The other set of conclusions addresses neural network
issues. We found that training the MLP for discrimination with
the commonly used MSE criterion produced disappointing
performance. In fact, it produces a discriminator that was
worse than its linear counterpart, the QGD, for
The neural network trained with the norm never was

the best performer for any of the operating points tested.
So we conclude that while the MSE is extensively used
in classification, it should not be used to train MLP’s for
discrimination of targets in SAR.

We investigated the reasons, and concluded that the problem
is related to the different goals of detection and classification.
Classification is still a special case of function approximation
with indicator functions. In this class of problems MSE has
been shown optimal for Gaussian distributed errors [1]. How-
ever, detection is a very different problem. For detection, the
missed detections and the false alarms should be treated very
differently as suggested by the Neyman–Pearson criterion. The
criterion suggests that the target norm should be and
the clutter norm should be (or even fractional norms).
We found a way to construct a mixed norm cost function
and successfully applied it to train the NL-QGD using the
backpropagation algorithm. The NL-QGD trained with the
mixed norm was the best performer for the suggested
operating point for the focus of attention.

The experimental results also show that the best error
norm depends upon the set point chosen for the probability
of detection. This can be understood in the light of the
Neyman–Pearson approach, but a systematic way to translate
the choice of the operating point to the error criterion is lacking
at this time. The other error norms tested such as theor the
cross-entropy (KL) outperformed the norm. However, we
also found that the operating point where performance is more
dependent upon the norm is the region around More
work should be conducted with larger number of targets and
clutter chips to quantify better the performance near
(which is the point with the largest estimator variance).

Finally, the performance was much more dependent upon
the norm than the size of the MLP topology. This suggests
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that modeling the pdf of the error to construct the best norm
should be a design goal. Unfortunately, this is not common
practice in neural network applications.
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Jośe C. Principe (M’83–SM’90) is a Professor of
Electrical and Computer Engineering at the Uni-
versity of Florida where he teaches signal pro-
cessing and artificial neural networks (ANN’s). He
is the Founder and Director of the University of
Florida Computational NeuroEngineering Labora-
tory (CNEL). His primary area of interest is pro-
cessing of nonstationary signals with adaptive neural
models. He proposed a new, biological plausible,
model for the classification of time varying pat-
terns (the gamma model). The CNEL Lab has been

studying the use of ANN’s for dynamical modeling and target detection and
recognition.

Dr. Principe is a member of the advisory board of the University of Florida
Brain Institute.

Munchurl Kim was born in Korea in 1966. He received the Bachelor
of Engineering degree in electronics from KyungPook National University,
Korea, in 1989, and the Master’s and Ph.D. degrees in electrical engineering
from the University of Florida, Gainesville, in 1992 and 1996, respectively.

He is currently with the Electronics and Telecommunication Research
Institute, Taejon, Korea. His interests are in automatic target recognition,
image processing, and artificial neural networks.

John W. Fisher, III (M’91) received the Ph.D.
degree in electrical and computer engineering from
the University of Florida, Gainesville, in 1997.

He is currently a Research Scientist in the Labo-
ratory for Information and Decision Systems and a
Post-doctoral Associate in the Artificial Intelligence
Laboratory, Massachusetts Institute of Technology
(MIT), Cambridge. Prior to joining MIT, he was
affiliated with the University of Florida, as both a
faculty member and graduate student since 1987,
during which time he conducted research in the

areas of ultrawideband radar for ground penetration and foliage penetra-
tion applications, radar signal processing, and automatic target recognition
algorithms. His current area of research, begun as a Ph.D. candidate in the
Computational NeuroEngineering Laboratory at the University of Florida, is
in information theoretic approaches to signal processing, machine learning,
and computer vision.

Dr. Fisher is a member of the SPIE.


