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Target Discrimination in Synthetic Aperture
Radar Using Artificial Neural Networks

Jog C. Principe Senior Member, IEEEMunchurl Kim, and John W. Fisher, IIIMember, IEEE

Abstract—This paper addresses target discrimination in syn- false alarms as possible. A false alarm is a system detection
thetic aperture radar (SAR) imagery using linear and nonlinear  that corresponds to clutter. The price/performance ratio of the

adaptive networks. Neural networks are extensively used for | ATR system is therefore very much dependent upon the
pattern classification but here the goal is discrimination. We will figure of merit of the focus of attention

show that the two applications require different cost functions. Bt )
We start by analyzing with a pattern recognition perspective The focus of attention is built from a detector (prescreener)

the two-parameter constant false alarm rate (CFAR) detector enhanced by a discriminator to reduce further the number of
which is widely utilized as a target detector in SAR. Then we fa|se alarms. The most popular prescreener utilized in synthetic
generalize its principle to construct the quadratic gamma dis- o0 re radar (SAR) is the two parameter constant false alarm
criminator (QGD), a nonparametrically trained classifier based CFAR) detect 17 hich is b d lized test
on local image intensity. The linear processing element of the ( ) detector [17], which is based on a normalized tes
QGD is further extended with nonlinearities yielding a multilayer ~ Of the pixel intensity versus its local neighborhood. Its pop-
perceptron (MLP) which we call the NL-QGD (nonlinear QGD).  ularity in millimeter SAR is due to an excellent compromise
MLP’s "’i“ii “Oi':ma”tlii ttrai'i:‘e% based on t{‘e Lo “Ormo-i (\i’Vf simplicity/performance. However, the discriminating power of
experimentally show that the L., norm is not recommended to -
train MLP’s for discriminating targets in SAR. Inspired by the the two parameter CFAR is not enough to reijuce the false
Neyman—Pearson criterion, we create a cost function based on a@larms to acceptable levels. The focus of attention subsystems
mixed norm to weight the false alarms and the missed detections described in the literature incorporate complementary features
differently. Mixed norms can easily be incorporated into the and discriminants such as fractal dimension, weighted rank
backpropagation algorithm, and lead to better performance. | ratio, size, polarimetric purity, etc. [17], [21]. Acceptable

Several other norms (s, cross-entro are applied to train the
NL-QGD and all outp%?formed the Lgyl)worm V\E)hpen validated by performance has been reported [19], but the systems can be

receiver operating characteristics (ROC) curves. The data sets further _improved. _ _ _
are constructed from TABILS 24 ISAR targets embedded in 7 In this paper, we briefly describe a focus of attention

km of SAR imagery (MIT/LL mission 90). based on adaptive systems concepts. Instead of extending
Index Terms—Gamma kerne|sl mixed norm training' neural the CFAR W|th Unrelated features and Othel’ diSCI’iminatOI’S,
networks, synthetic aperture radar, target discrimination. we optimize the utilization of local pixel intensity features

extracted by a modified CFAR detector, th€ FAR [14].
We start by analyzing the two-parameter CFAR detector in
a pattern recognition perspective and generalize its structure
A UTOMATIC target recognition (ATR) seeks to classifyto the quadratic gamma discriminator (QGD), which is able to
specific targets in natural environments (background clifreate a quadratic discriminant function in the pixel intensity
tel‘). The arChiteCtUre Of ATR SyStemS iS norma”y diVidGGpace_ The QGD was imp'emented as a linear machine [24]’
into a focus of attention block followed by a classifier fofe. as a weighted combination of all the quadratic terms of
practical reasons [21]. The computational bandwidth requirgek intensity of the pixel under analysis and the intensity of
to directly classify each image pixel is prohibitive and thg neighboring region. Least squares was used to adapt the
method is wasteful since most of .the imagery is backgrouw&ights of the QGD. The combination CFAR/QGD has been
clutter. Hence, the focus of attention stage selects areas Withted by MIT/LL on real target data and showed a substantial
a large probability of containing targets. Only these areas 3FSprovement with respect to the CFAR performance [25].
further scrutinized by the classifier. The focus of attention must e purpose of this paper is to report on further enhance-
therefore be a computationally simple system that provides,fnts to the QGD. Extending the linear processing element

high probability of detection creating at the same time as feiiusE) of the QGD with a saturating nonlinearity provides the

) ) ) basis for a multilayer perceptron (MLP) topology, which we
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characteristics (ROC's) for each of the discriminators utilizing
a large data set of SAR imagery (aboutkih?) provided
by MIT/LL (mission 90 pass 5) with embedded targets. '
Unsupervised neural networks have been applied to SAR e l““m“ ““““““
image recognition for segmentation and surface representation [

Iy
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[2], [8] and as feature extractors [16]. In fact, the gamma ‘i\ﬁ"\“\“)‘u - ‘” ”””(’
kernels resemble the Mexican hat function but they have '\1‘\%1\““\»\\\\\\“\]%“m\\\w\u ”””””””W”
the advantage of independently setting the “inhibition region” < “*(\u'\m\ﬂ:)\'l\‘\\*\m”
[27]. Here, neural networks will be trained in a supervised “'“\“
framework, very much like the work of [5], [22], and [26]. In @)
the context of our work, neural networks appear as a natural
extension to improve performance for the focus of attention
as will be described in the paper.

guard area

II. DETECTION AND THE NEYMAN-PEARSON CRITERION

. o _ local area

Signal detection in background noise can be formulated
through the Bayes’ theory of hypothesis testing. The hy-
pothesis here are twoH, that corresponds to no signal gqard band
present (only noise), andi; where the signal and noise width
are both present. The optimum detector (decision) according test pixel

to Bayes theory minimizes the average risk, which implies
knowledge of the costs of decisions, the prior probabilities of ) o )
each hypothesis as well as the probabilty density functigif %, The CFAR detector, Tne ampltade of i estpiel s conpered wih
of both the signal(p,(z)) and noise(po(x)). In realistic that no target pixels are included in the measurement of the local statistics.
detection environments the knowledge of the decision costs

and thea priori probabilities are not available. Under these, . .

circumstances, Neyman and Pearson [18] proposed a criterﬁjc?r?'s'on rule

(b)

that maximizesH;, the probability of detection, given a T T 2
constraint imposed on the probability of false alarms, as Gy P (2)
follows:

wherez is the sampled signal mean and is the sampled
max Pp(6) subjectto Pr(6) =« (1) standard deviation. For positive amplitude signals, hypothesis
. . i . H, is chosen if the ratio is above a threshdld which sets
where P’p is the probability of detection for the decision rulgy,q ase alarm rate. The asymptotic relative efficiency of this
6, and Pp stands for the probability of false alarms, which Wegg; is the same as the Neyman—Pearson criterion when the

constrain to be equal t. Notice the different role played by ,,mper of samples used to estimate the mean and variance of
the missed detectiond — Pp) and the false alarms. the noise tend to infinity.

The Neyman—Pe_ars_on criteriqn can be easily implementedryoge igeas were applied to radar signal detection by Finn
by computing the likelihood ratid'(z) = pi(x)/po(z) as a [7], who showed that a simple comparison of the cell under
function of z and comparing the outcome to a fixed thresholgle; ith the power estimated in surrounding cells produced

I'eu. HypothesisHy is chosen ifl'(z) <I'w, otherwiseHi 5 cpaR detector for Gaussian clutter (background noise).
is selectedI';;, is chosen such that the false alarm rate Goldstein [10] showed that the following test:

is obtained. The simplicity of the Neyman—Pearson criterion

and its relationship with Bayes criterion makes it the preferred X, - X, target
criterion in signal detection [13]. G L2 Tcrar 3)

In many practical situations, knowledge mf(x) andpo(x)
is also not available or difficult to model, which leads tavhereX, is a pixel under test and . andé, are the estimates
the construction of nonparametric detectors. In this case awfethe local clutter mean and standard deviation, produced a
should try to achieve only a specified false alarm rate, relaxi@FAR detector for log-normal and Weibull distributed clutter.
the requirement of maximum probability of detection. ANovak adapted this test for synthetic aperture radar (SAR)
detector whose false alarm rate is unchanged for all noi3 and called it the two parameter CFAR detector. The area
distributions in a given class is called constant false alarwhere the clutter statistics are estimated is defined by a stencil
rate (CFAR). A rather important case for detection is obtained shown in Fig. 1.
when the signal amplitude is positive but unknown and the The CFAR compares the intensity of a pixel under test
noise is assumed Gaussian distributed with zero mean and with the normalized intensity of a surrounding area. Since
known variance. Under this condition and using the principlman-made objects are normally bright in millimeter SAR
of maximum likelihood, the likelihood ratio test is equivalenimagery, this is a very effective test, which can be efficiently
to a Studentt statistics[10] which leads to the following implemented in digital hardware. The shape of the stencil
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ensures that when the center pixel is on target, the neighb-implement a linear warping of the time axis for performance

borhood falls in the background such that its local statistiemprovements. This was accomplished by introducing a local

can be reasonably well estimated. The shape of the stencil fi@edback loop around the delay operator, creating a generalized

particular the guardband) is governed by the target size [2i§edforward filter structure [23].

In SAR imagery, the reflectivity of the object is only weakly The concept of a time warping parameter extrapolates to the

coupled to its geometric shape, agriori stencil dimensions spatial domain as a scale parameter that controls the region of

based solely on target size cause suboptimal performance [Z&ipport of the two-dimensional (2-D) gamma stencil. So, we
define the 2-D gamma kernelg ,(n1,n2) of orderk as

A. Statistical Pattern Recognition Interpretation

of the CFAR Detector ru(n1,n2) = Cgre ()], n24n2 ()

In terms of statistical pattern recognition, we can interprg\;here the constanC is a normalization factor is the

the two parameter CFAR detector as a feature extractor fglfale parameter, ang, andn., the two space variables. The

Iowed_ by a disprimingnt function. One_can mode' the CFA'rQesuIting 2-D gamma kernels have circularly symmetric shapes
stencil as a locadhtensity feature extractdn the neighborhood

. i ) - given by
of the pixel under test. The CFAR detection rule is combining
the features to produce a decision between the classes of phtt 5 okl T2
S . = —Llem/nitn
targets and clutter, i.e., it is effectively creatingliacriminant rp(na, n2) = okl (y/mi+ny)" e e
function for a two class problenThe CFAR equation (3) can Q={(n1,n2); =N <ni,n, >N} (6)

be rewritten as
) — -2 A e where 2 is the region of support of the kerndl, the kernel
Af = 2X X+ X, — Toparde + ToparXe 2 0 (4) order, andu the parameter that controls the shape and scale
where X, is a pixel under testZcpar is the threshold for of the kernel. Fig. 2 depicts the characteristics of 2-D gamma
the CFAR detector. andv.. X2. X are the estimates for KEMMels in the spatial domain. The 1st order kefftek 1) has

the mean, power and mean square intensity measured iffspeak atthe pivot point (0, 0) with an exponentially decaying
neighboring area defined in the CFAR stencil. Hence,

plitude. The gamma kernels with a higher order- 1)
can interpret the two parameter CFAR as implementing hgve peaks at the radiégy:, creating concentric smooth rings
restrictedandanchoredquadratic discriminant function of the

around the pivot point. For a fixed kernel order, the radial
local image intensity. It is restricted because some terms c3§tances where the kernels peak are still dependent upon the

the quadratic classifier are missing, and anchored becauseptﬂgametelr“’ as |nhth(e:::§—d|mer_1|5|onal (1'8.) case [6f].h f
discriminant function has fixed parameters so it can not be y analogy to t_ € stenc » any com ination of the first
moved in pattern space for optimal performance gamma kernel with one of the higher order kernels produces

If the goal is detection, (4) provides an answer with th CFAIR—Iike stencir:, although the she:lpehs with thed2—D gamms
interesting properties of constant false alarm rate for certdffi’¢'"> ar$ shmoot er (Fig. r?)'hwe call the CFﬁ‘R etector wit
probability density functions (pdf's). But can we use th Is stencil theyCFAR. With the yCFAR, we have a better

same intensity features to decrease further the number dle on the shape (_)f the stencil due to the analytic formalism
at depends on a single parameter per kernel. In fact, after

false detections, i.e. use the same features to build a dis: he order of K | h il
criminator? From the perspective of an optimal discriminat%('ngt e order of a gamma kerel, we have a single parameter
f

that is utilizing local intensity features, we can immediatelf'@t controls its spatial extent, and we can derive equations that
enumerate shortcomings in the two parameter CFAR detect l! ?dapt the parametgy to minimize the output error in the

i) it uses only some of the quadratic terms of the pixel intensif{2"iNg set.

and its surroundings; ii) it implements a fixed parametric

combination of these features; iii) there is little flexibility in IV. QUADRATIC GAMMA DISCRIMINATOR (QGD)

the feature extraction because the stencil size is chosen ir(')uadratic discriminant functions implement the optimal
an ad-hocmanner, particularly for SAR. These three aspeci$,ssifier for Gaussian distributed classes [6]. A quadratic

can be greatly improved if more mathematically oriented locg|scriminant functiong(X) in d-dimensional space is
projection operators are chosen and if trainable classifiers are

built. We will briefly review the gamma kernels as alternatives d d—1 d

to the CFAR stencil to improve iii), and will introduce the oX) =D wiai + Y Y wawwn

QGD (quadratic gamma discriminator) as an improvement to j=1 J=1k=j+1

i) and ii). A more detailed analysis of the QGD can be found d

in [24] and [25]. + ) wizy + wa 7)
Jj=1

l. GAMMA KERNELS where w;; is a set of adjustable parameters. One well-

The gamma delay operator was originally developed fesstablished construction of a quadratic classifier is to create
time series analysis [6]. The goal was to create a sigremlquadratic preprocessor that creates all the termg(&f),
processing structure that would have a variable memory dejptiowed by a linear machine which simply weights each one
for a fixed number of stages (taps), i.e., which would be abbé these terms [9].
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Fig. 2. Two-dimensional gamma kerndls = 1,k = 15) for different values of the scale parameter

(b)

(91-X)% (- X)?, 91X, g1~ X, (91-X)(gr- X), and the bias.
For a direct comparison with the CFAR we will agg X? and

gr - X? for a total of seven features and a bias. The complete
feature vector reads

Fup, =000 X Ghp X L, - X? Gk, X?
(gl,um 'X)2 (gk,/m 'X)2

(91,0 = X) (Grou - X) 1T )
and the quadratic discriminator becomes
y=W'F, .. (10)
where
W=[w wy wsy ws ws; we wy wg]T (11)

is the parameter vector. Fig. 4 depicts the implementation of
the quadratic gamma discriminator (QGD).

With this formulation, we can better understand what was
said previously regarding the restricted nature of the two
parameter CFAR detector when seen from a pattern recog-

Fig. 3. +CFAR detector. The center kernel has an order of one, and nﬁﬂtion stand point. The parameter vector for th€éFAR (or

rounding kernel is of an order 15. The rounding kernel defines a local areguivalently for the two parameter CFAR) is
where the local statistics of mean and standard deviation are measured. The

peaky kernel averages a pixel under test and the very closely neighbored W —= [() 0 0 =72 1 1 + T _9 ()]T (12)

pixels around a pixel under test.

We compute the four basic featurés,, X2, X ., X?: (4)
with two gamma kernels such that

Grep - XP = Zzgk,u(”bnﬂﬂ?p(”b”ﬂ
k {
p=1or2 (8)

where some of the parameters are set to zero and others are
fixed. Since the increase of the number of free parameters of
a system is coupled with more flexibility, and adapting the
parameters achieves optimal performance, we can improve
the yCFAR performance by creating more parameters and
adapting them with representative data.

where - stands for the convolution operator. The two inpuf Training the QGD

features are the intensities at the pixel under testX and
the intensity in the ring neighborhoag - X with & > 1. From

In an adaptive pattern recognition framework, the free
parameters of the classifiers which define the positioning

these quantities the traditional quadratic discriminator creat@sthe discriminant function for maximum performance are
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Fig. 4. Quadratic gamma discriminator.
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Fig. 5. Implementation of the NL-QGD and its adaptation.

learned from a set of representative data. This step is caltb@ nonlinear dependence on the parameter. There are two
the training of the classifier Given a set of training image possibilities of solving this problem. Either we first determine
chips {X;, X»,---, Xx} centered around points of a knowrthe best value of,; and ., for prescreening and use here the
class, we compute the corresponding feature veétofhe same values, or we have to use an iterative approach to find
corresponding desired values of the image chips are one’s fath the weight vector ang; and j,,. The results we will
target class and zero’s for clutter, which construct a desiretdow later utilize the first method. The second method will be
vectord = {di,ds, -, dn}*. utilized in the following section to train the nonlinear QGD.
If the mean square error between the system output and the
desired response is selected as the cost function, there is anV. NONLINEAR EXTENSION OF THEQGD (NL-QGD)
analytical solution to the problem [12] The method solves in In the context Of our Work the MLP appears as a natural
the least square sense an overdetermined (assuMing) extension of the processing power of the QGD. In fact,
system of linear equations for the unknown coefficient vectgf, MLP can be thought of as a nonlinear combination of
w. QGD’s (Fig. 5). Since the MLP is capable of creating arbitrary
. discriminant functions [12] this extension has the potential to
R ld = FW|l2 (13) improve performance. Note that the QGD creates a quadratic
discriminant function of the image intensity, which is optimal
only for Gaussian pdf’s [9]. Fig. 5 displays the block diagram
W= FTF) ' Fd. (14) of the NL-QGD. We can think of the QGD as the linear
part of one of the hidden layer processing elements. The
Since the feature vectdr is a function of the parametersthree basic issues that need to be addressed when using a
i the problem we are facing is in fact a parametric leaseural network are the training rules, the cost function and the
square, which does not have a closed form solution due rtetwork topology.

yielding



PRINCIPEet al. TARGET DISCRIMINATION IN SYNTHETIC APERTURE RADAR 1141

A. Training the NL-QGD The derivative ofg(-) with respect tou is

In order to fully develop the neural network approach, an
iterative learning scheme is required to adapt the weights and igk,u(m,m)
the parametey:. Availability of on-line methods of adapting i
i effectively means that the system output error can be used _ (k+1)
to search for the optimal local area and guard band of the
training set data.

The NL-QGD is trained with a desired signal(one’s for ~ The sample by sample adaptation of the paramgtes
the target class and zeroes for the nontarget class) using fHerefore given by
backpropagation (BP) algorithm [12]. The sum of squared

(gr,u(n1,m2) — grga,u(na, n2)). (20)

errors is initially utilized here, i.e., ) _3 (”)
min 2 a
i < =5y Z () = =)l ) (15) = s(0) 4 AAR0) 5 s Fus(n) 1)

Moreover, in order to adapt the parametemhich controls
the scale of theyCFAR stencil, the error generated at thevhereg is the step size, ang= 1, 15 (one equation for each
detector output is backpropagated up to the input layer. Tkernel).
decision boundary of the NL-QGD is therefore formed in-
cluding the parameter. The weightsiV are adapted applying
directly the BP algorithm. The parametgris recursive, so VI. THE NEED FOR A DIFFERENT PERFORMANCE
we present here its learning equations. The correctipiin) CRITERION TO TRAIN THE NL-QGD
at each iteration is proportional to the instantaneous gradien
OE(n)/0u(n). According to the chain rule, this gradient is
expressed as foIIows

breliminary comparison between the QGD and the NL-
QGD trained with theL, norm demonstrated that the QGD
was a better discriminator, although its final mean square
Z ) = AT )3F(”) (16) error (MSE) was much higher than that of the NL-QGD (see
3yp Ap(n) Table IV). This was an unexpected result.
where the |nput to the network is the feature expansmq\/\r/]e analbylzed t:;.e NEI;‘ SGE OUtplrj]tS to understand the so?r(;]e
F given by (9) at each iteratiom F(n) = Yp(n) — the problem. Fig. (b) shows the test set responses of the
T - - QGD (dotted line) and of the NL-QGD (solid line) in a test
[y1(n), y2(n), -, yp(n)]* and y;(n) is the input to each ) . :
: : ; . set built from 3905 clutter chips and 345 target chips. For
nonlinearity (with P = 8) ) . .
display purposes, the clutter chips were presented sequentially

n) = wip(n)F(n). (17) first followed by the target chips. So the first 3905 values in
= Fig. 8(b) correspond to clutter responses (a desired response of
The local gradient vector at the input layer 4sp(n) = zero) followed by target responses (desired response of one).
[61(n),82(n),---,6p(n)]F. The local gradient at theth PE The first observation is that the output of the NL-QGD is in the
in the input layer of the MLP is obtained by average much closer to the target values of zero and one than
the QGD. This is to be expected due to the inclusion of the
bp(n) = aup 25 n)wip(n (18) nonlinearity in the input—output map. What was unexpected

_ _ was the behavior of the nonlinear system when the input was
where 6;(n) is the local gradtent at théth PE in the first misclassified. Notice that when the NL-QGD makes a mistake,
hidden layer andv;,,(n) is a weight between theth PE in the the error can be very large, in fact much larger than that of

input layer and théth PE in the first hidden layer. the QGD.
The gradient9F (n)/8u(n) is given by For a discriminator this characteristic is unacceptable for the
OF s _ |91 0 agl X% 0 following reason: According to the Neyman—Peerson criteriqn,
T o [a—ul L we set a threshold value that provides a given detection
9 performance, let us say 100% detectidd = 1). The goal
2(q1 ~X)a—(91 -X) 0 is then to minimize the number of false alarms. To implement
H T Pd = 1, we have to choose a threshold that is lower than
2Agus - X)-L a (g1 - X) 0} the smallest response in the target class. Therefore, if the
i discriminator yields a weak response to one of the targets,
OF ), s [8910 ' 0 9915 X2 0 many false alarms in the clutter will result. Observing the
dus | Ops s plots for the NL-QGD we can see that the system response to
b targets has values as low as 0.2, so many false alarms (any
2915 X) 5 — (915 X) 0 output within the clutter chips that is above this threshold)
Hs T will occur. In fact many more than for the linear counterpart,
2(g1 - X) o (915 - X) 0} . (19) since the QGD never made as “gross” mistakes in the target
s class as the NL-QGD. This explains the reason why the QGD
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performed better than the NL-QGD for discrimination (see thg. L, Norms and the BP Algorithm
results for a complete comparison).

. , ) The L, norm is defined as
Ultimately, the performance of any adaptive system is con-

trolled by the number, position and shape of the discriminant N £ )
functions. The shape and number of the discriminant functions E= Z Z |di(n) — yr(z(n); w)| (23)
is dictated by the network topology, while their position in the n=lk=1

input space depends upon the final weight values, which avbeere NV is the number of training samples, the number of
a function of the performance criterion (also called the co$®E’s in the output layer, ang the order of the nornip > 0).
which here was thd., norm. Whenyp = 1 the contribution of large errors is equal to that of
There are two main problems in the use of the norm the small errors. Whep increases, the contribution of large
for discrimination. Notice that thd., norm (any norm for errors toE increases. Since the weights are changed with the
that matter) is blind to the error type, i.e., it treats in therror information and they define the location and shape of
same way the false alarms and the missed detections. The decision boundary, different norms will move the decision
Neyman—Pearson criterion (1) and the construction of the R@Bundaries in the input space and affect the performance of
curve clearly demonstrate that these two types of errors afféoe classifier.
differently the detection performance, so their contribution The training equations for the MLP can be easily modified
to the positioning of the discriminant functions should b& work with L, norms [4]. In fact, the norm of the error only
controlled independently. This lead us to propose a mixemters in thecomputation of the injected errarsed as input
norm as an implementation of the Neyman—Pearson criterida.the dual system. The BP algorithm can be utilized without
Moreover, the specific norm for the false alarms and missetbdification. In equations we have
detections should also be carefully selected, i.e., it is not clear OF OE Oy
that the L2 norm is the natural choice. Hampshire [11] also = —
studied the norm selection and concluded that fhenorm
is not appropriate for detection. We treat these two aspewtbere y; is one of the output PE’'s andy; is an internal
below. weight. By changing the norm we only affect the first term
in the equation, which computes the injected error in the BP
procedure. The local gradients in the output layer are computed
as

8wij o 8yl 8wlj (24)

A. Mixed Norm Approximation to the
Neyman—Pearson Criterion

Since the core idea of the Neyman—Pearson criterion isqdn) = ayl(n)E(”)
treat differently the two types of errors in detection, this can I
only be achieved with a mixed norm formulation by defining = (yu(n)) Z sign (dy(n) — yi(n))|di(n) — yi(n)|P~
the error as =

(25)
1 where! and L are a PE index and the number of nodes in
= | — — Pe
E(n) = N, Z ‘ [ = y(a(n),w) the output layer, respectively(n) is the instantaneous error

R defined as
1 L
— _ y23 1

w2 Moyl @) B(n) = - dh(n) — u(n)” (26)

=1

Larger norms slow down the training. This effect can be
where N, is the number of clutter samplegd/; is the number seen by rewriting (25) as follows:

of target sampleg,. is the norm for the clutter clasg; is the

_ -2 1
norm for the target class, and » are the clutter and target bu(n) =le(m)["~"¢' (yi(n))
classes, respectively. Lo
In order to mimic the Neyman—Pearson criterion with 'ZSlgn(dl(”)—yl(”))|e(”)|- (27)
=1

norms, one wishes to minimize the largest deviation to the

desired response in the target class such that the threshol@omparing this equation with the, norm equivalent, we
can be set as high as possible; while in clutter one wishesdonclude that whefe(n) < 1, 6 becomes very small for large
keep most of the errors small (deemphasize large errors) smechms(p > 2) so that the convergence slows down. In fhe
that as few as possible of clutter responses cross the tanmgetm, all the errors contribute equally to the computation of the
threshold. This can be achieved by using fhg: norm for gradient. Forp < 2, the gradient is more sensitive to smaller
target exemplars and thie; norm (or even fractional norms) errors, while forp > 2, larger errors affect more the weight
for clutter exemplars. Due to the difficulty of training withupdates.

these two extreme norms, we created a mixed nbagm for Returning to the mixed norm criterion (22), in order to
clutter andLg for targets. Next, we explain how the mixedprevent the clutter error power from dominating the target error
norm criterion can be included in the BP algorithm. power when errors are less than one (the ones of interest due
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to the nonlinearity) the terms are normalized by the numbesas indirectly validated for the QGD when our measure of
of class samples and the power of the inverses.cndp,, performance improvements with respect to the CFAR was later
respectively. The weight adaptation is batch training. The locabrroborated by Novak using targets in clutter [25].

gradient for the mixed norm at the output can be written as

B. Two-Parameter CFAR Processing

(1/pe)-1
& = L Z |d — y(x, w)|P* The two-parameter CFAR detector was run over the 127
N = ) frames (about 7 ki) of the mission 90 pass 5 data. Three
1 el hundred forty-five targets from the TABILS 24 ISAR data
N Z |d — y(@, w)[" "¢ () base were embedded for testing purposes. The size of the
#Cwt CFAR stencil was 85< 85 pixels as suggested by Novek

+ in the outmost four-pixel wide boundary of the stencil. The

intensity of the test pixel is computed by averagingx33

Ni Z Id — y(z, w)|P 1 (1) (28) pixels in the center of thg ste_ncil. We could have used our
t ~CFAR detector as described in [14], but we preferred to use

an established detector to better compare the improvements of
For convenience of notation, sample index n was droppétk discriminator.

for 6;,d, andz. For comparison purposes with the proposed After the CFAR processing, multiple detection points occur

mixed norm, the L8 norm was also implemented, as well @s targets and other regions because targets and man-made

the cross-entropy cost (KL) function [1]. The cross entropylutter (and tree tops) normally consist of many high re-

has been suggested as an appropriate criterion in cases wHetgivity pixels that trigger the prescreener repeatedly (raw

the distribution of the error is binomial as it may happen whetetections). Clustering of the multiple detections is performed

] (A/po)—1 al. [21]. The local mean and standard deviation are computed

1
7 2 ld=ylaw)l

rCway

rCws

one trains with two target values of 1/0. for a more representative count of detections and false alarms.
The size of the clustering region was determined from the
VIl. EXPERIMENTS size of targets (in this case, clustering radius is 22 pixels long,

which encompasses the largest size of embedded targets) [14].
The QGD or NL-QGD only operate on the clustered locations,
i.e., regions that triggered the CFAR detector. The number of
The data used to test the two-parameter CFAR and our pfgrse alarms is counted from the clustered detections.
posed discriminators is high-resolution SAR imagery (mission after clustering, the two-parameter CFAR detector yielded
90 pass 5) collected at 28lepression angle near Stockbridge4455 false alarms over the 127 frames of the mission 90 pass
NY, with the Advanced Detection Technology Sensor (ADTSE SAR data set when the detection threshold was set at 100%
The ADTS is a fully polarimetric, cohereti H, HV, VH, target detection (all 345 targets). Fig. 6 shows an example of
and V'V polarizations), 33-GHz synthetic aperture radar WitQetection performance of the two-parameter CFAR detector in
1 ft x 1 ft resolution. The SAR image data was furthepatural and cultural clutter areas. The objects in the square

processed by the polarimetric whitening filter (PWF) fopgxes in Fig. 6(b) indicate embedded targets.
speckle reduction [20]. The mission 90 pass 5 SAR data

contains only natural and man-made clutter, lacking tactical Training the QGD
targets. On the other hand, the TABILS 24 ISAR (inverse

SAR) data set supplies tactical targets at various depressioﬂ_raining of the QGD fi_nds the set .Of optimal scale parame-
angles and many aspect angles. ters(u1, p15) and the weight vectod in (10). From the false

Since at the time of this work there was no public sourc@afmS created by the two-parameter CF.AR detector,_ 550 were
for target data in clutter, we had to embed targets to procer domly selected as clutter chips, and integrated with the set
f 275 embedded target chips to form the training set. For the

with the testing of our algorithm. Target embedding is a con?

promise and should be avoided for classification. HowevéﬁSUItS presented here, tig:,i15) space was exhaustively

to test a focus of attention based on intensity features sgarched for the best possible stencil size in terms of minimum

careful embedding method will provide realistic figures Or,gumber of false positives for 100% detectidnl = 1). Since

merit. Moreover, here the emphasis is in relative performan[%)ere are only two parameters, this.is realistic._ Alternative_ly,
of several different norms, not in absolute performance. the optimal scale could be determined by using a gradient

We chose ISAR target data that was taken at approggscent procedure to minimize the output MSE as explained

mately the same depression angle as the mission 90 plgs 5]. Least squares was utilized to determined the optimal

5 SAR imagery (within 3 difference). Both data sets wereWelght vector (14).

calibrated. The target embedding was done coherently in the ,

fully polarimetric clutter data by substituting clutter by targeP- Testing the QGD

pixels. Target shadows were not included. Targets were onlyWith the optimal set of parameters and optimal weights,
embedded in open field locations. A full description of ththe QGD was tested on different sets of clutter and target
procedure is omitted here due to length limitations, but camage chip embeddings (See Fig. 7). Table | shows the per-
be found in [15]. We can add that this embedding proceduigmance of the QGD in the testing phase. The table shows

A. Description of the Data
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@) (b)

Fig. 6. Detection and clustering: The detections enclosed by the rectangular boxes indicate the location of targets embedded. 54 locatiendetextethls
by the two-parameter CFAR detector. (a) Natural clutter area. (b) Cultural clutter area.

ROC curve: QGD QGD outputs from non-target/target chips
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Fig. 7. Discriminating performance of the QGD in the test set. (a) ROC curves. (b) QGD outputs for the inputs of clutter and target image chipinafter trai

TABLE |
QGD DeTECTION IN TRAINING AND TESTING
Target detection rates Pd=1 | Pd=99 | Pd=98 | Pd=95 | Pd=.92 MSE
Training 14 14 8 4 3 0.0273
Testing (# false alarms) | 385 118 97 53 42 0.0202

the MSE and false alarms for selected detection rates clasa0.92, respectively. A small decrease in detection accuracy

to 100% detection, the desirable operating point for the foctgduces greatly the number of false alarms. The testing of the

of attention. NL-QGD is performed with 3905 clutter image chips and 345
The QGD reduces the false alarms from 3905 to 385 f&rget image chips.

Pd = 1. An increase of discrimination power of about 1:10

(385/3905) was obtained with the QGD over the two paramefer Training and Testing NL-QGDs

CFAR detector atPd = 1. The number of false alarms In order to compare the performance of the QGD and NL-

decreases to 118, 97, 53, and 42 fat = 0.99,0.98,0.95, QGD based on the same feature values, the same optimal
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TABLE 1l
PERFORMANCE OF THENL-QGD wWITH Lo
Network False detections
Topologies MSE
OPOIOBIES | pd=1 | Pd=.99 | Pd=.98 | Pd=.95 | Pd=.92
NL-QGD731 | 80 6 3 3 2 0.005039
raning N L-QGD751 | 80 6 3 3 2 0.005038
NL-QGD771 | 80 6 3 3 2 0.005048
NL-QGD731 | 1456 96 67 35 30 0.006263
testing NL-QGD751 | 1453 96 67 35 30 0.006261
NL-QGD771 | 1445 97 67 35 30 0.006262
TABLE 1lII
PeERFORMANCE OF THENL-QGD wiTH MIXED NORM
Network False detections
Tovologi MSE
OPOIOZIeS | py=1 | Pd=.99 | Pd=.98 | Pd=.95 | Pd=.92
NL-QGD731 | 12 12 10 5 4 0.00682
.. NL-QGD751 12 12 10 5 4 0.00662
training
NL-QGD771 | 12 12 10 5 4 0.00664
NL-QGD731 | 232 97 76 40 36 0.00830
. NL-QGD751 252 96 76 48 36 0.00833
testing
NL-QGD771 | 251 96 76 48 36 0.00833

parameters for the QGLy; and 5, were used for the NL- for training and testing. The NL-QGD is able to provide a
QGD. To train the NL-QGD an iterative training algorithmsmaller final MSE than the QGD (an improvement of an order
such BP must be utilized. Since the image features extracte#fdnagnitude). However, the performance of a discriminator is
with the gamma stencil are highly correlated, it is desirableot measured in terms of MSE but number of false alarms for
to whiten the training data set for faster convergence [15]. A given detection accuracy. Hence, the ROC curve of the two
cross validation set of 550 clutter image chips and another sgstems must be compared [Fig. 8(a)]. The NL-QGD trained
of 275 embedded target image chips was created to stop wWith the L, norm did not perform as well as the QGDRd =
training at the point of maximum generalization. 1 (1880 false alarms versus only 422 for the QGD). However,

The size of the NL-QGD hidden layer was changed from 3t Pd = 0.99, 0.98, and 0.95, the NL-QGD outperformed the
5, and 7 to quantify the effect of topology size on performanc@GD. Note that changing the number of hidden nodes from
In the following tables, NL-QGD731 indicates that the networthree to seven did not affect the performance of the NL-QGD
has seven input nodes, three nodes in the hidden layer, and oneh.
output node. Note that our goal is to have small topologies The performance with mixed norm is shown in Table Ill. A
to guarantee good generalization. Backpropagation withseall norm(p = 1.1) was imposed on the nontarget class and
momentum term was used to train the NL-QGD weights large norm(p = 8) on the target class. The BP algorithm
with the whitened training data set. For NL-QGD trainingwas modified according to (28). The most obvious result of
the learning rate (h) and momentum (a) were 0.1 and ORble Il versus Table Il is a drastic reduction of the false
respectively, for all the networks. The cross validation set watarms atPd = 1, and an increase in the MSE.
also whitened by using the estimate of the covariance matrixin fact, this mixed norm was the best performer Fat = 1
of the training data set. Training was stopped when the ermong all the experiments that we conducted involving the
in the cross-validation set started to increase. This happened.gtLs norm, the cross-entropy criterion and the QGD [15].
different iteration counts depending on the size of the networkfie ROC curves and the detections per class of all the norm
and the norm utilized. experiments are shown in Fig. 8.

The performance of the NL-QGD'’s trained wifly norm is It is interesting to analyze this figure to gain an intuition for
measured in terms of MSE and the number of false alarms foow different norms treat the errors. Notice that fhagenorm
different network sizes. The results are tabulated in Tablegtoduces large errors in the target class that are very costly for
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TABLE IV
FINAL RANKING OF ALL THE DISCRIMINATORS
Detection rates
Rank
100% 99% 98% 95% 92%

1 NL-QGD731y ) 1/.8/NL-QGD771y g NL-QGD751 ¢ NL-QGD771gy, NL-QGD771g;.
(292) (114) (70) (36) 20)

2 NL-QGD771 1 11.8/NL-QGD751; ¢ INL-QGD771, 4 NL-QGD751¢|, NL-QGD751¢.
(315) (115) a3 36) (20)

3 NL-QGD751 1 11.8/NL-QGD731 4 NL-QGD731.4 NL-QGD731gL NL-QGD731g,
(316) (119) (73) (39) 20)

4 QGDy g NL-QGD771; 5 NL-QGD771, 5 NL-QGD771 g NL-QGD751 ¢4
(422) (120) (83) (42) 29)

S NL-QGD751 4 NL-QGD751;, NL-QGD751, NL-QGD731; g NL-QGD771 4
(632) (120) (83) (42) (30)

) NL-QGD771 4 NL-QGD731; 5 NL-QGD731;, NL-QGD751 4 NL-QGD731; 4
(640) (120) (83) (43) (€18)]

7 NL-QGD731 4 NL-QGD7711 1 14.8{NL-QGD751 g1 NL-QGD771y, NL-QGD771,
(652) (123) 90) (46) 37

8 NL-QGD731kL. NL-QGD751; ; 11.8/NL-QGD77 gy INL-QGD751; 5 NL-QGD751,
(910) (123) G2 46) 37

9 NL-QGD751y, NL-QGD731y 1 14.8INL-QGD731gL NL-QGD731;, NL-QGD731;
(1064) (123) (CH)) 46) 37

10 NL-QGD771x, NL-QGD771g NL-QGD7711 1 1.8 |QGDg QGD; g
(1152) (125) (101) 67 (44)

11 NL-QGD771; » NL-QGD751q, NL-QGD751y 1 1.8 INL-QGD7711 1 118 NL-QGD771y ) 118
(1880) (129) (101) (63) 45

12 NL-QGD751y, NL-QGD731y;. NL-QGD731y ; 1.8 INL-QGD751y ; 1.8 NL-QGD751 | 1.5
(1889) (130) (101) (63) (45)

13 NL-QGD731y 5 QGD QGD\ g NL-QGD731 ) 1. |NL-QGD731 ) 1.8
(1892) (162) (109) (63) 45)
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a discriminator. However, the minimization produces a velgnly 292 false alarms, and the worst performer detected 1892
good match “in the mean” for the targets values of zero amtutter chips, so the definition of the best norm is critical for
one as seen by the MSE. Pd = 1. It is remarkable that foPd = 1 detection, the QGD

The Lg norm produces a much more irregular response the second best discriminator.
throughout the classes, and reduces the distance between tfige best norm for training depends upon the operating point
mean value of the target and clutter responses. However, notib@sen in the ROC curve (the probability of detection). This
that in fact there are fewer large errors in both classes. Tban be seen in the alternation of the discriminator rankings in
L, 1/8norm reduces the size of the errors for targets and ke€fable 1V. The mixed norm jumps from first rank fbx = 1 to
most of the clutter detects near zero, as the Neyman—Pearksst for the operating poin8d = 0.95 andPd = 0.92, which
criterion dictates. So we think that the mixed norm is a goadeans that the decision boundary is being placed with an
approximation of the Neyman—Pearson criterionPar = 1. enormous emphasis to minimize the largest errors on targets.
The cross entropy criterion resembles the performance of fhikis is not a good strategy for the other operating points where
L, norm but produces fewer large errors. the discriminator is allowed to trade precision for sensitivity.

Table IV shows the final ranking of all discriminators foForPd = 0.99 and 0.98, thd.gs norm is the best performer, but
the probability of detection oPd = 1,0.99,0.98,0.95,0.92. for the other two operating point®d = 0.95 and0.92), the
It is also very instructive to analyze this table. The firdbest performer is the cross-entropy measure. Notice however,
obvious result is that the discriminators trained with the santieat the number of false alarms for all these detection rates
criterion are normally grouped together. This means that thee rather similar, which means that the choice of the norm
biggest factor affecting performance is the norm chosen figr not as critical as foPd = 1. Fig. 9 illustrates this fact
the criterion, while the topology is a second-order effect. Say displaying the number of false alarms as a function of the
for our problem, the time spent in the conventional struggle fwobability of detection for the best performer in each of the
find the best topology can be best utilized in finding the besbrms.
norm to represent the data. It is interesting to note that th&, norm never produced

A large discrepancy in the discriminators performance fohe best results which indicates that for detection there are
Pd = 1 detection is also observed. The best performer createeltter alternatives than the MSE criterion. Finally, the QGD
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Comparison of different norms
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Fig. 9. Comparison of the ROC'’s for high probability of detection.

goes from fourth in the ranking faPd = 1 to basically last the best performer for any of the operating points tested.
for all the other detection rates. So, we conclude that therede we conclude that while the MSE is extensively used
an advantage of using nonlinear systems to design focusimfclassification, it should not be used to train MLP’s for
attention blocks for SAR. discrimination of targets in SAR.
We investigated the reasons, and concluded that the problem
is related to the different goals of detection and classification.
VIIl. CONCLUSION Classification is still a special case of function approximation

There are two main set of conclusions resumng from th}glth indicator functions. In this class of problems MSE has
work. We first address the area of ATR for SAR. The combReen shown optimal for Gaussian distributed errors [1]. How-
nation of the two parameter CFAR with the QGD was showgVer, detection is a very different problem. For detection, the
to be a superior implementation of the focus of attentiofjissed detections and the false alarms should be treated very
producing approximately ten false alarms per square km @fferently as suggested by the Neyman—Pearson criterion. The
imagery [15]. The QGD can be used in conjunction with oth@fiterion suggests that the target norm should kg, and
discriminators (such as fractal dimension, weighted rank fiffe clutter norm should bé, (or even fractional norms).
ratio, size, polarimetric purity, etc.). In fact, its response tendde found a way to construct a mixed norm cost function
to be uncorrelated with the response of the other discriminat@’d successfully applied it to train the NL-QGD using the
[Novak, personal communications] helping reduce the numiesckpropagation algorithm. The NL-QGD trained with the
of false alarms in conventional focus of attentions for SAR.mixed norm was the best performer fdd = 1, the suggested

In this paper, we extend further the system performance bperating point for the focus of attention.
substituting the QGD with a MLP, which we called the NL- The experimental results also show that the best error
QGD. The NL-QGD outperforms the QGD at all the detectionorm depends upon the set point chosen for the probability
rates testedPd = 1, 0.99, 0.98, 0.95, 0.92), reducing theof detection. This can be understood in the light of the
number of false alarms by and average of 40%. The NL-QGReyman—Pearson approach, but a systematic way to translate
is still a system with small number of parameters (24 weightdhe choice of the operating point to the error criterion is lacking
so it is fast to adapt and should generalize well. This wogk this time. The other error norms tested such adther the
shows a practical advantage of the MLP in a very difficult anctoss-entropy (KL) outperformed th&, norm. However, we
relevant problem. also found that the operating point where performance is more

The other set of conclusions addresses neural netwadpendent upon the norm is the region arobd= 1. More
issues. We found that training the MLP for discrimination withvork should be conducted with larger number of targets and
the commonly used MSE criterion produced disappointingutter chips to quantify better the performance nedr= 1
performance. In fact, it produces a discriminator that wdwhich is the point with the largest estimator variance).
worse than its linear counterpart, the QGD, 8d = 1. Finally, the performance was much more dependent upon
The neural network trained with thé, norm never was the norm than the size of the MLP topology. This suggests
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that modeling the pdf of the error to construct the best norfes] J. C. Principe, B. deVries, and P. G. de Oliveira, “The gamma filter—A
should be a design goal. Unfortunately, this is not common

practice in neural network applications.
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