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Abstract

We consider the problem of Bayesian inference
of graphical structure describing the interactions
among multiple vector time-series. A directed
temporal interaction model is presented which
assumes a fixed dependence structure among
time-series. Using a conjugate prior over this
model’s structure and parameters, we focus our
attention on characterizing the exact posterior
uncertainty in the structure given data. The
model is extended via the introduction of a dy-
namically evolving latent variable which indexes
dependence structures over time. Performing in-
ference using this model yields promising re-
sults when analyzing the interaction of multiple
tracked moving objects.

1 INTRODUCTION

We consider the problem of inference of evolving depen-
dencestructuresof multiple vector time-series. Specifi-
cally, we develop a Bayesian inference method over di-
rected models as a means of examining the influence of
time-series on each other. Influence between time-series
is characterized by dynamically changing directed models
in which the graphical structure (i.e. the composition of
edges) is of primary interest and the underlying parameters
are treated as nuisances.

The general problem of structure learning has garnered a
great deal of attention in the past two decades, cf. (Heck-
erman, 1995). There are two primary problems within this
area: learning better predictive models and structure dis-
covery. Here we focus on the latter as a tool for data
analysis. Bayesian inference overstructureis complicated
by two factors. First, priors on parameters must be cho-
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Figure 1: Example TIM(1) (a) and corresponding interac-
tion graph (b)

sen such that they can be efficiently marginalized. Sec-
ond, Bayesian structure inference generally requires rea-
soning over a super-exponential number of graphical struc-
tures within a model class. These two factors lead to diffi-
culty in evaluating the partition function, precluding exact
evaluation of event probabilities over the posterior distri-
bution on graphical structures. Thus, much of research in
this area, with notable exceptions discussed herein, focus
on obtaining point estimates or approximations to the exact
posterior. While these methods allow one to approximate
certain event probabilities, it is highly desirable to compute
exact quantities to characterize posterior uncertainty when
possible (Friedman and Koller, 2003; Koivisto et al., 2004).

Directed models are of particular interest when analyzing
time-series owing to the assumption of temporal causality.
That is, when performing inference over directed edges it
is desirable to preclude edges which predict past observa-
tions from future observations. This provides a strict tem-
poral ordering which we exploit to define a temporal inter-
action model. Figure 1(a) illustrates the structure of one
such model.

A conjugate prior on the directed structure and parameters
of our temporal interaction model is presented which al-
lows the set of all directed structures to be reasoned over in
exponential-time. Furthermore, by imposing simple local
or global structural constraints we show that one can reduce
the exponential-time complexity to polynomial-time com-
plexity for reasoning over a still super-exponential number
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of candidate structures. Specifically we focus on bounded
in-degree structures with directed trees and forests being
special cases with global constraints. These constraints
yield tractable Bayesian inference over directed structures,
allowing exact calculation of the partition function as well
as additional marginal event probabilities. The method we
present for reasoning about a fixed structure is closely re-
lated to that of (Friedman and Koller, 2003; Koivisto et al.,
2004), but extended to the analysis of time-series for which
the strict temporal ordering provides a computational ad-
vantage.

Furthermore, we augment our model via the introduction
of an additional dynamically evolving latent variable. This
variable indexes structure, allowing switching between a
finite set of temporal interaction models over time. Using
this model we present empirical results on the task of an-
alyzing the interaction of multiple tracked moving objects.
We make no assumptions as to the existence of a “correct
structure.” Our problem of interest is that of quantifying
uncertainty in the interaction among the time-series.

Spectral methods for point estimation of graphical mod-
els over stationary time-series is considered in (Bach and
Jordan, 2004). The related work of (Bilmes, 2000; Kirsh-
ner et al., 2004; Xuan and Murphy, 2007) consider alterna-
tive models in which structure is changing over time. The
methodology here differs in that while we restrict ourselves
to directed models, we marginalize over parameters and
calculate an exact posterior over structures. These mod-
els as well as the model proposed here fall into the general
class of multinets (Geiger and Heckerman, 1996) or Con-
tingent Bayesian Networks (Milch et al., 2005).

2 TEMPORAL INTERACTION MODEL

Here, we present a temporal interaction model (TIM) for
multivariate time series. This model is anrth order Markov
model with additional structural constraints. We begin
by introducing some notation for the purpose of explicitly
denoting individual time-series, past values of individual
time-series as well as sets thereof.

ConsiderN time-series and letxv
t be a random variable

representing the value of thevth time-series at timet. The
r past values of time-seriesv is defined as̃xv

t . That is,
x̃

v
t representsxv

t−1, . . . ,x
v
t−r. As we will be explicit on

the temporal model order,r is suppressed in the notation,
x̃

v
t , for brevity. Furthermore, the vector̃xS

t indexed by set

S is x̃
S(1)
t ,...,̃xS(m)

t stacked in a vector where|S| = m
(e.g. x̃

v,u
t is x̃

v
t and x̃

u
t stacked). The random variables

denoting the present and past of all time-series at timet are
defined asXt and X̃t respectively. Multiple time points
can be indexed by a vectort = [t1, t2, ..., tT ] such that
Xt =

[
Xt1 , ...,XtT

]
. Note thatX̃t can be formed from

Xt and a setC containing past values not available inXt

(initial conditions).

Given a directed structurēE, a set of parametersΘ andC,
anrth order temporal interaction model TIM(r) is Markov:

p
(
Xt|Ē, Θ, C

)
=

T∏

i=1

p
(
Xti

|X̃ti
, Ē, Θ

)
. (1)

In order to simplify notation we will drop theC when it
is clear from the context.Ē is a directed structure on
N nodes/vertices defining the factorization of a TIM(r)
model:

p
(
Xt|Ē, Θ

)
=

T∏

i=1

N∏

v=1

p

(
x

v
ti
|x̃

v,pa(v,Ē)
ti

, Θ
v|pa(v,Ē)

)

(2)

wherepa
(
v, Ē

)
returns the parents of vertexv given the

structureĒ. We will drop theĒ and usepa (v) when it
is clear from the context. Thev-th time-series at timet is
dependent on its own pastx̃

v
t as well as the past of its parent

setS = pa (v), x̃S
t . Note that we useΘv|S rather than the

more explicit notationΘv|v,S to represent the parameters
of this relationship for brevity.

Figure 1(a) illustrates a TIM(1) for N = 3 time-series with
Ē containing two edges; one from 2 to to 1, and one from
2 to 3. Herepa (1) = pa (3) = 2 andpa (2) = ∅. Fig-
ure 1(b) shows an alternative and more compact view for
this model in which a single node represents a time-series
over all time. We refer to this as theinteraction graphand
use diamond shaped nodes to emphasize it is not meant to
be interpreted as a directed Bayesian network, though there
is a one to one mapping between these graphs. A directed
edge fromu to v in the interaction graph implies a directed
edge fromx̃

u
t andx

v
t in the TIM. Note that the TIM(1) in

Figure 1(a) has an interaction graph that happens to be a
directed tree (arborescence). However, in general the inter-
action graph need not be a tree or even acyclic. In other
words, the space of interaction graphs is the space of all di-
rected graphs. Cycles in the interaction graph do not result
in cycles in the TIM(r) due to the strict temporal ordering
assumptions.

3 CONJUGATE PRIOR

We adopt a prior on the structure and parameters similar
to those presented in (Meila and Jaakkola, 2006; Friedman
and Koller, 2003), using the factorization

p0

(
Ē, Θ

)
= p0

(
Ē

)
p0

(
Θ|Ē

)
. (3)

The parameters are assumed to be independent andmodu-
lar given a structurēE and hyper-parametersΓ. That is,
they factorize according to the edges inĒ:

p0

(
Θ|Ē

)
=

N∏

v=1

p0

(
Θv|pa(v)|Γ

)
(4)
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andp0

(
Θv|S|Γ

)
is the same for all structures̄E for which

S is the parent set ofv. Thus, for each time-seriesv one
needs to specify a parameter prior for all potential parent
sets. Given this finite set of priors for eachv one is able to
supply a full prior on parameters for any given structure.

We place a prior on directed structures which has the form:

p0

(
Ē

)
=

1

Z(β)

N∏

v=1

βpa(v),v (5)

where the partition functionZ(β) ensures proper normal-
ization. Each scalar hyper-parameterβS,v can be inter-
preted as a weight on the parent setS for v and the prior is
simply a proportional to the product of these weights. Note
that if all βS,v are set to 1, one obtains a uniform prior and
Z(β) is the number of possible structures. If allβS,v are set
proportional to the size ofS, |S|, the prior will favor dense
structures. Equivalently, sparse structures are favored by
makingβS,v inversely proportional to|S|.

Let D = {X1, ...,XT } be a set ofT complete observa-
tions. We use the notationDS = {xS

1 , ...,xS

T } to de-
note observations of a set of time-series.Dt = Xt and
Du

t = x
u
t . D̃ = {X̃1, ..., X̃T } can be formed usingD

and past information inC. Given dataD, the posterior on
parameters given structure has the form:

p
(
Θ|Ē,D

)
=

N∏

v=1

p
(
Θv|pa(v)|D

v,Dpa(v), Γ
)

(6)

That is, the prior on parameters given a structure is fully
conjugate. If one choses a conjugate prior for eachΘv|S

in Equation 4 the posterior has the same form and can be
updated by sufficient statistic calculations from the data.In
addition, the posterior on structure is:

p
(
Ē|D

)
=

1

Z(β ◦ W )

N∏

v=1

βpa(v),vWpa(v),v (7)

where◦ is an element wise / Hadamard product and

WS,v = p
(
Dv|D̃v,S

)

=

∫
p

(
Dv|D̃v,S, Θv|S

)
p0

(
Θv|S|Γ

)
dΘv|S

(8)

is simply the evidence for time-seriesv given the time-
series of its parent set defined byS. That is, the prior is
updated by modifyingβ with a set of evidence weightsW .
The proof follows from the fact that the prior on structure
factorizes in the same manner as Equation 2.

For continuous observations and a linear gaussian model
with parametersΘv|S one can choosep0

(
Θv|S|Γ

)
to be

a matrix-normal-inverse-Wishart distribution with hyper-
parametersΓ. This will yield efficient updates for Equation
6 andWv|S will be the evaluation of a Matrix-T distribution

(West and Harrison, 1997). Similarly for discrete observa-
tions one can use Dirichlet priors and have analytic forms
for the evidence.

Note that there are2N−1 possible parent sets for eachv.
This yields a super-exponential number of possible struc-
tures,2N2−N . This suggests one may need to explicitly
sum over a super exponential number of terms when calcu-
latingZ(β). Fortunately this is not the case. When consid-
ering the set of all structures,A, all combinations of parent
sets are possible and independent of each other. Thus one
can implicitly calculate this sum

Z(β) =
∑

Ē∈A

N∏

v=1

βpa(v),v =
∑

S1

. . .
∑

SN

N∏

v=1

βSv ,v

=

N∏

v=1

∑

Sv

βSv,v ,

N∏

v=1

γv(β)

(9)

as a product ofN summations. Eachγv(β) is a summation
over the2N−1 possible parent sets,Sv, for nodev. That
is, one can reason about all structures in exponential-time,
N2N−1, rather than super-exponential time. Furthermore,
as will be discussed in the following sections, by imposing
some constraints on the set of possible structures one can
obtainZ(β) in polynomial time while still considering a
super-exponential number of candidate structures.

3.1 BOUNDED PARENT SET SIZE

One set of structures,PM , is obtained by restrictinḡE such
that each time-series/node has at mostM parents in the
interaction graph. This translates to each time-series at time
t being dependent on at mostM other time-series past in
addition to its own past. This is a local constraint on the
parent set of each time series. Consequently, each time-
series’s parent set is independent of all others andZ(β)
has the same form as Equation 9 with

γv(β) =
∑

Sv , s.t. |Sv|≤M

βSv ,v (10)

which is now a sum of all possible parent sets of size less
than or equal toM . One can bound the order of the summa-

tion by
∑M

m=1

(
N − 1

m

)
≤ NM . Thus, only polynomial

computation time,O(NM+1), is required for calculating
Z(β) even though the total number of structures is still su-
per exponential,O(NMN ).

3.2 DIRECTED TREES AND FORESTS

In the previous section a local constraint on parent set size
was imposed. However, there may be situations in which
a global structure constraint is desirable. For example, one
may want to only consider structures which form a fully
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connected interaction graph and/or contain no cycles. The
set of directed trees,T is a subset ofP1 in which the inter-
action graph is spanning and acyclic.

In the directed tree case,β is simply anN × N matrix
and each hyper-parameterβu,v 6=u can be interpreted as a
weight on the edgeu → v, andβ∅,v , βv,v is a weight on
a node being a root (having no parents). The edge set corre-
sponding to the nonzero entries ofβ form a support graph.
We assume this support graph is connected and contains at
least one directed tree.

While there areNN−1 possible directed trees onN nodes,
the Matrix Tree Theorem allows one to calculateZ(β) in
polynomial time. This theorem was used by (Meila and
Jaakkola, 2006) for reasoning over undirected trees. The
undirected version of theorem is a special case of the real
valued directed version originally developed by (Kirchhoff,
1847). The theorem allows one to calculate the weighted
sum over all directed trees rooted atr, Zr(β) via:

Zr(β) =
∑

Ē rooted atr

∏

u→v

βu,v = Cofr,r
(
Q̄(β)

)
(11)

whereQ̄(β) is the Kirchhoff matrix with itsu, v entry de-
fined as:

Q̄uv(β) =

{
−βu,v 1 ≤ u 6= v ≤ N∑N

u
′=1 βu

′
,v − βu,u 1 ≤ u = v ≤ N

(12)
and Cofi,j (M) is the i, j cofactor of matrix M .
Cofi,j

(
Q̄(β)

)
is invariant toi and gives the sum over all

weighted trees rooted atj. See (Tutte, 1984) for a proof.

By summing over allN possible roots one obtains

Z(β) =

N∑

r=1

βr,rZr(β). (13)

Thus, a straight forward implementation yieldsO(N4)
time for calculating the partition function. However, as
pointed out in (Koo et al., 2007), using the invariance
of Cofi,j

(
Q̄(β)

)
allows for O(N3) time computation of

Z(β). That is,Z(β) can be calculated by replacing any
row of the matrixQ̄(β) with

[
β1,1, ..., βN,N

]
and taking its

determinant.

The set of directed forests,F , remove the fully con-
nected/spanning assumption ofT and allowsĒ to have
multiple roots. There are(N + 1)

(N−1) directed forests
for N nodes, butZ(β) can still be calculated inO(N3)
time (Koo et al., 2007). Some intuition as to why this is
true is that any directed forest can be turned into a directed
tree by the addition of one virtual super root node which
has no parents and connects to all the roots in the forest.

Note that whileT ⊂ F ⊂ P1, both directed trees and
forests requireO(N3) computation even though the larger

setP1 only requiresO(N2). This is due to the imposed
acyclic constraint which limits the parent set of one node
based on the parent sets of others.

3.3 EVENT PROBABILITIES

The ability to compute the partition function and conjugacy
of the prior allows one to calculate a wide variety of useful
prior and/or posterior event probabilities. For example, the
probability of a particular edge being present is:

p (Iu→v = 1) = E [Iu→v] = 1 −
Z(β−(u→v))

Z(β)
(14)

whereIu→v is an indicator variable that has value 1 when
the edgeu → v is present.β−(u→v) is β with all elements
involving edge fromu to v set to zero. Similarly one can
calculate the probability a time-series/node having no par-
ents(root) or no children(leaf):

p (Iv is a root) =
Z(β−in(v))

Z(β)
, p (Iv is a leaf) =

Z(β−out(v))

Z(β)
(15)

wherein(v) andout(v) return the set of all possible edges
in and out of time-series/nodev respectively.β−e indicates
all elements ofβ which involve any edge in the sete that
are zero.

The indicator variables used in the examples above can be
expressed as a general multiplicative functions of the form
g(Ē) =

∏N

v=1 gpa(v),v. The expected value of a general
multiplicative function can be calculated by:

E
[
g(Ē)

]
=

Z(β ◦ g)

Z(β)
(16)

Note that variance or other higher order moments of multi-
plicative functions can also calculated in this manner (e.g.
usingZ(β ◦ g2) in calculating posterior variance). In ad-
dition, one can calculate the expectation of additive func-
tions of the formf(Ē) =

∑N

v=1 fpa(v),v. For Ē ∈ A or
Ē ∈ PM :

E
[
f(Ē)

]
=

N∑

v=1

γv(β ◦ f)

γv(β)
(17)

For directed trees,̄E ∈ T , E
[
f(Ē)

]
=

N∑

r=1

Zr(β)

Z(β)
tr

(
Mr,r

(
Q̄(β ◦ f)

)
Mr,r

(
Q̄(β)

)−1
)

(18)

whereMi,j (Q) is the matrixQ with its ith row andjth col-
umn removed. A proof follows that of (Meila and Jaakkola,
2006) substituting in the directed tree partition functionin
place of the undirected version. A similar form is obtained
for directed forests.

Additive functions allow calculation of quantities such as
the expected number of children or parents of a particular
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K

z1 z2 z3

X1 X2 X3X0

Θk
Ē

k

πα

β Γ

Figure 2: The structure of a STIM(1,K)

time-series/node. For example, by settingfS,v to |S| for a
singlev, f(Ē) will count the number of parents nodev has
in structureĒ.

3.4 SAMPLING STRUCTURE

Given data, we have shown how to calculate the posterior
p

(
Ē|D

)
and various event probabilities. Another impor-

tant task is sampling from this posterior. When considering
all structures orPM , sampling is done efficiently as a set
of local sampling steps for each time-series/node parent set.
That is the parent setSv for nodev is chosen with proba-
bility βS,v/γv(β). Random sampling of directed spanning
trees (and forests with a some modification) is a well stud-
ied problem. This paper uses Wilson’s random walk based
algorithm (Wilson, 1996).

4 SWITCHING INTERACTION MODELS

The TIM(r) model assumes a singlēE and parameters
Θ over all time. Here, we introduce a switching tem-
poral interaction model, STIM(r,K) which allows struc-
ture to change over time. Letzt be a hidden state at
time t which indexes a specific structure,Ezt, and param-
eters,Θzt . Figure 2 shows a first order model. Given
a set of K structuresE = {Ē1, ..., ĒK}, parameters
Θ = {π0, π1, ..πk, Θ1, ..., ΘK} and an observations over
the time periodt = [1, ..., T ]:

p(Xt, zt|E,Θ) = p(zt)p(Xt|zt,E,Θ) (19)

=

T∏

t=1

p(zt|π
zt−1)p(Xt|X̃t, E

zt , Θzt)

wherez0 = 0, the transition distribution is multinomial
p (zt|πzt−1) = Mult (zt; π

zt−1) and is given a Dirichlet
prior p0 (π) =

∏K

k=1 Dir
(
πk; αk

1 , ..., αk
K

)
.

Exact inference on this model is complex due to the fact
there areKT possible state sequences. Thus, we turn to
an MCMC approach in which samples are drawn from this
model using a Gibbs sampler. The sampler has three main
steps. Step 1 samples the state sequence given previous es-
timate of structures and parameters. This is done efficiently

with backward message passing followed by forward sam-
pling. This step can be modified when initializing to simply
sample the state sequence from its transition prior. During
Step 2 the sampled counts of state transitions are noted and
transition probabilities are then sampled given these counts.
In Step 3 a vectortk is formed with all the time points with
zt = k. The structure and parameters are then sampled
given Dtk

for eachk. It is important to note that given
a state sequence, one can efficiently calculate exact event
probabilities and posterior over structures.

A STIM(r,K) assumes a known number of states,K, and
structures can be revisited over time. However, the TIM(r)
model can also easily be embedded in a parts partition
model (PPM) similar to that used by (Xuan and Murphy,
2007) which allow for an unknown number of states that
are never revisited. Similarly one may adopt nonparametric
Bayesian models such as the hierarchical Dirichlet process
hidden Markov model (HDP-HMM)(Teh et al., 2006) to
allow for an unknown number of potential revisited states.
The appropriate choice of model is highly dependent on the
model assumptions’ match to the application of interest.
The experiments presented in this paper focus on the use of
the STIM(r,K) leaving the above modifications/extensions
for future work.

5 EXPERIMENTS

In this section we present experiments focusing on the cal-
culation of posterior event probabilities. We begin with a
simple synthetic example and move on to data involving
the interaction of tracked moving objects. Specifically, we
are interested in quantifying uncertainty in the dependence
structure among time-series rather than obtaining point es-
timates. When analyzing data we do not assume there is
a “true/correct structure” one would like to discover. Our
goal is to fully characterizes posterior uncertainty.

5.1 DISTINGUISHING STRUCTURE

A simple experiment on two one dimensional data streams
(N = 2) is carried out in order to explore how well one can
distinguish whether a an edge is present as a function of the
number of samples and strength of dependence.T samples
are drawn from a TIM(1) model with a static structure of
x

1
t influencingx2

t : Ē contains a single edge,1 → 2. x1
t is a

random walk (x1
t = x

1
t−1+n1

t ) with unit variance Gaussian
noise. The amount of influencex1

t has onx2
t is controlled

via a variableρ such thatx2
t = ρx1

t−1 + (1 − ρ)x2
t−1 + n2

t

wheren2
t is unit variance. Note that ifρ = 1, x

2
t moves

to x
1
t−1 plus noise, and ifρ = 0 it simply follows its own

random walk independent of the other time-series.

Given the T samples the posterior probability of edge
1 → 2 is calculated using a TIM(1). A weak matrix-
normal-inverse-Wishart prior is placed on the parameters
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(b) Ē ∈ A

Figure 3: Edge posterior for differentρ and # of samples

(zero mean, large variance, small degrees of freedom). Var-
ious settings ofρ andT are explored. For each setting, 100
trials are performed and the average posterior is recorded.

Note that forN = 2 the structure setP1 = A and that
|T | = 2, |F| = 3 and |A| = 4. Using a uniform prior
over structures we display results in Figure 3(a) and Fig-
ure 3(b) forĒ in the setT andA respectively. The results
follow intuition: few samples and/orρ < 0.1 results in a
posterior close to chance (1/2 forT , 1/4 forA) while once
ρ > 0.1 there is a sharp increase in the posterior of the cor-
rect structure. Note that, here, we are quantifying uncer-
tainty in terms of posterior edge appearance probabilities.
One can also calculate higher order information such as the
posterior variance. For example, running a single trial with
T = 50, ρ = 0.1 one obtains a posterior edge probability
of .6327 and posterior variance of .2324 whenĒ ∈ T .

5.2 INTERACTIONS OF MOVING OBJECTS

Next we explore a dataset comprised of recordings of
three individuals playing a simple interactive computer
game. Each player’s computer mouse controls a specific
dot/marker on their screen. In addition, each player’s
screen shows the dots representing the other players as
well. The players are instructed to perform a particular in-
teractive behavior. The position of each player is obtained
at 8 samples per second. Each behavior is recorded for ap-
proximately 30 seconds.

The players are first instructed to follow each other in or-
der. That is, player 1 moves around the screen while player
2 is instructed to follow him. Player 3 is instructed to
follow player 2. Using a uniform prior on structure and
weak matrix-normal-inverse-Wishart prior on parameters a
posterior on structure is obtained given this data using a
TIM(1). For increasingly restrictive sets of structures, re-
sults are shown in Figure 4(a) depicted as weighted inter-
action graphs. In these graphs edge color represents the
posterior probability of that edge. Node color represents
the probability a time-series has no parents/is a root (white
= 0, black = 1). Note that this behavior is described well by
all structure classes/sets and the most certainty is obtained
when considering the most restrictive setT .

1

2 3

1

2 3

1

2 3

1

2 3

A P1 F T
(a) 3 follows 2 follows 1

1

2 3

1

2 3

1

2 3

1

2 3

A P1 F T
(b) 1 follows 2

1

2 3

1

2 3

1

2 3

1

2 3

A P1 F T
(c) 1 stays between 2 and 3

Figure 4: Posterior interaction graphs for specific behav-
iors. Columns corresponds to the posterior over increas-
ingly restrictive sets of structures: From̄E ∈ A to Ē ∈ T .

Next the players 2 and 3 are instructed to move freely, while
player 1 is told to follow player 2. The resulting posteriors
are shown in Figure 4(b). Note this behavior is not de-
scribed well by a tree since player 3 is independent of all
others. Lastly, players 2 and 3 are told to move freely while
player 1 does his best to stay between both of them. The
results in Figure 4(c) show that this behavior only seems
represented well in setA. It is the only set that allows more
than a single parent for a time-series.

5.3 FOLLOW THE LEADER

Using the same interactive game setup we record three in-
dividuals playing a game of follow the leader. One player
is designated the leader. The leader moves his or her dot
randomly around the screen while the other players are in-
structed to follow. Here, the designated leader changes
throughout the game. That is, a fourth person observing the
game tells the players when to switch leaders. In this case,
the latent variable indicating the change of leader is observ-
able, and consequently, nominal ground truth is available
by which to evaluate performance.

We begin by using STIM(1,3) with Ē ∈ T to analyze this
sequence. That is, we will use the fact there are only three
players and knowledge that directed trees may sufficiently
describe the interaction among players. A uniform prior
on structures and equivalently weak prior on parameters is
used. A weak self biased prior on the state transition distri-
bution is imposed with a bias towards self transition.

Given the data and the prior model, 100 samples of the
structure, parameters and the hidden state sequence are ob-
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Figure 5: Follow the leader results

tained with a Gibbs sampler. Burn in required approxi-
mately 60 iterations. A detailed view of the results can
be found in Figure 5(a). The ground truth state sequence is
shown on top with players taking turns being the leader in
order. This figure shows each of the Gibbs sampled state
sequences. The labels were permuted to give a consistent
coloring with the ground truth segmentation shown on the
top. The results are ranked by the log likelihood of the data
given the sampled parameters and structures, with the top
being the most likely. The right side of the figure shows the
normalized Hamming distance of the best mapping to the
ground truth. Note that it is highly correlated with the log
likelihood of the data. Each sample falls within two general
categories. The top third of the samples match the ground
truth closely, the bottom two thirds suggests a consistent
alternative explanation.

The state labels alone simply provide a segmentation.
Given this segmentation we look at the posterior on struc-
ture to analyze the interaction among the players. Figures
5(b) and 5(c) show a more detailed breakdown of two sam-
pled models. The first row of each figure shows the most
likely state sequence given the sample model. The sec-
ond row shows interaction graphs representing the poste-
rior probability of the structure for each state. Recall that
while the state sequence is MCMC sampled, we obtain an
exact posterior conditioned on this sequence.

Figure 5(b) is a sample with low Hamming distance and
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Figure 6: Basketball results

high log likelihood. Notice that the posterior on structure
for each state is basically a delta function on three dis-
tinct structures. These structures agree with our intuition
in that each root is consistent with who was designated as
the leader and the followers are conditionally independent
given the root. Figure 5(c) is a sample with a mid-range
Hamming distance (ranked 34 out the 100 samples). It has
errors consistent with the majority of sequences shown in
5(a). The confusion between the first and third state is most
noticeably reflected in the structure posterior for state 3.

While the above analysis assumed three states, consistent
with our knowledge of the ground truth, Figure 5(c) gives
evidence for additional modes/states. That is, for each
phase of the game a better model may be a mixture of pro-
cesses each with similar structure but different parameters.
We repeat the experiment usingK = 6 states. Figure 5(d)is
a sample from this model.

The second row shows the occurrence of the learned states.
Interestingly, state 4 indicates uncertainty in the structure.
However, this state is never used and thus its posterior re-
mains uniform. The remaining structures are consistent
with the ground truth indicating who is the leader with little
uncertainty.

5.4 SPORTS INTERACTION ANALYSIS

Next we consider analysis of player interactions in sports
data. A basketball game recording from the CVBASE 06
dataset was used (Pers et al., 2006). Players were tracked in
two cameras and their positions were mapped to a common
coordinate system and recorded at each frame. A total of
11 tracks were obtained; five players on each team plus
the ball. A coarse annotation of the current phase of the
game was created. Four phases were noted: team A on
offense, team B on offense, team A transitioning to offense,
and team B transitioning to offense. A sample frame with
player positions is shown in Figure 6(b).

A STIM(2,10) model withĒ ∈ T is used for analysis; a
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second order model incorporates velocity information. We
use a weak prior on parameters and uniform prior on struc-
tures. A state sequence obtained from our Gibbs sampler
is shown in the bottom row of Figure 6(a). The middle row
shows the best many-to-one mapping of the sampled state
sequence to the coarse annotation. Note that while the sam-
pled sequence is somewhat predictive of the annotation, a
direct comparison is misleading since within each phase of
the game multiple structures may be active.

Given a sampled state sequence, the posterior onĒ is ob-
tained for each point in time. With 11 time-series and 6
states, displaying all posterior interaction graphs is imprac-
tical. As an alternative, we focus on calculating posterior
event probabilities over time intervals. Table 1(a) shows
the probability of the root being on either team or the ball
given each phase in the coarse annotation. Over all phases
of the game the ball has the highest probability of being the
root. When on offense or transitioning to offense a player
on team A has a higher probability of being the root than
one on B and vice versa. Similarly, Table 1(b) shows the
probability of being a leaf averaged over each team and the
ball. Here the ordering is reversed and has a connection to
which team is on defense. We see how analysis of these
posterior event probabilities can give one an intuitive pre-
diction of the state of the game.

Lastly, we calculate the expected number of children for
each player and the ball over all time. The top four time-
series were the ball, point guard A (PG A), forward 1 A (F1
A), and forward 1 B (F1B) with expectations of 1.76, 1.73,
1.08, and 0.95. Again, the results are intuitive. The ball has
the largest influence on the dynamic of the game. The point
guard controls the flow of the game and is usually the best
ball handler. Figure 6(c) shows the posterior probability of
an edge from the PG A to every other player over all time.
Note that PG A tends to influence his own forward as well
as the point guard and forward on the other team.

6 CONCLUSION

We have presented a framework for Bayesian inference of
statistical dependence structure among multiple time series
where parameters are treated as a nuisance. In the static
structure setting, sets of directed structures were introduced
that yield tractable inference and exact calculation of useful
expectations and event probabilities for time-series interac-
tions. In the dynamic structure setting, the inclusion of a
latent index over structures allowed for inference of chang-
ing interactions. Additionally, we illustrated the utility of
this framework via experiments characterizing the posterior
uncertainty on the interaction of multiple moving objects.
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Table 1: (a) Probability of root and (b) average probability
of leaf given annotation.bold and underlinedvalues are the
maximum and second highest in each column respectively

(a) A Offense B Offense B Trans to O A Trans to O
Team A .2475 .0832 .0420 .4769
Team B .0468 .2902 .4234 .0459

Ball .7057 .6266 .5346 .4771

(b) A Offense B Offense B Trans to O A Trans to O
Team A .3942 .4097 .4880 .3254
Team B .5515 .0493 .4234 .6512

Ball .1685 .0671 .1133 .2986
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