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We consider the problem of inference of evolving depen-
dencestructuresof multiple vector time-series. Specifi-
cally, we develop a Bayesian inference method over d
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Abstract

We consider the problem of Bayesian inference
of graphical structure describing the interactions
among multiple vector time-series. A directed
temporal interaction model is presented which
assumes a fixed dependence structure among
time-series. Using a conjugate prior over this
model’s structure and parameters, we focus our
attention on characterizing the exact posterior
uncertainty in the structure given data. The
model is extended via the introduction of a dy-
namically evolving latent variable which indexes
dependence structures over time. Performing in-
ference using this model yields promising re-
sults when analyzing the interaction of multiple
tracked moving objects.
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Figure 1: Example TIMI[) (a) and corresponding interac-
tion graph (b)
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sen such that they can be efficiently marginalized. Sec-
ond, Bayesian structure inference generally requires rea-
soning over a super-exponential number of graphical struc-
tures within a model class. These two factors lead to diffi-
culty in evaluating the partition function, precluding eka
evaluation of event probabilities over the posterior distr
bution on graphical structures. Thus, much of research in
this area, with notable exceptions discussed herein, focus
on obtaining point estimates or approximations to the exact
posterior. While these methods allow one to approximate
certain event probabilities, it is highly desirable to cartg

r_ected n_10de|s as a means of examining the mfluence_ ossible (Friedman and Koller, 2003; Koivisto et al., 2004)
time-series on each other. Influence between time-series

is characterized by dynamically changing directed models

in which the graphical structure.¢. the composition of Directed models are of particular interest when analyzing
edges) is of primary interest and the underlying parameterme-series owing to the assumption of temporal causality.
are treated as nuisances. That is, when performing inference over directed edges it

: is desirable to preclude edges which predict past observa-
The general problem of structure learning has garnered flons from future observations. This provides a strict tem-

great deal of attention in the past two decades, cf. (HeCkaoraI ordering which we exploit to define a temporal inter-

erman, 199.5)' There are tv_vo.prlmary problems within th'_saction model. Figure 1(a) illustrates the structure of one

area: learning better predictive models and structure dis:
such model.

covery. Here we focus on the latter as a tool for data _ _ _

analysis. Bayesian inference owructureis complicated A conjugate prior on the directed structure and parameters

by two factors. First, priors on parameters must be choof our temporal interaction model is presented which al-
lows the set of all directed structures to be reasoned over in

Appearing in Proceedings of the'” International Confe-rence exponential-time. Furthermore, by imposing simple local

on Artificial Intelligence and Statistics (AISTATS) 2009ie@rwa-  or global structural constraints we show that one can reduce

ter Beach, Florida, USA. Volume 5 of JIMLR: W&CP 5. Copyright the exponential-time complexity to polynomial-time com-

2009 by the authors. plexity for reasoning over a still super-exponential numbe

g(zxact guantities to characterize posterior uncertaintgrwh
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of candidate structures. Specifically we focus on bounde@iven a directed structurk, a set of parametef3 andcC,
in-degree structures with directed trees and forests beingnrth order temporal interaction model TIM(is Markov:
special cases with global constraints. These constraints
yield tractable Bayesian inference over directed strestur
allowing exact calculation of the partition function as vel
as additional marginal event probabilities. The method we
present for reasoning about a fixed structure is closely rein order to simplify notation we will drop th€ when it
lated to that of (Friedman and Koller, 2003; Koivisto et al., is clear from the context.E is a directed structure on
2004), but extended to the analysis of time-series for whichV nodes/vertices defining the factorization of a THYI(
the strict temporal ordering provides a computational admodel:

T
p(XelE,0.0) =[] » (Xti

i=1

X,., B, @) RGN

vantage. N
. . . — v, E
Furthermore, we augment our model via the introduction p (X¢|E,©) =[] ][ » (xfi sza(u ), @vpa(mE))
of an additional dynamically evolving latent variable. $hi i=1ov=1
variable indexes structure, allowing switching between a (2)

finite set of temporal interaction models over time. Using

this model we present empirical results on the task of an : . ;
alyzing the interaction of multiple tracked moving objects StructureE. We will drop the £ and usepa (v) when it

We make no assumptions as to the existence of a “correé} clear from the context. Theth time-series at timeis
structure.” Our problem of interest is that of quantifying 98Pendenton its own past as well as the past of its parent

uncertainty in the interaction among the time-series. setS = pa(v), X Note that we us®,s rather than the

. o _ more explicit notatior®,,|, s to represent the parameters
Spectral methods for point estimation of graphical mod-of this relationship for brevity.
els over stationary time-series is considered in (Bach and , , , ,
Jordan, 2004). The related work of (Bilmes, 2000; Kirsh-Figure 1(a) illustrates a TIM{ for N = 3 time-series with
ner et al., 2004: Xuan and Murphy, 2007) consider alternaZ’ containing two edges; one from 2 to to 1, and one from
tive models in which structure is changing over time. The2 {0 3. Herepa(l) = pa(3) = 2 andpa(2) = 0. Fig-
methodology here differs in that while we restrict oursslve Uré 1(b) shows an alternative and more compact view for
to directed models, we marginalize over parameters anf!is model in which a single node represents a time-series

calculate an exact posterior over structures. These modVer all time. We refer to this as theteraction graphand
els as well as the model proposed here fall into the generaS€ diamond shaped nodes to emphasize it is not meant to

class of multinets (Geiger and Heckerman, 1996) or Con_pe interpreted as a directed Bayesian network, though there

tingent Bayesian Networks (Milch et al., 2005). is & one to one mapping between these graphs. A directed
edge fromu to v in the interaction graph implies a directed

edge fromx} andx} in the TIM. Note that the TIM) in
Figure 1(a) has an interaction graph that happens to be a
directed tree (arborescence). However, in general the inte
action graph need not be a tree or even acyclic. In other
words, the space of interaction graphs is the space of all di-
rected graphs. Cycles in the interaction graph do not result
in cycles in the TIM¢) due to the strict temporal ordering
assumptions.

wherepa (v, E) returns the parents of vertexgiven the

2 TEMPORAL INTERACTION MODEL

Here, we present a temporal interaction model (TIM) for
multivariate time series. This model is athh order Markov
model with additional structural constraints. We begin
by introducing some notation for the purpose of explicitly
denoting individual time-series, past values of individua
time-series as well as sets thereof.

ConsiderNV time-series and lex; be a random variable

representing the value of th¢h time-series at timé. The 3 CONJUGATE PRIOR
r past values of time-seriesis defined ax;. That is,
Xy representx}_,...,x;_,.. As we will be explicit on
the temporal model order, is suppressed in the notation,
xv, for brevity. Furthermore, the vectas® indexed by set
Sis Ef(l),...fcts(m) stacked in a vector wher§| = m Do (E, @) = po (E) Do (9|E) . ()
(e.g. x;”" is x¥ andx¥ stacked). The random variables

denoting the present and past of all time-series attiave ~ The parameters are assumed to be independentand-
defined asX, and X, respectively. Multiple time points lar given a structure” and hyper-parameteis That is,
can be indexed by a vectar = [t t,,...,t7] such that they factorize according to the edgesfin

X; = [th,...,XtT] Note thatf(t can be formed from N

X and a set containing past values not availableXq, =\

(initial conditions). po (OIF) = UUlp 0 (Ovipae) ) @

We adopt a prior on the structure and parameters similar
to those presented in (Meila and Jaakkola, 2006; Friedman
and Koller, 2003), using the factorization
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andpg (@v‘s|1“) is the same for all structurds for which ~ (West and Harrison, 1997). Similarly for discrete observa-
S is the parent set of. Thus, for each time-seriasone  tions one can use Dirichlet priors and have analytic forms
needs to specify a parameter prior for all potential parenfor the evidence.

sets. Given this finite set of priors for eaclone is able to

; . Note that there are¥—! possible parent sets for each
supply a full prior on parameters for any given structure.

This yields a super-exponential number of possible struc-
We place a prior on directed structures which has the formtures,2¥°~~. This suggests one may need to explicitly
sum over a super exponential number of terms when calcu-
lating Z(3). Fortunately this is not the case. When consid-
ering the set of all structuregl, all combinations of parent
sets are possible and independent of each other. Thus one
where the partition functiotZ (3) ensures proper normal- can implicitly calculate this sum

ization. Each scalar hyper-parametgy,, can be inter-

_ 1 X
Po (E) = m H ﬁpa(v),v (5)
v=1

preted as a weight on the parent Sdor v and the prior is N
simply a proportional to the product of these weights. Note = Z H Bpa(v Z Z H Ps..v
that if all 3s ., are set to 1, one obtains a uniform prior and EeAv=l Sy v=l 9)
Z () is the number of possible structures. Ifadl , are set
proportional to the size @, |S|, the prior will favor dense = H Z fs,w = H Yo (0)
=18,

structures. Equivalently, sparse structures are favoyed b

making/s,. inversely proportional ¢s|. as a product oV summations. Each, () is a summation

LetD = {Xy,...,Xr} be a set ofl’ complete observa- over the2V—1 possible parent set§,,, for nodev. That
tions. We use the notatioPS = {x$,..,x3} to de- is, one can reason about all structures in exponential;time
note observat|ons of a set of time-serie®, = X, and N2V~1, rather than super-exponential time. Furthermore,

D¢ = x¥. {X1, . XT} can be formed usin@®  as will be discussed in the following sections, by imposing
and past informa'uon i€. Given dataD, the posterior on some constraints on the set of possible structures one can
parameters given structure has the form: obtain Z(3) in polynomial time while still considering a

super-exponential number of candidate structures.

v pa(v)
p(O|E, D) Hp( olpa(w) D", P ’F) ®) 31 BOUNDED PARENT SET SIZE

That is, the prior on parameters given a structure is fullyOne set of structure®, is obtained by restricting such

conjugate. If one choses a conjugate prior for e@ghs that each time-series/node has at mbstparents in the

in Equation 4 the posterior has the same form and can b@teraction graph. This translates to each time-seriésat t

updated by sufficient statistic calculations from the dita. ¢ being dependent on at mosf other time-series past in

addition, the posterior on structure is: addition to its own past. This is a local constraint on the
parent set of each time series. Consequently, each time-

_ 1 series’s parent set is independent of all others Ziid)
p (ED) = Z(BoW) H Fpa@w).oWea)o (1) has the same form as Equation 9 with
v=1
whereo is an element wise / Hadamard product and Y0(B) = Z s, (10)

Sy, s.t. [Sy|<M

Ws,, = p (D"[D"5) . . .

S =P | ) which is now a sum of all possible parent sets of size less

- than or equal td/. One can bound the order of the summa-

= /p (D DS, @v\s) po (OusIT) dOys q N1
tion by "M, ( o ) < NM_ Thus, only polynomial
is simply the evidence for time-seriesgiven the time-
series of its parent set defined By That is, the prior is
updated by modifyings with a set of evidence weight¥'.
The proof follows from the fact that the prior on structure
factorizes in the same manner as Equation 2.

computation timeO(N+1) is required for calculating
Z(3) even though the total number of structures is still su-
per exponential) (N M),

3.2 DIRECTED TREESAND FORESTS
For continuous observations and a linear gaussian model

with parametersd,, g one can choosgg (@v\le) to be Inthe previous section a local constraint on parent set size
a matrix-normal-inverse-Wishart distribution with hyper was imposed. However, there may be situations in which
parameter§'. This will yield efficient updates for Equation a global structure constraint is desirable. For example, on
6 andiV,,|s will be the evaluation of a Matrix-T distribution may want to only consider structures which form a fully
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connected interaction graph and/or contain no cycles. TheetP! only requiresO(N?). This is due to the imposed
set of directed treeq, is a subset oP! in which the inter-  acyclic constraint which limits the parent set of one node
action graph is spanning and acyclic. based on the parent sets of others.

In the directed tree cas@, is simply anN x N matrix
and each hyper-parametgy ., can be interpreted as a

: P )
weight on the edge — v, andfiy , = f,. IS @ weighton  tpg apjjity to compute the partition function and conjugacy
anode being aroot (having no parents). The edge set Corrgs yhe prior allows one to calculate a wide variety of useful

sponding to the nonzero entries@form a supportgraph.  ,ior andjor posterior event probabilities. For exampie, t

We assume this support graph is connected and contains ﬁ'ltobability of a particular edge being present is:
least one directed tree.

3.3 EVENT PROBABILITIES

While there areV Y —1 possible directed trees a¥ nodes, Py =1) =E[Iy] =1 — 2(p)
the Matrix Tree Theorem allows one to calculatés) in Z(p)
polynomial time. This theorem was used by (Meila andwhere],_,, is an indicator variable that has value 1 when
Jaakkola, 2006) for reasoning over undirected trees. Thehe edge: — v is present3—(“—?) is 3 with all elements
undirected version of theorem is a special case of the reghyolving edge fromu to v set to zero. Similarly one can

valued directed version originally developed by (Kirchfhof cajculate the probability a time-series/node having ne par
1847). The theorem allows one to calculate the weightegnts(root) or no children(leaf):

sum over all directed trees rootedratZ,. () via: )
Z(ﬁfln(v)) Z(ﬁfout(v))
p(fv isaroot) e 7N

ZB) = > ]I Buw=0of, (QB) (1) Z(8) Z(6)

E rooted atr u—v (15)

(14)

, D (Iu isaleaf) =

whereQ(33) is the Kirchhoff matrix with itsu, v entry de- ~ Wherein(v) andout(v) return the set of all possible edges

fined as: in and out of time-series/noderespectively5—° indicates
all elements ofs which involve any edge in the setthat
0 (5){ —Buw l<u#v<N are zero.
“ ZQJ:/;:I u’yv_ﬁu,u 1§’U/:U§N

The indicator variables used in the examples above can be
expressed as a general multiplicative functions of the form

(E) = ]_[f)\]:1 Jpa(v),0- The expected value of a general
multiplicative function can be calculated by:

-1 _ Z(Boyg)

(12)
and Cof; ; (M) is the i,j cofactor of matrix M.

Cof, ; (Q(B)) is invariant toi and gives the sum over all
weighted trees rooted gt See (Tutte, 1984) for a proof.

By summing over allV possible roots one obtains E[g(E)] = 205) (16)
N . . .
Note that variance or other higher order moments of multi-
Z(p) = Z BrrZr(B). (13) plicative functions can also calculated in this manreeg (
=t using Z (3 o ¢g?) in calculating posterior variance). In ad-
Thus, a straight forward implementation yieldy N'* dition, one can calculate the expectation of additive func-

: - i A

time for calculating the partition function. However, as tONS Oj‘cfthe formf(E) = >_,—1 fea(v).o- FOrE € Aor

pointed out in (Koo et al., 2007), using the invariance & € P N

of Cof, . (Q(8)) allows for O(N?) time computation of =1 N~ w(Bof) 17
g (QU . E[f(E)] =) (17)

Z(B). Thatis, Z(5) can be calculated by replacing any = Yo (B)

row of the matrixQ () with [3; 1, ..., By x| and taking its _ _ _
determinant. (8) [F1a ] For directed trees? € 7, E [f(E)] =

The set of directed forestsF, remove the fully con- N Z, _ _ 1
nected/spanning assumption Bf and allowsE to have > Z((g)) tr (MT,T (Q(Bo f)) M, (Q(3)) ) (18)
multiple roots. There aréN + 1)™Y directed forests =t

for N nodes, butZ(3) can still be calculated iO(N?3)  whereM; ; (Q) is the matrixQ with its ith row andjth col-
time (Koo et al., 2007). Some intuition as to why this is umn removed. A proof follows that of (Meila and Jaakkola,
true is that any directed forest can be turned into a directe@006) substituting in the directed tree partition function
tree by the addition of one virtual super root node whichplace of the undirected version. A similar form is obtained
has no parents and connects to all the roots in the forest. for directed forests.

Note that while7 < F c P!, both directed trees and Additive functions allow calculation of quantities such as
forests requiré)(N?3) computation even though the larger the expected number of children or parents of a particular
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with backward message passing followed by forward sam-
pling. This step can be modified when initializing to simply
sample the state sequence from its transition prior. During
Step 2 the sampled counts of state transitions are noted and
transition probabilities are then sampled given these tsoun

In Step 3 a vectot;, is formed with all the time points with

2z, = k. The structure and parameters are then sampled
given Dy, for eachk. It is important to note that given

a state sequence, one can efficiently calculate exact event
probabilities and posterior over structures.

Figure 2: The structure of a STINI(K) A STIM(r,K) assumes a known number of statés,and
structures can be revisited over time. However, the T)M(

time-series/node. For example, by settig, to |S| for a model can alsq gasily be embedded in a parts partition
singlev, f(E) will count the number of parents nodéas model (PPM) similar to that used by (Xuan and Murphy,
in structurek. 2007) which allow for an unknown number of states that
are never revisited. Similarly one may adopt nonparametric
Bayesian models such as the hierarchical Dirichlet process

hidden Markov model (HDP-HMM)(Teh et al., 2006) to

Given data, we have shown how to calculate the posterio?"OW for an gnknow_n number of _pot_ential revisited states.
D (E|D) and various event probabilities. Another impor- The approprlate.cho’lce of modelis hlghly dependenton the
tant task is sampling from this posterior. When considerind"°d€! assumptions’ maich to the application of interest.
all structures o™, sampling is done efficiently as a set 1€ experiments presented in this paper focus on the use of
of local sampling steps for each time-series/node paréent s¢"€ STIM(,K) leaving the above modifications/extensions
That is the parent s&, for nodeu is chosen with proba- fOr future work.

bility Gs,./~vv(5). Random sampling of directed spanning

trees (and forests with a some modification) is a well stud5 EXPERIMENTS

ied problem. This paper uses Wilson’s random walk based

algorithm (Wilson, 1996).

34 SAMPLING STRUCTURE

In this section we present experiments focusing on the cal-
culation of posterior event probabilities. We begin with a
4 SWITCHING INTERACTION MODELS  simple synthetic example and move on to data involving
the interaction of tracked moving objects. Specifically, we
The TIM(r) model assumes a single and parameters are interested in quantifying uncertainty in the dependenc
O over all time. Here, we introduce a switching tem- structure among time-series rather than obtaining point es
poral interaction model, STIM(K) which allows struc- timates. When analyzing data we do not assume there is
ture to change over time. Lef, be a hidden state at a “true/correct structure” one would like to discover. Our
time ¢ which indexes a specific structufe!, and param- goal is to fully characterizes posterior uncertainty.
eters,©*. Figure 2 shows a first order model. Given
a set of K structuresE = {FE',..,EX}, parameters 51 pSTINGUISHING STRUCTURE
e = {7 r!,. 7% 6! ..., 6K} and an observations over
the time period = [1, ..., T': A simple experiment on two one dimensional data streams
- (IV = 2)is carried out in order to explore how well one can
(X, % [E, ©) = plze)p(Xi|2, B, ©) (19) distinguish whether a an edge is present as a function of the
= number of samples and strength of dependeicamples
= [[pClr™ Hp(Xel X, B, 07) are drawn frompa TIMY) modgl with a IZtatic structurie of
x{ influencingx?: E contains a single edgé,— 2. x{ isa
wherez, = 0, the transition distribution is multinomial randomwalk&;} = x} , +n}) with unit variance Gaussian
p(ze|m* 1) = Mult(z;7*-) and is given a Dirichlet noise. The amount of influencd has onx? is controlled
prior po () = [, Dir (7*; ok, ..., ak). via a variablep such thatc? = px;_; + (1 — p)x?_; + n?

27 i i [ S— 2
Exact inference on this model is complex due to the fact\t’g h;rengI:Jssunnolzs\éar;ndcieb. i\l%ti fs?itp;fya)lllo,v;(st ig%\\/;:
t—1 ) =

there areK™ possible state sequences. Thus, we turn to . . :
. ) . random walk independent of the other time-series.
an MCMC approach in which samples are drawn from this
model using a Gibbs sampler. The sampler has three mai@iven the T samples the posterior probability of edge
steps. Step 1 samples the state sequence given previous és-— 2 is calculated using a TIM{). A weak matrix-

timate of structures and parameters. This is done effigientinormal-inverse-Wishart prior is placed on the parameters
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(a) 3 follows 2 follows 1
# of samples # of samples
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Figure 3: Edge posterior for differeptand # of samples o o o
A Pl F

(b) 1 follows 2

(zero mean, large variance, small degrees of freedom). Var- 0 0
ious settings op andT are explored. For each setting, 100
trials are performed and the average posterior is recorded. o o o o
A Pl F T

5
g 0!
8
4

T

Note that forN = 2 the structure seP! = A and that
|7| = 2, |F| = 3 and|A| = 4. Using a uniform prior
over structures we display results in Figure 3(a) and Fig-
ure 3(b) forE' in the set7” and.A respectively. The results g0 4. posterior interaction graphs for specific behav-

follow .|ntU||t|on: fewhsample7 af%d/q;s ? 0.1 reﬁfflts N & jors. Columns corresponds to the posterior over increas-
posterior ¢ ose toc ance (172 b 1/4 for A) while once ingly restrictive sets of structures: Frofhe Ato F € 7.
p > 0.1there is a sharp increase in the posterior of the cor-

rect structure. Note that, here, we are quantifying uncer-

tainty in terms of posterior edge appearance probabilitieSNext the players 2 and 3 are instructed to move freely, while
One can also calculate higher order information such as thglayer 1 is told to follow player 2. The resulting posteriors
posterior variance. For example, running a single trighwit are shown in Figure 4(b). Note this behavior is not de-
T = 50,p = 0.1 one obtains a posterior edge probability scribed well by a tree since player 3 is independent of all
of .6327 and posterior variance of .2324 where 7. others. Lastly, players 2 and 3 are told to move freely while
player 1 does his best to stay between both of them. The
results in Figure 4(c) show that this behavior only seems
represented well in set. Itis the only set that allows more
{han a single parent for a time-series.

(c) 1 stays between 2 and 3

52 INTERACTIONSOF MOVING OBJECTS

Next we explore a dataset comprised of recordings o
three individuals playing a simple interactive computer
game. Each player's computer mouse controls a specifi

dot/marker on their screen. In addition, each playersUsing the same interactive game setup we record three in-

screen shows the dots representing the other players R .
: . - dividuals playing a game of follow the leader. One player
well. The players are instructed to perform a particular in-,

. ) o . . designated the leader. The leader moves his or her dot
teractive behavior. The position of each player is obtaine : .
oon randomly around the screen while the other players are in-
at 8 samples per second. Each behavior is recorded for a

proximately 30 seconds Riructed to follow. Here, tlhe designated leader changes
' throughout the game. Thatis, a fourth person observing the

The players are first instructed to follow each other in or-game tells the players when to switch leaders. In this case,

der. Thatis, player 1 moves around the screen while playethe latent variable indicating the change of leader is abser

2 is instructed to follow him. Player 3 is instructed to able, and consequently, nominal ground truth is available

follow player 2. Using a uniform prior on structure and by which to evaluate performance.

weak matrix-normal-inverse-Wishart prior on parameters . . o .
posterior on structure is obtained given this data using 31/\/6 begin by using STIM(3) with € 7 1o analyze this

TIM(1). For increasingly restrictive sets of structures, re->cduence. Thatis, we will use the fact there are only three

sults are shown in Figure 4(a) depicted as weighted |nterpl‘we.rS and k_nowledge that directed trees may_sufflmer_wtly
. describe the interaction among players. A uniform prior
action graphs. In these graphs edge color represents the . . .
. . on structures and equivalently weak prior on parameters is
posterior probability of that edge. Node color represents

. . . : .- used. A weak self biased prior on the state transition distri
the probability a time-series has no parents/is a root @vhit bution is imposed with a bias towards self fransition
=0, black = 1). Note that this behavior is described well by '
all structure classes/sets and the most certainty is atain Given the data and the prior model, 100 samples of the
when considering the most restrictive get structure, parameters and the hidden state sequence are ob-

g3 FOLLOW THE LEADER
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Figure 6: Basketball results

State 1 State 2 State 3 State 1 State 2 State 3

(b) Rank 1 sample (c) Rank 34 sample high log likelihood. Notice that the posterior on structure

for each state is basically a delta function on three dis-
tinct structures. These structures agree with our intuitio

i N~ \\\- in that each root is consistent with who was designated as

the leader and the followers are conditionally independent
given the root. Figure 5(c) is a sample with a mid-range

Hamming distance (ranked 34 out the 100 samples). It has
(d) Sample using STIM(1,6) errors consistent with the majority of sequences shown in
5(a). The confusion between the first and third state is most

Figure 5: Follow the leader results / : )
noticeably reflected in the structure posterior for state 3.

While the above analysis assumed three states, consistent
tained with a Gibbs sampler. Burn in required approxi-with our knowledge of the ground truth, Figure 5(c) gives
mately 60 iterations. A detailed view of the results canevidence for additional modes/states. That is, for each
be found in Figure 5(a). The ground truth state sequence igshase of the game a better model may be a mixture of pro-
shown on top with players taking turns being the leader incesses each with similar structure but different pararaeter
order. This figure shows each of the Gibbs sampled stat@/e repeat the experiment usifg= 6 states. Figure 5(d)is
sequences. The labels were permuted to give a consisteatsample from this model.

coloring with the ground truth segmen.tatl(.)n shown on theI'he second row shows the occurrence of the learned states.
top. The results are ranked by the log likelihood of the dataInterestingly state 4 indicates uncertainty in the streest

given the sampled parameters and structures, with the to owever, this state is never used and thus its posterior re-

being the most likely. The right side of the figure shows the . . - .
: : . . mains uniform. The remaining structures are consistent
normalized Hamming distance of the best mapping to the

ground truth. Note that it is highly correlated with the log with the_groundtruth indicating who is the leader with éttl
likelihood of the data. Each sample falls within two generaluncertamty'

categories. The top third of the samples match the ground

truth closely, the bottom two thirds suggests a consisten?-4 SPORTSINTERACTION ANALYSIS

alternative explanation. : : . . .
Next we consider analysis of player interactions in sports

The state labels alone simply provide a segmentationdata. A basketball game recording from the CVBASE 06
Given this segmentation we look at the posterior on strucdataset was used (Pers et al., 2006). Players were tracked in
ture to analyze the interaction among the players. Figuretwvo cameras and their positions were mapped to a common
5(b) and 5(c) show a more detailed breakdown of two sameoordinate system and recorded at each frame. A total of
pled models. The first row of each figure shows the mostL1 tracks were obtained; five players on each team plus
likely state sequence given the sample model. The sedhe ball. A coarse annotation of the current phase of the
ond row shows interaction graphs representing the postegame was created. Four phases were noted: team A on
rior probability of the structure for each state. Recalktha offense, team B on offense, team A transitioning to offense,
while the state sequence is MCMC sampled, we obtain aand team B transitioning to offense. A sample frame with
exact posterior conditioned on this sequence. player positions is shown in Figure 6(b).

Figure 5(b) is a sample with low Hamming distance andA STIM(2,10) model with £ € 7 is used for analysis; a
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second order model incorporates velocity information. WeTabIe 1: (a) Probability of root and (b) average probability

use a weak prior on parameters and uniform prior on struc—ﬂ fai tatiorbold and underlinedal th
tures. A state sequence obtained from our Gibbs sampleor eaf given annotatiorbold and underinévalues are the

is shown in the bottom row of Figure 6(a). The middle row maz(;;numAaggesnigonéj gf'f%:;a:t 'g ?.;%2 (t:glgmz _rr?:‘rf)set?(\gely
shows the best many-to-one mapping of the sampled stat:q_e

. . am A .2475 .0832 .0420 4769

sequence to the coarse annotation. Note that while the sarrz g 0468 5907 537 0459
pled sequence is somewhat predictive of the annotation, a g 7057 6266 5346 A771
direct comparison is misleading since within each phase of
the game multiple structures may be active. (b) A Offense B Offense B Transto O A Transto O

. N Team A .3942 4097 4880 .3254
Given a sampled state sequence, the posteridr @ob- TeamB 5515 0493 1537 B0
tained for each point in time. With 11 time-series and 6—gg]| 1685 0671 1133 9086

states, displaying all posterior interaction graphs israap
tical. As an alternative, we focus on calculating posterior

event probabilities over time intervals. Table 1(a) showsReferences
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